code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , ): __snake_case : Dict = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('All input parameters must be positive' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('Relative densities cannot be greater than one' ) else: __snake_case : Any = 1 - (matter_density + radiation_density + dark_energy) __snake_case : Dict = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __snake_case : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation __magic_name__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): __snake_case : Optional[int] = 0 __snake_case : List[Any] = len(__UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , __UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): if len(__UpperCAmelCase ) <= 1: return arr, 0 __snake_case : List[str] = len(__UpperCAmelCase ) // 2 __snake_case : Any = arr[0:mid] __snake_case : Dict = arr[mid:] __snake_case , __snake_case : Union[str, Any] = count_inversions_recursive(__UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = count_inversions_recursive(__UpperCAmelCase ) __snake_case , __snake_case : List[str] = _count_cross_inversions(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : List[Any] ): __snake_case : Union[str, Any] = [] __snake_case : Optional[Any] = 0 while i < len(__UpperCAmelCase ) and j < len(__UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase__( ): __snake_case : Union[str, Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __snake_case : Dict = count_inversions_bf(__UpperCAmelCase ) __snake_case , __snake_case : List[Any] = count_inversions_recursive(__UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , __UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __snake_case : Any = count_inversions_bf(__UpperCAmelCase ) __snake_case , __snake_case : int = count_inversions_recursive(__UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __UpperCAmelCase ) # an empty list should also have zero inversions __snake_case : List[Any] = [] __snake_case : str = count_inversions_bf(__UpperCAmelCase ) __snake_case , __snake_case : Optional[Any] = count_inversions_recursive(__UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __UpperCAmelCase ) if __name__ == "__main__": main()
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "efficientformer" def __init__( self , _UpperCAmelCase = [3, 2, 6, 4] , _UpperCAmelCase = [48, 96, 224, 448] , _UpperCAmelCase = [True, True, True, True] , _UpperCAmelCase = 448 , _UpperCAmelCase = 32 , _UpperCAmelCase = 4 , _UpperCAmelCase = 7 , _UpperCAmelCase = 5 , _UpperCAmelCase = 8 , _UpperCAmelCase = 4 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 16 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1 , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = 1E-5 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.02 , _UpperCAmelCase = 1E-12 , _UpperCAmelCase = 224 , _UpperCAmelCase = 1E-05 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Dict = hidden_act __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Optional[int] = hidden_sizes __snake_case : Any = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Tuple = initializer_range __snake_case : int = layer_norm_eps __snake_case : int = patch_size __snake_case : List[str] = num_channels __snake_case : Optional[Any] = depths __snake_case : Union[str, Any] = mlp_expansion_ratio __snake_case : Dict = downsamples __snake_case : Any = dim __snake_case : str = key_dim __snake_case : int = attention_ratio __snake_case : Optional[Any] = resolution __snake_case : str = pool_size __snake_case : Dict = downsample_patch_size __snake_case : List[Any] = downsample_stride __snake_case : List[str] = downsample_pad __snake_case : Dict = drop_path_rate __snake_case : List[str] = num_metaad_blocks __snake_case : Optional[Any] = distillation __snake_case : Tuple = use_layer_scale __snake_case : Tuple = layer_scale_init_value __snake_case : Dict = image_size __snake_case : str = batch_norm_eps
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser( description=( '''Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''bert''', choices=['''bert''']) parser.add_argument('''--model_name''', default='''bert-base-uncased''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_bert-base-uncased_0247911.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __magic_name__ = parser.parse_args() if args.model_type == "bert": __magic_name__ = BertForMaskedLM.from_pretrained(args.model_name) __magic_name__ = '''bert''' else: raise ValueError('''args.model_type should be "bert".''') __magic_name__ = model.state_dict() __magic_name__ = {} for w in ["word_embeddings", "position_embeddings"]: __magic_name__ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: __magic_name__ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] __magic_name__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] __magic_name__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 __magic_name__ = state_dict['''cls.predictions.decoder.weight'''] __magic_name__ = state_dict['''cls.predictions.bias'''] if args.vocab_transform: for w in ["weight", "bias"]: __magic_name__ = state_dict[F'''cls.predictions.transform.dense.{w}'''] __magic_name__ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
from __future__ import annotations def UpperCAmelCase__( __UpperCAmelCase : list[float] ): if len(__UpperCAmelCase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) __snake_case : Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Tuple = parent __snake_case : int = batch_size __snake_case : Union[str, Any] = seq_length __snake_case : Any = is_training __snake_case : Tuple = use_input_mask __snake_case : List[Any] = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : int = vocab_size __snake_case : str = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : List[Any] = intermediate_size __snake_case : int = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : int = max_position_embeddings __snake_case : Optional[Any] = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = num_labels __snake_case : Tuple = num_choices __snake_case : Optional[int] = scope __snake_case : Tuple = vocab_size - 1 def lowercase_ ( self ): __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = None if self.use_input_mask: __snake_case : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : List[str] = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[str] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase_ ( self ): return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def lowercase_ ( self ): __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = self.prepare_config_and_inputs() __snake_case : List[str] = True return config, input_ids, input_mask, token_labels def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = GPTNeoXModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __snake_case : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = True __snake_case : int = GPTNeoXModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = self.num_labels __snake_case : Tuple = GPTNeoXForQuestionAnswering(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = self.num_labels __snake_case : Optional[int] = GPTNeoXForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = self.num_labels __snake_case : Optional[int] = GPTNeoXForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[int] = True __snake_case : List[Any] = GPTNeoXForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # first forward pass __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case : int = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Any = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[str] = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) __snake_case : Optional[int] = output_from_no_past['hidden_states'][0] __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice __snake_case : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : List[str] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { "feature-extraction": GPTNeoXModel, "question-answering": GPTNeoXForQuestionAnswering, "text-classification": GPTNeoXForSequenceClassification, "text-generation": GPTNeoXForCausalLM, "token-classification": GPTNeoXForTokenClassification, "zero-shot": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Tuple = GPTNeoXModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=64 , num_attention_heads=8 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case , __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): # This regression test was failing with PyTorch < 1.3 __snake_case , __snake_case , __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_decoder() __snake_case : Optional[Any] = None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @unittest.skip(reason='Feed forward chunking is not implemented' ) def lowercase_ ( self ): pass @parameterized.expand([('linear',), ('dynamic',)] ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = ids_tensor([1, 10] , config.vocab_size ) __snake_case : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Tuple = GPTNeoXModel(_UpperCAmelCase ) original_model.to(_UpperCAmelCase ) original_model.eval() __snake_case : Optional[Any] = original_model(_UpperCAmelCase ).last_hidden_state __snake_case : List[str] = original_model(_UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = {'type': scaling_type, 'factor': 10.0} __snake_case : Optional[Any] = GPTNeoXModel(_UpperCAmelCase ) scaled_model.to(_UpperCAmelCase ) scaled_model.eval() __snake_case : Tuple = scaled_model(_UpperCAmelCase ).last_hidden_state __snake_case : Dict = scaled_model(_UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-5 ) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : Any = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped' ) for checkpointing in [True, False]: __snake_case : Union[str, Any] = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_UpperCAmelCase ) __snake_case : Tuple = tokenizer('My favorite food is' , return_tensors='pt' ).to(_UpperCAmelCase ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __snake_case : Tuple = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __snake_case : Optional[Any] = model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20 ) __snake_case : str = tokenizer.batch_decode(_UpperCAmelCase )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase ): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __snake_case : Any = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = 'sshleifer/tiny-gpt2' __snake_case : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Any = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Union[str, Any] = 'sgugger/tiny-distilbert-classification' __snake_case : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , only_pretrain_model=_UpperCAmelCase , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Dict = 'sshleifer/tiny-gpt2' __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Dict = 'sshleifer/tiny-gpt2' __snake_case : Any = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Dict = TensorFlowBenchmark(_UpperCAmelCase , [config] ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : int = 'sshleifer/tiny-gpt2' __snake_case : int = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(_UpperCAmelCase , [config] ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Optional[Any] = 'sshleifer/tiny-gpt2' __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ): __snake_case : str = 'sshleifer/tiny-gpt2' __snake_case : Dict = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(_UpperCAmelCase , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase_ ( self ): __snake_case : Optional[int] = 'patrickvonplaten/t5-tiny-random' __snake_case : int = AutoConfig.from_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=_UpperCAmelCase , ) __snake_case : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase , configs=[config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def lowercase_ ( self ): __snake_case : int = 'sshleifer/tiny-gpt2' __snake_case : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=_UpperCAmelCase , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Optional[int] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase_ ( self ): __snake_case : Optional[int] = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCAmelCase , save_to_csv=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(_UpperCAmelCase , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(_UpperCAmelCase , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(_UpperCAmelCase , 'env.csv' ) , multi_process=_UpperCAmelCase , ) __snake_case : str = TensorFlowBenchmark(_UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'env.csv' ) ).exists() ) def lowercase_ ( self ): __snake_case : int = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(_UpperCAmelCase ): self.assertTrue(hasattr(_UpperCAmelCase , 'sequential' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'cumulative' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'current' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=_UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(_UpperCAmelCase , 'log.txt' ) , log_print=_UpperCAmelCase , trace_memory_line_by_line=_UpperCAmelCase , eager_mode=_UpperCAmelCase , multi_process=_UpperCAmelCase , ) __snake_case : Optional[Any] = TensorFlowBenchmark(_UpperCAmelCase ) __snake_case : List[Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(_UpperCAmelCase , 'log.txt' ) ).exists() )
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_autoformer''': [ '''AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AutoformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AutoformerForPrediction''', '''AutoformerModel''', '''AutoformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "dandelin/vilt-b32-finetuned-vqa" __UpperCAmelCase = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) __UpperCAmelCase = "image_qa" __UpperCAmelCase = AutoProcessor __UpperCAmelCase = AutoModelForVisualQuestionAnswering __UpperCAmelCase = ["image", "text"] __UpperCAmelCase = ["text"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['vision'] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): return self.pre_processor(_UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' ) def lowercase_ ( self , _UpperCAmelCase ): with torch.no_grad(): return self.model(**_UpperCAmelCase ).logits def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def UpperCAmelCase__( __UpperCAmelCase : Dict ): # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def UpperCAmelCase__( ): with parallel_backend('spark' ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Optional[Any] = [1, 2, 3] with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=2 ) with pytest.raises(__UpperCAmelCase ): with parallel_backend('unsupported backend' ): map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize('num_proc' , [2, -1] ) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): __snake_case : Optional[int] = [1, 2] __snake_case : List[Any] = {'a': 1, 'b': 2} __snake_case : Optional[int] = {'a': [1, 2], 'b': [3, 4]} __snake_case : List[str] = {'a': {'1': 1}, 'b': 2} __snake_case : str = {'a': 1, 'b': 2, 'c': 3, 'd': 4} __snake_case : List[Any] = [2, 3] __snake_case : Optional[Any] = {'a': 2, 'b': 3} __snake_case : str = {'a': [2, 3], 'b': [4, 5]} __snake_case : Any = {'a': {'1': 2}, 'b': 3} __snake_case : List[str] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} with parallel_backend('spark' ): assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa assert map_nested(__UpperCAmelCase , __UpperCAmelCase , num_proc=__UpperCAmelCase ) == expected_map_nested_sa
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , ): if attention_mask is None: __snake_case : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __snake_case : Tuple = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __snake_case : Optional[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=__UpperCAmelCase ) if decoder_head_mask is None: __snake_case : List[str] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) if cross_attn_head_mask is None: __snake_case : int = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=__UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="relu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=20 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , ): __snake_case : Union[str, Any] = parent __snake_case : str = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : str = use_labels __snake_case : Tuple = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : int = intermediate_size __snake_case : int = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Dict = encoder_layerdrop __snake_case : int = decoder_layerdrop __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = eos_token_id __snake_case : Tuple = pad_token_id __snake_case : Optional[int] = bos_token_id def lowercase_ ( self ): __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Optional[Any] = self.eos_token_id # Eos Token __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __snake_case : str = input_ids.clamp(self.pad_token_id + 1 ) __snake_case : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) __snake_case : int = self.get_config() __snake_case : Dict = prepare_mam_aaa_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowercase_ ( self ): return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def lowercase_ ( self ): __snake_case , __snake_case : Dict = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = MaMaaaModel(config=_UpperCAmelCase ).get_decoder().to(_UpperCAmelCase ).eval() __snake_case : str = inputs_dict['input_ids'] __snake_case : Union[str, Any] = inputs_dict['attention_mask'] __snake_case : Any = inputs_dict['head_mask'] # first forward pass __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case , __snake_case : List[Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __snake_case : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : List[str] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __snake_case : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __snake_case : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[ 'last_hidden_state' ] # select random slice __snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-2 ) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = MaMaaaModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __snake_case : str = model(**_UpperCAmelCase ) __snake_case : Dict = outputs.encoder_last_hidden_state __snake_case : str = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : List[Any] = model.get_encoder() encoder.save_pretrained(_UpperCAmelCase ) __snake_case : int = MaMaaaEncoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = encoder(inputs_dict['input_ids'] , attention_mask=inputs_dict['attention_mask'] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case : Any = model.get_decoder() decoder.save_pretrained(_UpperCAmelCase ) __snake_case : Tuple = MaMaaaDecoder.from_pretrained(_UpperCAmelCase ).to(_UpperCAmelCase ) __snake_case : List[Any] = decoder( input_ids=inputs_dict['decoder_input_ids'] , attention_mask=inputs_dict['decoder_attention_mask'] , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=inputs_dict['attention_mask'] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) __UpperCAmelCase = (MaMaaaForConditionalGeneration,) if is_torch_available() else () __UpperCAmelCase = ( { "conversational": MaMaaaForConditionalGeneration, "feature-extraction": MaMaaaModel, "summarization": MaMaaaForConditionalGeneration, "text2text-generation": MaMaaaForConditionalGeneration, "translation": MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def lowercase_ ( self ): __snake_case : Union[str, Any] = MaMaaaModelTester(self ) __snake_case : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __snake_case : Dict = model_class(_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase ) __snake_case , __snake_case : List[Any] = model_class.from_pretrained(_UpperCAmelCase , output_loading_info=_UpperCAmelCase ) self.assertEqual(info['missing_keys'] , [] ) def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __snake_case : Tuple = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[int] = copy.deepcopy(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) if not self.is_encoder_decoder: __snake_case : Optional[int] = inputs['input_ids'] del inputs["input_ids"] else: __snake_case : int = inputs['input_ids'] __snake_case : List[str] = inputs.get('decoder_input_ids' , _UpperCAmelCase ) del inputs["input_ids"] inputs.pop('decoder_input_ids' , _UpperCAmelCase ) __snake_case : Optional[int] = model.get_input_embeddings() if not self.is_encoder_decoder: __snake_case : Tuple = wte(_UpperCAmelCase ) else: __snake_case : List[Any] = wte(_UpperCAmelCase ) __snake_case : Optional[Any] = wte(_UpperCAmelCase ) with torch.no_grad(): model(**_UpperCAmelCase )[0] def lowercase_ ( self ): __snake_case , __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() __snake_case : Any = input_dict['input_ids'] __snake_case : List[Any] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Optional[int] = MaMaaaForConditionalGeneration(_UpperCAmelCase ).eval().to(_UpperCAmelCase ) if torch_device == "cuda": model.half() model.generate(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) model.generate(num_beams=4 , do_sample=_UpperCAmelCase , early_stopping=_UpperCAmelCase , num_return_sequences=3 ) def UpperCAmelCase__( __UpperCAmelCase : str ): return torch.tensor(__UpperCAmelCase , dtype=torch.long , device=__UpperCAmelCase ) __magic_name__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' ) def lowercase_ ( self ): __snake_case : int = MaMaaaModel.from_pretrained('facebook/m2m100_418M' ).to(_UpperCAmelCase ) __snake_case : Optional[Any] = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __snake_case : Union[str, Any] = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __snake_case : int = prepare_mam_aaa_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase )[0] __snake_case : Tuple = torch.Size((1, 11, 1_024) ) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here __snake_case : Optional[int] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : List[str] = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_UpperCAmelCase ) # change to intended input __snake_case : Union[str, Any] = _long_tensor([[128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38, 2]] ) __snake_case : str = _long_tensor([[2, 128_028, 98, 12, 30_527, 2_732, 159, 7_755, 61_904, 39_144, 38]] ) __snake_case : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , _UpperCAmelCase , _UpperCAmelCase ) with torch.no_grad(): __snake_case : List[str] = model(**_UpperCAmelCase )[0] __snake_case : Optional[int] = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) # change to expected output here __snake_case : Optional[Any] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] , device=_UpperCAmelCase ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=_UpperCAmelCase ) ) def lowercase_ ( self ): __snake_case : Any = MaMaaaForConditionalGeneration.from_pretrained('facebook/m2m100_418M' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = MaMaaaTokenizer.from_pretrained('facebook/m2m100_418M' , src_lang='fr' , tgt_lang='en' ) __snake_case : Optional[Any] = [ 'L\'affaire NSA souligne l\'absence totale de débat sur le renseignement', 'Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.', 'Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent' ' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de' ' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __snake_case : int = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors='pt' ) __snake_case : str = model.generate( input_ids=dct['input_ids'].to(_UpperCAmelCase ) , attention_mask=dct['attention_mask'].to(_UpperCAmelCase ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('en' ) , ) __snake_case : Tuple = [ 'The NSA case highlights the total absence of intelligence debate', 'I think there are two levels of response from the French government.', 'When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.' ' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all' ' communications in France.', ] __snake_case : Dict = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) assert generated == expected_en
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] ): def update_area_of_max_square(__UpperCAmelCase : int , __UpperCAmelCase : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 __snake_case : Dict = update_area_of_max_square(__UpperCAmelCase , col + 1 ) __snake_case : Any = update_area_of_max_square(row + 1 , col + 1 ) __snake_case : Any = update_area_of_max_square(row + 1 , __UpperCAmelCase ) if mat[row][col]: __snake_case : Any = 1 + min([right, diagonal, down] ) __snake_case : Union[str, Any] = max(largest_square_area[0] , __UpperCAmelCase ) return sub_problem_sol else: return 0 __snake_case : Optional[int] = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] ): def update_area_of_max_square_using_dp_array( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] __snake_case : Any = update_area_of_max_square_using_dp_array(__UpperCAmelCase , col + 1 , __UpperCAmelCase ) __snake_case : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , __UpperCAmelCase ) __snake_case : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , __UpperCAmelCase , __UpperCAmelCase ) if mat[row][col]: __snake_case : Dict = 1 + min([right, diagonal, down] ) __snake_case : str = max(largest_square_area[0] , __UpperCAmelCase ) __snake_case : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 __snake_case : Tuple = [0] __snake_case : Dict = [[-1] * cols for _ in range(__UpperCAmelCase )] update_area_of_max_square_using_dp_array(0 , 0 , __UpperCAmelCase ) return largest_square_area[0] def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] ): __snake_case : List[str] = [[0] * (cols + 1) for _ in range(rows + 1 )] __snake_case : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case : str = dp_array[row][col + 1] __snake_case : Dict = dp_array[row + 1][col + 1] __snake_case : str = dp_array[row + 1][col] if mat[row][col] == 1: __snake_case : str = 1 + min(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __snake_case : List[str] = max(dp_array[row][col] , __UpperCAmelCase ) else: __snake_case : List[Any] = 0 return largest_square_area def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] ): __snake_case : Dict = [0] * (cols + 1) __snake_case : List[Any] = [0] * (cols + 1) __snake_case : Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): __snake_case : List[str] = current_row[col + 1] __snake_case : int = next_row[col + 1] __snake_case : List[str] = next_row[col] if mat[row][col] == 1: __snake_case : Optional[int] = 1 + min(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __snake_case : Any = max(current_row[col] , __UpperCAmelCase ) else: __snake_case : Any = 0 __snake_case : str = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : int = SwinConfig( embed_dim=1_92 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['stage2', 'stage3', 'stage4'] , ) __snake_case : Tuple = DetaConfig( backbone_config=__UpperCAmelCase , num_queries=9_00 , encoder_ffn_dim=20_48 , decoder_ffn_dim=20_48 , num_feature_levels=5 , assign_first_stage=__UpperCAmelCase , with_box_refine=__UpperCAmelCase , two_stage=__UpperCAmelCase , ) # set labels __snake_case : int = 'huggingface/label-files' if "o365" in model_name: __snake_case : List[str] = 3_66 __snake_case : str = 'object365-id2label.json' else: __snake_case : str = 91 __snake_case : Optional[int] = 'coco-detection-id2label.json' __snake_case : Union[str, Any] = num_labels __snake_case : Any = json.load(open(cached_download(hf_hub_url(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' ) ) , 'r' ) ) __snake_case : Union[str, Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : List[str] = idalabel __snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : List[str] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.reduction.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.weight""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.0.body.layers.{i}.downsample.norm.bias""", F"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", F"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", F"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", F"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", F"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", F"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", F"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", F"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.weight""", F"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", F"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", F"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", F"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.weight""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.weight""", F"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm2.bias""", F"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict ): __snake_case : str = dct.pop(__UpperCAmelCase ) __snake_case : List[str] = val def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict ): __snake_case : Dict = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __snake_case : str = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __snake_case : List[Any] = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __snake_case : Any = state_dict.pop(F"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case : str = in_proj_weight[:dim, :] __snake_case : Any = in_proj_bias[: dim] __snake_case : List[str] = in_proj_weight[ dim : dim * 2, : ] __snake_case : str = in_proj_bias[ dim : dim * 2 ] __snake_case : str = in_proj_weight[ -dim :, : ] __snake_case : Any = in_proj_bias[-dim :] # fmt: on def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ): # transformer decoder self-attention layers __snake_case : Dict = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __snake_case : Optional[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __snake_case : List[Any] = state_dict.pop(F"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __snake_case : Union[str, Any] = in_proj_weight[:hidden_size, :] __snake_case : Any = in_proj_bias[:hidden_size] __snake_case : Tuple = in_proj_weight[ hidden_size : hidden_size * 2, : ] __snake_case : Union[str, Any] = in_proj_bias[hidden_size : hidden_size * 2] __snake_case : Any = in_proj_weight[-hidden_size:, :] __snake_case : Tuple = in_proj_bias[-hidden_size:] def UpperCAmelCase__( ): __snake_case : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : str = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ): __snake_case : Any = get_deta_config(__UpperCAmelCase ) # load original state dict if model_name == "deta-swin-large": __snake_case : Optional[Any] = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __snake_case : Any = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(F"""Model name {model_name} not supported""" ) __snake_case : Tuple = torch.load(__UpperCAmelCase , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(__UpperCAmelCase , param.shape ) # rename keys __snake_case : List[str] = create_rename_keys(__UpperCAmelCase ) for src, dest in rename_keys: rename_key(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) read_in_swin_q_k_v(__UpperCAmelCase , config.backbone_config ) read_in_decoder_q_k_v(__UpperCAmelCase , __UpperCAmelCase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __snake_case : List[str] = state_dict.pop(__UpperCAmelCase ) __snake_case : str = val if "input_proj" in key: __snake_case : Union[str, Any] = state_dict.pop(__UpperCAmelCase ) __snake_case : Dict = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __snake_case : int = state_dict.pop(__UpperCAmelCase ) __snake_case : Dict = val # finally, create HuggingFace model and load state dict __snake_case : Dict = DetaForObjectDetection(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() __snake_case : Tuple = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(__UpperCAmelCase ) # load image processor __snake_case : int = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __snake_case : int = prepare_img() __snake_case : Any = processor(images=__UpperCAmelCase , return_tensors='pt' ) __snake_case : Dict = encoding['pixel_values'] __snake_case : Union[str, Any] = model(pixel_values.to(__UpperCAmelCase ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __snake_case : List[Any] = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) __snake_case : Union[str, Any] = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": __snake_case : Dict = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) __snake_case : int = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(__UpperCAmelCase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(__UpperCAmelCase ) , atol=1E-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(F"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(F"""jozhang97/{model_name}""" ) processor.push_to_hub(F"""jozhang97/{model_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', type=str, default='''deta-swin-large''', choices=['''deta-swin-large''', '''deta-swin-large-o365'''], help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __magic_name__ = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
def UpperCAmelCase__( __UpperCAmelCase : int = 10_00 ): __snake_case : int = 2**power __snake_case : Any = str(__UpperCAmelCase ) __snake_case : Optional[Any] = list(__UpperCAmelCase ) __snake_case : List[Any] = 0 for i in list_num: sum_of_num += int(__UpperCAmelCase ) return sum_of_num if __name__ == "__main__": __magic_name__ = int(input('''Enter the power of 2: ''').strip()) print('''2 ^ ''', power, ''' = ''', 2**power) __magic_name__ = solution(power) print('''Sum of the digits is: ''', result)
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __magic_name__ = { '''tiny.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt''', '''tiny''': '''https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt''', '''base.en''': '''https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt''', '''base''': '''https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt''', '''small.en''': '''https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt''', '''small''': '''https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt''', '''medium.en''': '''https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt''', '''medium''': '''https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt''', '''large''': '''https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt''', '''large-v2''': '''https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt''', } def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Any = ['layers', 'blocks'] for k in ignore_keys: state_dict.pop(__UpperCAmelCase , __UpperCAmelCase ) __magic_name__ = { '''blocks''': '''layers''', '''mlp.0''': '''fc1''', '''mlp.2''': '''fc2''', '''mlp_ln''': '''final_layer_norm''', '''.attn.query''': '''.self_attn.q_proj''', '''.attn.key''': '''.self_attn.k_proj''', '''.attn.value''': '''.self_attn.v_proj''', '''.attn_ln''': '''.self_attn_layer_norm''', '''.attn.out''': '''.self_attn.out_proj''', '''.cross_attn.query''': '''.encoder_attn.q_proj''', '''.cross_attn.key''': '''.encoder_attn.k_proj''', '''.cross_attn.value''': '''.encoder_attn.v_proj''', '''.cross_attn_ln''': '''.encoder_attn_layer_norm''', '''.cross_attn.out''': '''.encoder_attn.out_proj''', '''decoder.ln.''': '''decoder.layer_norm.''', '''encoder.ln.''': '''encoder.layer_norm.''', '''token_embedding''': '''embed_tokens''', '''encoder.positional_embedding''': '''encoder.embed_positions.weight''', '''decoder.positional_embedding''': '''decoder.embed_positions.weight''', '''ln_post''': '''layer_norm''', } def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): __snake_case : Optional[int] = list(s_dict.keys() ) for key in keys: __snake_case : int = key for k, v in WHISPER_MAPPING.items(): if k in key: __snake_case : List[str] = new_key.replace(__UpperCAmelCase , __UpperCAmelCase ) print(F"""{key} -> {new_key}""" ) __snake_case : Any = s_dict.pop(__UpperCAmelCase ) return s_dict def UpperCAmelCase__( __UpperCAmelCase : List[str] ): __snake_case , __snake_case : str = emb.weight.shape __snake_case : List[Any] = nn.Linear(__UpperCAmelCase , __UpperCAmelCase , bias=__UpperCAmelCase ) __snake_case : Union[str, Any] = emb.weight.data return lin_layer def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) __snake_case : Dict = os.path.basename(__UpperCAmelCase ) __snake_case : Any = url.split('/' )[-2] __snake_case : str = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if os.path.exists(__UpperCAmelCase ) and not os.path.isfile(__UpperCAmelCase ): raise RuntimeError(F"""{download_target} exists and is not a regular file""" ) if os.path.isfile(__UpperCAmelCase ): __snake_case : Tuple = open(__UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(__UpperCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(__UpperCAmelCase ) as source, open(__UpperCAmelCase , 'wb' ) as output: with tqdm( total=int(source.info().get('Content-Length' ) ) , ncols=80 , unit='iB' , unit_scale=__UpperCAmelCase , unit_divisor=10_24 ) as loop: while True: __snake_case : Dict = source.read(81_92 ) if not buffer: break output.write(__UpperCAmelCase ) loop.update(len(__UpperCAmelCase ) ) __snake_case : Optional[int] = open(__UpperCAmelCase , 'rb' ).read() if hashlib.shaaaa(__UpperCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( 'Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.' ) return model_bytes def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Tuple ): if ".pt" not in checkpoint_path: __snake_case : Tuple = _download(_MODELS[checkpoint_path] ) else: __snake_case : Tuple = torch.load(__UpperCAmelCase , map_location='cpu' ) __snake_case : Optional[int] = original_checkpoint['dims'] __snake_case : Dict = original_checkpoint['model_state_dict'] __snake_case : List[Any] = state_dict['decoder.token_embedding.weight'] remove_ignore_keys_(__UpperCAmelCase ) rename_keys(__UpperCAmelCase ) __snake_case : Tuple = True __snake_case : str = state_dict['decoder.layers.0.fc1.weight'].shape[0] __snake_case : Tuple = WhisperConfig( vocab_size=dimensions['n_vocab'] , encoder_ffn_dim=__UpperCAmelCase , decoder_ffn_dim=__UpperCAmelCase , num_mel_bins=dimensions['n_mels'] , d_model=dimensions['n_audio_state'] , max_target_positions=dimensions['n_text_ctx'] , encoder_layers=dimensions['n_audio_layer'] , encoder_attention_heads=dimensions['n_audio_head'] , decoder_layers=dimensions['n_text_layer'] , decoder_attention_heads=dimensions['n_text_state'] , max_source_positions=dimensions['n_audio_ctx'] , ) __snake_case : Dict = WhisperForConditionalGeneration(__UpperCAmelCase ) __snake_case , __snake_case : Optional[Any] = model.model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0 and not set(__UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F""" but all the following weights are missing {missing}""" ) if tie_embeds: __snake_case : int = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __snake_case : List[str] = proj_out_weights model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') __magic_name__ = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : int ): if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer __snake_case : Union[str, Any] = flax_key_tuple[:-1] + ('weight',) __snake_case : Any = torch.permute(__UpperCAmelCase , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(__UpperCAmelCase ): # linear layer __snake_case : List[Any] = flax_key_tuple[:-1] + ('weight',) __snake_case : Optional[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: __snake_case : int = flax_key_tuple[:-1] + ('weight',) return flax_key_tuple, flax_tensor def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] ): if "metadata" in layer: __snake_case : Tuple = layer.split('metadata' ) __snake_case : Any = ''.join(split_layer[0] )[:-1] __snake_case : Union[str, Any] = [tuple(('metadata' + split_layer[1]).split('/' ) )] elif "kvstore" in layer: __snake_case : Any = layer.split('kvstore' ) __snake_case : List[str] = ''.join(split_layer[0] )[:-1] __snake_case : Tuple = [tuple(('kvstore' + split_layer[1]).split('/' ) )] else: __snake_case : Dict = layer.split('/' ) __snake_case : Any = '/'.join(split_layer[:-1] ) __snake_case : Optional[Any] = (split_layer[-1],) if "kvstore/path" in layer: __snake_case : Optional[Any] = F"""{switch_checkpoint_path}/{checkpoint_info[layer]}""" elif "kvstore/driver" in layer: __snake_case : int = 'file' else: __snake_case : Union[str, Any] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : int ): __snake_case : Optional[Any] = rename_keys(__UpperCAmelCase ) __snake_case : List[Any] = {} for k, v in current_block.items(): __snake_case : Any = v __snake_case : Optional[Any] = new_current_block torch.save(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : str = WEIGHTS_NAME ): __snake_case : int = convert_file_size_to_int(__UpperCAmelCase ) __snake_case : Tuple = [] __snake_case : Any = {} __snake_case : int = 0 __snake_case : Optional[int] = 0 os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp: __snake_case : Dict = serialization.msgpack_restore(fp.read() )['optimizer']['target'] __snake_case : int = flatten_dict(__UpperCAmelCase , sep='/' ) __snake_case : List[Any] = {} for layer in checkpoint_info.keys(): __snake_case , __snake_case , __snake_case : Any = get_key_and_tensorstore_dict( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if curr_real_layer_name in all_layers: __snake_case : Union[str, Any] = content else: __snake_case : List[Any] = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file __snake_case : List[str] = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() __snake_case : List[str] = torch.tensor(__UpperCAmelCase ) __snake_case : Dict = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts __snake_case , __snake_case : List[Any] = rename_base_flax_keys(tuple(key.split('/' ) ) , __UpperCAmelCase ) __snake_case : int = '/'.join(__UpperCAmelCase ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: __snake_case : List[str] = os.path.join( __UpperCAmelCase , weights_name.replace('.bin' , F"""-{len(__UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__UpperCAmelCase , __UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) del current_block __snake_case : int = {} __snake_case : Optional[Any] = 0 __snake_case : Optional[Any] = raw_weights.to(getattr(__UpperCAmelCase , __UpperCAmelCase ) ) current_block_size += weight_size total_size += weight_size # Add the last block __snake_case : Optional[Any] = os.path.join(__UpperCAmelCase , weights_name.replace('.bin' , F"""-{len(__UpperCAmelCase )+1:05d}-of-???.bin""" ) ) rename_and_save_block(__UpperCAmelCase , __UpperCAmelCase ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(__UpperCAmelCase ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index __snake_case : Tuple = {} __snake_case : Union[str, Any] = {} for idx, shard in enumerate(__UpperCAmelCase ): __snake_case : List[Any] = weights_name.replace( '.bin' , F"""-{idx+1:05d}-of-{len(__UpperCAmelCase ):05d}.bin""" ) # len(sharded_state_dicts):05d} __snake_case : List[str] = os.path.join(__UpperCAmelCase , weights_name.replace('.bin' , F"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) __snake_case : List[Any] = shard for key in shard: __snake_case : Union[str, Any] = shard_file # Add the metadata __snake_case : Optional[Any] = {'total_size': total_size} __snake_case : int = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , 'w' , encoding='utf-8' ) as f: __snake_case : Tuple = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '\n' f.write(__UpperCAmelCase ) return metadata, index if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--max_shard_size''', default='''10GB''', required=False, help='''Max shard size''') parser.add_argument('''--dtype''', default='''bfloat16''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted''', type=str, required=False, help='''Path to the output pytorch model.''', ) __magic_name__ = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def UpperCAmelCase__( ): from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer __snake_case : int = SwitchTransformersConfig.from_pretrained('google/switch-base-8' ) config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' ) __snake_case : List[Any] = SwitchTransformersForConditionalGeneration.from_pretrained( '/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' ) __snake_case : Optional[int] = TaTokenizer.from_pretrained('t5-small' ) __snake_case : Union[str, Any] = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.' __snake_case : str = tokenizer(__UpperCAmelCase , return_tensors='pt' ).input_ids __snake_case : List[str] = model.generate(__UpperCAmelCase , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __magic_name__ = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } __magic_name__ = { '''169M''': 768, '''430M''': 1_024, '''1B5''': 2_048, '''3B''': 2_560, '''7B''': 4_096, '''14B''': 5_120, } def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Dict = list(state_dict.keys() ) for name in state_dict_keys: __snake_case : Tuple = state_dict.pop(__UpperCAmelCase ) # emb -> embedding if name.startswith('emb.' ): __snake_case : Optional[int] = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): __snake_case : List[str] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention __snake_case : Optional[Any] = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , __UpperCAmelCase ) # ffn -> feed_forward __snake_case : int = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , __UpperCAmelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): __snake_case : Any = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): __snake_case : List[Any] = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): __snake_case : List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": __snake_case : str = 'rwkv.' + name __snake_case : Any = weight return state_dict def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Union[str, Any]=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : str=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) __snake_case : List[Any] = 5_02_77 __snake_case : Tuple = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: __snake_case : Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=__UpperCAmelCase ) __snake_case : Optional[int] = len(__UpperCAmelCase ) tokenizer.save_pretrained(__UpperCAmelCase ) # 2. Build the config __snake_case : Optional[Any] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __snake_case : int = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) __snake_case : Tuple = RwkvConfig( vocab_size=__UpperCAmelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(__UpperCAmelCase ) # 3. Download model file then convert state_dict __snake_case : Optional[int] = hf_hub_download(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Dict = torch.load(__UpperCAmelCase , map_location='cpu' ) __snake_case : List[str] = convert_state_dict(__UpperCAmelCase ) # 4. Split in shards and save __snake_case , __snake_case : Optional[Any] = shard_checkpoint(__UpperCAmelCase ) for shard_file, shard in shards.items(): torch.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) if index is not None: __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) # Save the index as well with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as f: __snake_case : Optional[int] = json.dumps(__UpperCAmelCase , indent=2 , sort_keys=__UpperCAmelCase ) + '\n' f.write(__UpperCAmelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) __snake_case : str = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __snake_case : str = torch.load(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__UpperCAmelCase , __UpperCAmelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) __snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained(__UpperCAmelCase ) model.push_to_hub(__UpperCAmelCase , max_shard_size='2GB' ) tokenizer.push_to_hub(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) __magic_name__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : List[Any]=False ): __snake_case : List[Any] = OmegaConf.load(__UpperCAmelCase ) if display: print(yaml.dump(OmegaConf.to_container(__UpperCAmelCase ) ) ) return config def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : Dict=None ): if conf_path is None: __snake_case : Optional[int] = './model_checkpoints/vqgan_only.yaml' __snake_case : List[Any] = load_config(__UpperCAmelCase , display=__UpperCAmelCase ) __snake_case : Tuple = VQModel(**config.model.params ) if ckpt_path is None: __snake_case : Dict = './model_checkpoints/vqgan_only.pt' __snake_case : Optional[Any] = torch.load(__UpperCAmelCase , map_location=__UpperCAmelCase ) if ".ckpt" in ckpt_path: __snake_case : Tuple = sd['state_dict'] model.load_state_dict(__UpperCAmelCase , strict=__UpperCAmelCase ) model.to(__UpperCAmelCase ) del sd return model def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] ): __snake_case , __snake_case , __snake_case : Optional[Any] = model.encode(__UpperCAmelCase ) print(F"""VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}""" ) __snake_case : List[Any] = model.decode(__UpperCAmelCase ) return xrec def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int]=False ): __snake_case , __snake_case : List[str] = string.rsplit('.' , 1 ) if reload: __snake_case : Dict = importlib.import_module(__UpperCAmelCase ) importlib.reload(__UpperCAmelCase ) return getattr(importlib.import_module(__UpperCAmelCase , package=__UpperCAmelCase ) , cls ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if "target" not in config: raise KeyError('Expected key `target` to instantiate.' ) return get_obj_from_str(config['target'] )(**config.get('params' , {} ) ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Any=True ): __snake_case : Union[str, Any] = instantiate_from_config(__UpperCAmelCase ) if sd is not None: model.load_state_dict(__UpperCAmelCase ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple ): # load the specified checkpoint if ckpt: __snake_case : List[str] = torch.load(__UpperCAmelCase , map_location='cpu' ) __snake_case : Optional[Any] = pl_sd['global_step'] print(F"""loaded model from global step {global_step}.""" ) else: __snake_case : str = {'state_dict': None} __snake_case : List[Any] = None __snake_case : str = load_model_from_config(config.model , pl_sd['state_dict'] , gpu=__UpperCAmelCase , eval_mode=__UpperCAmelCase )['model'] return model, global_step
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} __magic_name__ = { '''vocab_file''': {'''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'''}, '''tokenizer_file''': { '''mobilebert-uncased''': '''https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json''' }, } __magic_name__ = {'''mobilebert-uncased''': 512} __magic_name__ = {} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = MobileBertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase="[UNK]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="[PAD]" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenize_chinese_chars=_UpperCAmelCase , strip_accents=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _UpperCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _UpperCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _UpperCAmelCase ) != tokenize_chinese_chars ): __snake_case : Union[str, Any] = getattr(_UpperCAmelCase , normalizer_state.pop('type' ) ) __snake_case : Tuple = do_lower_case __snake_case : int = strip_accents __snake_case : Optional[Any] = tokenize_chinese_chars __snake_case : List[str] = normalizer_class(**_UpperCAmelCase ) __snake_case : Union[str, Any] = do_lower_case def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Dict = [self.sep_token_id] __snake_case : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : List[Any] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "char" __UpperCAmelCase = "bpe" __UpperCAmelCase = "wp" __magic_name__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["image_processor", "char_tokenizer"] __UpperCAmelCase = "ViTImageProcessor" __UpperCAmelCase = "MgpstrTokenizer" def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): __snake_case : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __snake_case : str = kwargs.pop('feature_extractor' ) __snake_case : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) __snake_case : List[str] = tokenizer __snake_case : Tuple = AutoTokenizer.from_pretrained('gpt2' ) __snake_case : Tuple = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __snake_case : Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None: __snake_case : Union[str, Any] = self.char_tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is None: return inputs elif images is None: return encodings else: __snake_case : Union[str, Any] = encodings['input_ids'] return inputs def lowercase_ ( self , _UpperCAmelCase ): __snake_case , __snake_case , __snake_case : int = sequences __snake_case : Optional[int] = char_preds.size(0 ) __snake_case , __snake_case : Tuple = self._decode_helper(_UpperCAmelCase , 'char' ) __snake_case , __snake_case : Tuple = self._decode_helper(_UpperCAmelCase , 'bpe' ) __snake_case , __snake_case : Union[str, Any] = self._decode_helper(_UpperCAmelCase , 'wp' ) __snake_case : List[Any] = [] __snake_case : str = [] for i in range(_UpperCAmelCase ): __snake_case : str = [char_scores[i], bpe_scores[i], wp_scores[i]] __snake_case : List[str] = [char_strs[i], bpe_strs[i], wp_strs[i]] __snake_case : Optional[int] = scores.index(max(_UpperCAmelCase ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) __snake_case : Optional[int] = {} __snake_case : List[str] = final_strs __snake_case : Any = final_scores __snake_case : Optional[int] = char_strs __snake_case : str = bpe_strs __snake_case : str = wp_strs return out def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): if format == DecodeType.CHARACTER: __snake_case : Optional[int] = self.char_decode __snake_case : str = 1 __snake_case : str = '[s]' elif format == DecodeType.BPE: __snake_case : Optional[Any] = self.bpe_decode __snake_case : Optional[Any] = 2 __snake_case : Optional[int] = '#' elif format == DecodeType.WORDPIECE: __snake_case : str = self.wp_decode __snake_case : str = 102 __snake_case : Tuple = '[SEP]' else: raise ValueError(F"""Format {format} is not supported.""" ) __snake_case , __snake_case : Union[str, Any] = [], [] __snake_case : Optional[Any] = pred_logits.size(0 ) __snake_case : Optional[int] = pred_logits.size(1 ) __snake_case , __snake_case : str = pred_logits.topk(1 , dim=-1 , largest=_UpperCAmelCase , sorted=_UpperCAmelCase ) __snake_case : Union[str, Any] = preds_index.view(-1 , _UpperCAmelCase )[:, 1:] __snake_case : Tuple = decoder(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = torch.nn.functional.softmax(_UpperCAmelCase , dim=2 ).max(dim=2 ) __snake_case : Optional[Any] = preds_max_prob[:, 1:] for index in range(_UpperCAmelCase ): __snake_case : Union[str, Any] = preds_str[index].find(_UpperCAmelCase ) __snake_case : Optional[int] = preds_str[index][:pred_eos] __snake_case : str = preds_index[index].cpu().tolist() __snake_case : Dict = pred_index.index(_UpperCAmelCase ) if eos_token in pred_index else -1 __snake_case : str = preds_max_prob[index][: pred_eos_index + 1] __snake_case : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(_UpperCAmelCase ) conf_scores.append(_UpperCAmelCase ) return dec_strs, conf_scores def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = [seq.replace(' ' , '' ) for seq in self.char_tokenizer.batch_decode(_UpperCAmelCase )] return decode_strs def lowercase_ ( self , _UpperCAmelCase ): return self.bpe_tokenizer.batch_decode(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[Any] = [seq.replace(' ' , '' ) for seq in self.wp_tokenizer.batch_decode(_UpperCAmelCase )] return decode_strs
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "EncodecFeatureExtractor" __UpperCAmelCase = ("T5Tokenizer", "T5TokenizerFast") def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = self.feature_extractor __snake_case : Optional[Any] = False def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=True ): return self.tokenizer.get_decoder_prompt_ids(task=_UpperCAmelCase , language=_UpperCAmelCase , no_timestamps=_UpperCAmelCase ) def __call__( self , *_UpperCAmelCase , **_UpperCAmelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : str = kwargs.pop('audio' , _UpperCAmelCase ) __snake_case : Dict = kwargs.pop('sampling_rate' , _UpperCAmelCase ) __snake_case : Dict = kwargs.pop('text' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __snake_case : str = args[0] __snake_case : int = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if text is not None: __snake_case : Any = self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase ) if audio is not None: __snake_case : List[str] = self.feature_extractor(_UpperCAmelCase , *_UpperCAmelCase , sampling_rate=_UpperCAmelCase , **_UpperCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: __snake_case : int = audio_inputs['input_values'] if "padding_mask" in audio_inputs: __snake_case : Union[str, Any] = audio_inputs['padding_mask'] return inputs def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __snake_case : Tuple = kwargs.pop('audio' , _UpperCAmelCase ) __snake_case : Optional[int] = kwargs.pop('padding_mask' , _UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __snake_case : Optional[Any] = args[0] __snake_case : List[Any] = args[1:] if audio_values is not None: return self._decode_audio(_UpperCAmelCase , padding_mask=_UpperCAmelCase ) else: return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Optional[int] = to_numpy(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case : Optional[Any] = audio_values.shape if padding_mask is None: return list(_UpperCAmelCase ) __snake_case : int = to_numpy(_UpperCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) __snake_case : Optional[Any] = seq_len - padding_mask.shape[-1] __snake_case : Optional[int] = 1 - self.feature_extractor.padding_value __snake_case : List[Any] = np.pad(_UpperCAmelCase , ((0, 0), (0, difference)) , 'constant' , constant_values=_UpperCAmelCase ) __snake_case : Tuple = audio_values.tolist() for i in range(_UpperCAmelCase ): __snake_case : int = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] __snake_case : List[str] = sliced_audio.reshape(_UpperCAmelCase , -1 ) return audio_values
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
from importlib import import_module from .logging import get_logger __magic_name__ = get_logger(__name__) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Tuple = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('__' ): setattr(self , _UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Dict = module._original_module if isinstance(_UpperCAmelCase , _PatchedModuleObj ) else module class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : Union[str, Any] = obj __snake_case : List[str] = target __snake_case : Tuple = new __snake_case : Any = target.split('.' )[0] __snake_case : Dict = {} __snake_case : str = attrs or [] def __enter__( self ): *__snake_case , __snake_case : Tuple = self.target.split('.' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Tuple = import_module('.'.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Optional[int] = getattr(self.obj , _UpperCAmelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(_UpperCAmelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __snake_case : Union[str, Any] = obj_attr # patch at top level setattr(self.obj , _UpperCAmelCase , _PatchedModuleObj(_UpperCAmelCase , attrs=self.attrs ) ) __snake_case : str = getattr(self.obj , _UpperCAmelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(_UpperCAmelCase , _UpperCAmelCase , _PatchedModuleObj(getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) , attrs=self.attrs ) ) __snake_case : Any = getattr(_UpperCAmelCase , _UpperCAmelCase ) # finally set the target attribute setattr(_UpperCAmelCase , _UpperCAmelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : Tuple = getattr(import_module('.'.join(_UpperCAmelCase ) ) , _UpperCAmelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , _UpperCAmelCase ) is attr_value: __snake_case : List[Any] = getattr(self.obj , _UpperCAmelCase ) setattr(self.obj , _UpperCAmelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Optional[Any] = globals()['__builtins__'][target_attr] setattr(self.obj , _UpperCAmelCase , self.new ) else: raise RuntimeError(F"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *_UpperCAmelCase ): for attr in list(self.original ): setattr(self.obj , _UpperCAmelCase , self.original.pop(_UpperCAmelCase ) ) def lowercase_ ( self ): self.__enter__() self._active_patches.append(self ) def lowercase_ ( self ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
from __future__ import annotations __magic_name__ = 1.6_021e-19 # units = C def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif conductivity < 0: raise ValueError('Conductivity cannot be negative' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative' ) elif mobility < 0: raise ValueError('mobility cannot be negative' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
import os from distutils.util import strtobool def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : List[Any] ): for e in env_keys: __snake_case : Optional[int] = int(os.environ.get(__UpperCAmelCase , -1 ) ) if val >= 0: return val return default def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any=False ): __snake_case : Tuple = os.environ.get(__UpperCAmelCase , str(__UpperCAmelCase ) ) return strtobool(__UpperCAmelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]="no" ): __snake_case : int = os.environ.get(__UpperCAmelCase , str(__UpperCAmelCase ) ) return value
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Optional[int] = prime_factors(__UpperCAmelCase ) if is_square_free(__UpperCAmelCase ): return -1 if len(__UpperCAmelCase ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=30 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , ): __snake_case : Dict = parent __snake_case : Any = batch_size __snake_case : Optional[int] = image_size __snake_case : List[Any] = patch_size __snake_case : str = num_channels __snake_case : Tuple = is_training __snake_case : List[str] = use_labels __snake_case : str = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Optional[int] = num_attention_heads __snake_case : Tuple = intermediate_size __snake_case : str = hidden_act __snake_case : Dict = hidden_dropout_prob __snake_case : str = attention_probs_dropout_prob __snake_case : List[str] = type_sequence_label_size __snake_case : Any = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __snake_case : Optional[int] = (image_size // patch_size) ** 2 __snake_case : List[Any] = num_patches + 1 def lowercase_ ( self ): __snake_case : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, pixel_values def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Dict = FlaxViTModel(config=_UpperCAmelCase ) __snake_case : List[str] = model(_UpperCAmelCase ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) __snake_case : str = (self.image_size, self.image_size) __snake_case : Dict = (self.patch_size, self.patch_size) __snake_case : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = self.type_sequence_label_size __snake_case : List[str] = FlaxViTForImageClassification(config=_UpperCAmelCase ) __snake_case : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __snake_case : Union[str, Any] = 1 __snake_case : Optional[int] = FlaxViTForImageClassification(_UpperCAmelCase ) __snake_case : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __snake_case : Union[str, Any] = model(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ) : Any = config_and_inputs __snake_case : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def lowercase_ ( self ): __snake_case : Tuple = FlaxViTModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = model_class(_UpperCAmelCase ) __snake_case : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Dict = [*signature.parameters.keys()] __snake_case : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = model_class(_UpperCAmelCase ) @jax.jit def model_jitted(_UpperCAmelCase , **_UpperCAmelCase ): return model(pixel_values=_UpperCAmelCase , **_UpperCAmelCase ) with self.subTest('JIT Enabled' ): __snake_case : Optional[int] = model_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __snake_case : Dict = model_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ): for model_class_name in self.all_model_classes: __snake_case : int = model_class_name.from_pretrained('google/vit-base-patch16-224' ) __snake_case : Any = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_UpperCAmelCase )
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
__magic_name__ = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' __magic_name__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __magic_name__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
import warnings warnings.warn( '''memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ''' '''`from accelerate import find_executable_batch_size` to avoid this warning.''', FutureWarning, )
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
def UpperCAmelCase__( __UpperCAmelCase : list ): def merge(__UpperCAmelCase : list , __UpperCAmelCase : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__UpperCAmelCase ) <= 1: return collection __snake_case : Optional[int] = len(__UpperCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = input('''Enter numbers separated by a comma:\n''').strip() __magic_name__ = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import doctest from collections import deque import numpy as np class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self ): __snake_case : List[Any] = [2, 1, 2, -1] __snake_case : List[Any] = [1, 2, 3, 4] def lowercase_ ( self ): __snake_case : str = len(self.first_signal ) __snake_case : int = len(self.second_signal ) __snake_case : Dict = max(_UpperCAmelCase , _UpperCAmelCase ) # create a zero matrix of max_length x max_length __snake_case : Dict = [[0] * max_length for i in range(_UpperCAmelCase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(_UpperCAmelCase ): __snake_case : List[str] = deque(self.second_signal ) rotated_signal.rotate(_UpperCAmelCase ) for j, item in enumerate(_UpperCAmelCase ): matrix[i][j] += item # multiply the matrix with the first signal __snake_case : List[Any] = np.matmul(np.transpose(_UpperCAmelCase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(_UpperCAmelCase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} # See all MVP models at https://huggingface.co/models?filter=mvp __magic_name__ = { '''vocab_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json''', }, '''added_tokens.json''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json''', }, '''merges_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json''', }, } __magic_name__ = { '''RUCAIBox/mvp''': 1_024, } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = MvpTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="replace" , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , errors=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: __snake_case : Optional[int] = getattr(_UpperCAmelCase , pre_tok_state.pop('type' ) ) __snake_case : List[str] = add_prefix_space __snake_case : Optional[Any] = pre_tok_class(**_UpperCAmelCase ) __snake_case : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __snake_case : Optional[int] = 'post_processor' __snake_case : str = getattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) if tokenizer_component_instance: __snake_case : Optional[Any] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __snake_case : Optional[int] = tuple(state['sep'] ) if "cls" in state: __snake_case : Optional[int] = tuple(state['cls'] ) __snake_case : int = False if state.get('add_prefix_space' , _UpperCAmelCase ) != add_prefix_space: __snake_case : List[Any] = add_prefix_space __snake_case : List[str] = True if state.get('trim_offsets' , _UpperCAmelCase ) != trim_offsets: __snake_case : Dict = trim_offsets __snake_case : Tuple = True if changes_to_apply: __snake_case : Union[str, Any] = getattr(_UpperCAmelCase , state.pop('type' ) ) __snake_case : str = component_class(**_UpperCAmelCase ) setattr(self.backend_tokenizer , _UpperCAmelCase , _UpperCAmelCase ) @property def lowercase_ ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else value __snake_case : Optional[int] = value def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __snake_case : str = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): __snake_case : Union[str, Any] = kwargs.get('is_split_into_words' , _UpperCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Union[str, Any] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Optional[Any] = [self.sep_token_id] __snake_case : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
import enum import shutil import sys __magic_name__ , __magic_name__ = shutil.get_terminal_size() __magic_name__ = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''} class __SCREAMING_SNAKE_CASE ( enum.Enum): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]="" ): sys.stdout.write(str(__UpperCAmelCase ) + end ) sys.stdout.flush() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any]="" ): forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , __UpperCAmelCase ) def UpperCAmelCase__( ): forceWrite('\r' ) def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : str ): forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def UpperCAmelCase__( ): forceWrite(' ' * TERMINAL_WIDTH ) reset_cursor() def UpperCAmelCase__( ): reset_cursor() forceWrite('-' * TERMINAL_WIDTH )
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["image_processor", "tokenizer"] __UpperCAmelCase = "BlipImageProcessor" __UpperCAmelCase = "AutoTokenizer" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = False super().__init__(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Tuple = self.image_processor def __call__( self , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = 0 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = True , _UpperCAmelCase = None , **_UpperCAmelCase , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __snake_case : Union[str, Any] = self.tokenizer __snake_case : Optional[int] = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) return text_encoding # add pixel_values __snake_case : Optional[Any] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) if text is not None: __snake_case : int = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) else: __snake_case : List[Any] = None if text_encoding is not None: encoding_image_processor.update(_UpperCAmelCase ) return encoding_image_processor def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , *_UpperCAmelCase , **_UpperCAmelCase ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowercase_ ( self ): __snake_case : Union[str, Any] = self.tokenizer.model_input_names __snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __snake_case : Dict = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase , cache_dir=_UpperCAmelCase ) __snake_case : List[str] = [t[-1] for t in os.walk(os.path.join(_UpperCAmelCase , os.listdir(_UpperCAmelCase )[0] , 'snapshots' ) )] __snake_case : Dict = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case , __snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=_UpperCAmelCase ) __snake_case : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : List[Any] = 4 __snake_case : List[Any] = jax.device_count() __snake_case : Union[str, Any] = num_samples * [prompt] __snake_case : Tuple = pipeline.prepare_inputs(_UpperCAmelCase ) # shard inputs and rng __snake_case : str = replicate(_UpperCAmelCase ) __snake_case : Any = jax.random.split(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[int] = shard(_UpperCAmelCase ) __snake_case : str = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1514745 ) < 1E-3 assert np.abs(np.abs(_UpperCAmelCase , dtype=np.floataa ).sum() - 49947.875 ) < 5E-1 __snake_case : Dict = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(_UpperCAmelCase ) == num_samples def lowercase_ ( self ): __snake_case , __snake_case : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=_UpperCAmelCase ) __snake_case : Any = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __snake_case : str = jax.random.PRNGKey(0 ) __snake_case : Dict = 50 __snake_case : Dict = jax.device_count() __snake_case : Any = num_samples * [prompt] __snake_case : List[str] = pipeline.prepare_inputs(_UpperCAmelCase ) # shard inputs and rng __snake_case : int = replicate(_UpperCAmelCase ) __snake_case : Union[str, Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = shard(_UpperCAmelCase ) __snake_case : Optional[int] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05652401) ) < 1E-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa ).sum() - 2383808.2) ) < 5E-1 def lowercase_ ( self ): __snake_case , __snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase ) __snake_case : Optional[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __snake_case : Any = jax.random.PRNGKey(0 ) __snake_case : str = 50 __snake_case : int = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase ) # shard inputs and rng __snake_case : List[Any] = replicate(_UpperCAmelCase ) __snake_case : Optional[Any] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = shard(_UpperCAmelCase ) __snake_case : Tuple = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowercase_ ( self ): __snake_case , __snake_case : List[Any] = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) __snake_case : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __snake_case : int = jax.random.PRNGKey(0 ) __snake_case : Optional[int] = 50 __snake_case : int = jax.device_count() __snake_case : Optional[Any] = num_samples * [prompt] __snake_case : Optional[int] = pipeline.prepare_inputs(_UpperCAmelCase ) # shard inputs and rng __snake_case : Dict = replicate(_UpperCAmelCase ) __snake_case : Optional[int] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = shard(_UpperCAmelCase ) __snake_case : Any = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04003906) ) < 1E-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa ).sum() - 2373516.75) ) < 5E-1 def lowercase_ ( self ): __snake_case : Any = FlaxDDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) __snake_case , __snake_case : Any = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , ) __snake_case : Tuple = scheduler.create_state() __snake_case : Optional[int] = scheduler_state __snake_case : List[str] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __snake_case : Dict = jax.random.PRNGKey(0 ) __snake_case : str = 50 __snake_case : Any = jax.device_count() __snake_case : int = num_samples * [prompt] __snake_case : List[str] = pipeline.prepare_inputs(_UpperCAmelCase ) # shard inputs and rng __snake_case : Any = replicate(_UpperCAmelCase ) __snake_case : List[str] = jax.random.split(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = shard(_UpperCAmelCase ) __snake_case : Optional[int] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045043945) ) < 1E-3 assert np.abs((np.abs(_UpperCAmelCase , dtype=np.floataa ).sum() - 2347693.5) ) < 5E-1 def lowercase_ ( self ): __snake_case : List[Any] = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) __snake_case : List[Any] = jax.device_count() __snake_case : Tuple = num_samples * [prompt] __snake_case : str = jax.random.split(jax.random.PRNGKey(0 ) , _UpperCAmelCase ) __snake_case , __snake_case : Tuple = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , ) __snake_case : Optional[Any] = replicate(_UpperCAmelCase ) __snake_case : Tuple = pipeline.prepare_inputs(_UpperCAmelCase ) __snake_case : Optional[int] = shard(_UpperCAmelCase ) __snake_case : Any = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images.shape == (num_samples, 1, 512, 512, 3) __snake_case : Tuple = images[2, 0, 256, 10:17, 1] # With memory efficient attention __snake_case , __snake_case : str = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=_UpperCAmelCase , use_memory_efficient_attention=_UpperCAmelCase , ) __snake_case : Union[str, Any] = replicate(_UpperCAmelCase ) __snake_case : List[Any] = pipeline.prepare_inputs(_UpperCAmelCase ) __snake_case : Tuple = shard(_UpperCAmelCase ) __snake_case : List[str] = pipeline(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , jit=_UpperCAmelCase ).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) __snake_case : Any = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
from ..utils import DummyObject, requires_backends class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class __SCREAMING_SNAKE_CASE ( metaclass=UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["torch", "transformers", "onnx"] def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def lowercase_ ( cls , *_UpperCAmelCase , **_UpperCAmelCase ): requires_backends(cls , ['torch', 'transformers', 'onnx'] )
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any]=0.999 , __UpperCAmelCase : str="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCAmelCase : Dict ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCAmelCase : Optional[int] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) __snake_case : Optional[Any] = [] for i in range(__UpperCAmelCase ): __snake_case : str = i / num_diffusion_timesteps __snake_case : Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCAmelCase ) / alpha_bar_fn(__UpperCAmelCase ) , __UpperCAmelCase ) ) return torch.tensor(__UpperCAmelCase , dtype=torch.floataa ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase): """simple docstring""" __UpperCAmelCase = [e.name for e in KarrasDiffusionSchedulers] __UpperCAmelCase = 2 @register_to_config def __init__( self , _UpperCAmelCase = 1_000 , _UpperCAmelCase = 0.00085 , _UpperCAmelCase = 0.012 , _UpperCAmelCase = "linear" , _UpperCAmelCase = None , _UpperCAmelCase = "epsilon" , _UpperCAmelCase = "linspace" , _UpperCAmelCase = 0 , ): if trained_betas is not None: __snake_case : Union[str, Any] = torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case : int = torch.linspace(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case : str = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _UpperCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case : Tuple = betas_for_alpha_bar(_UpperCAmelCase ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) __snake_case : str = 1.0 - self.betas __snake_case : str = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if schedule_timesteps is None: __snake_case : str = self.timesteps __snake_case : Union[str, Any] = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: __snake_case : int = 1 if len(_UpperCAmelCase ) > 1 else 0 else: __snake_case : Union[str, Any] = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase ) else timestep __snake_case : List[Any] = self._index_counter[timestep_int] return indices[pos].item() @property def lowercase_ ( self ): # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : Optional[int] = self.index_for_timestep(_UpperCAmelCase ) if self.state_in_first_order: __snake_case : Optional[int] = self.sigmas[step_index] else: __snake_case : str = self.sigmas_interpol[step_index] __snake_case : Optional[int] = sample / ((sigma**2 + 1) ** 0.5) return sample def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , ): __snake_case : Dict = num_inference_steps __snake_case : str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": __snake_case : int = np.linspace(0 , num_train_timesteps - 1 , _UpperCAmelCase , dtype=_UpperCAmelCase )[::-1].copy() elif self.config.timestep_spacing == "leading": __snake_case : List[str] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case : List[str] = (np.arange(0 , _UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(_UpperCAmelCase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": __snake_case : int = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case : Dict = (np.arange(_UpperCAmelCase , 0 , -step_ratio )).round().copy().astype(_UpperCAmelCase ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) __snake_case : List[Any] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) __snake_case : Union[str, Any] = torch.from_numpy(np.log(_UpperCAmelCase ) ).to(_UpperCAmelCase ) __snake_case : List[str] = np.interp(_UpperCAmelCase , np.arange(0 , len(_UpperCAmelCase ) ) , _UpperCAmelCase ) __snake_case : Optional[Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) __snake_case : List[Any] = torch.from_numpy(_UpperCAmelCase ).to(device=_UpperCAmelCase ) # interpolate sigmas __snake_case : Any = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() __snake_case : str = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) __snake_case : Dict = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_UpperCAmelCase ).startswith('mps' ): # mps does not support float64 __snake_case : Optional[Any] = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase , dtype=torch.floataa ) else: __snake_case : List[str] = torch.from_numpy(_UpperCAmelCase ).to(_UpperCAmelCase ) # interpolate timesteps __snake_case : List[str] = self.sigma_to_t(_UpperCAmelCase ).to(_UpperCAmelCase , dtype=timesteps.dtype ) __snake_case : Dict = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() __snake_case : Optional[int] = torch.cat([timesteps[:1], interleaved_timesteps] ) __snake_case : Dict = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter __snake_case : Union[str, Any] = defaultdict(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): # get log sigma __snake_case : Any = sigma.log() # get distribution __snake_case : Union[str, Any] = log_sigma - self.log_sigmas[:, None] # get sigmas range __snake_case : List[str] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) __snake_case : Dict = low_idx + 1 __snake_case : Tuple = self.log_sigmas[low_idx] __snake_case : List[str] = self.log_sigmas[high_idx] # interpolate sigmas __snake_case : Dict = (low - log_sigma) / (low - high) __snake_case : Optional[Any] = w.clamp(0 , 1 ) # transform interpolation to time range __snake_case : Union[str, Any] = (1 - w) * low_idx + w * high_idx __snake_case : Any = t.view(sigma.shape ) return t @property def lowercase_ ( self ): return self.sample is None def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): __snake_case : List[Any] = self.index_for_timestep(_UpperCAmelCase ) # advance index counter by 1 __snake_case : Optional[int] = timestep.cpu().item() if torch.is_tensor(_UpperCAmelCase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: __snake_case : List[Any] = self.sigmas[step_index] __snake_case : Optional[int] = self.sigmas_interpol[step_index + 1] __snake_case : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method __snake_case : List[str] = self.sigmas[step_index - 1] __snake_case : Union[str, Any] = self.sigmas_interpol[step_index] __snake_case : Tuple = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API __snake_case : str = 0 __snake_case : Dict = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": __snake_case : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol __snake_case : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": __snake_case : str = sigma_hat if self.state_in_first_order else sigma_interpol __snake_case : Tuple = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order __snake_case : Union[str, Any] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep __snake_case : Any = sigma_interpol - sigma_hat # store for 2nd order step __snake_case : Union[str, Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order __snake_case : Optional[int] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep __snake_case : Optional[Any] = sigma_next - sigma_hat __snake_case : Optional[Any] = self.sample __snake_case : Optional[int] = None __snake_case : Tuple = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): # Make sure sigmas and timesteps have the same device and dtype as original_samples __snake_case : Tuple = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_UpperCAmelCase ): # mps does not support float64 __snake_case : List[str] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) __snake_case : Optional[int] = timesteps.to(original_samples.device , dtype=torch.floataa ) else: __snake_case : str = self.timesteps.to(original_samples.device ) __snake_case : Any = timesteps.to(original_samples.device ) __snake_case : Union[str, Any] = [self.index_for_timestep(_UpperCAmelCase , _UpperCAmelCase ) for t in timesteps] __snake_case : Tuple = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): __snake_case : Tuple = sigma.unsqueeze(-1 ) __snake_case : Tuple = original_samples + noise * sigma return noisy_samples def __len__( self ): return self.config.num_train_timesteps
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __magic_name__ = '''Usage of script: script_name <size_of_canvas:int>''' __magic_name__ = [0] * 100 + [1] * 10 random.shuffle(choice) def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Tuple = [[False for i in range(__UpperCAmelCase )] for j in range(__UpperCAmelCase )] return canvas def UpperCAmelCase__( __UpperCAmelCase : list[list[bool]] ): for i, row in enumerate(__UpperCAmelCase ): for j, _ in enumerate(__UpperCAmelCase ): __snake_case : int = bool(random.getrandbits(1 ) ) def UpperCAmelCase__( __UpperCAmelCase : list[list[bool]] ): __snake_case : Any = np.array(__UpperCAmelCase ) __snake_case : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__UpperCAmelCase ): for c, pt in enumerate(__UpperCAmelCase ): __snake_case : Any = __judge_point( __UpperCAmelCase , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) __snake_case : Any = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. __snake_case : list[list[bool]] = current_canvas.tolist() return return_canvas def UpperCAmelCase__( __UpperCAmelCase : bool , __UpperCAmelCase : list[list[bool]] ): __snake_case : Optional[Any] = 0 __snake_case : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. __snake_case : List[Any] = pt if pt: if alive < 2: __snake_case : List[Any] = False elif alive == 2 or alive == 3: __snake_case : List[str] = True elif alive > 3: __snake_case : int = False else: if alive == 3: __snake_case : Dict = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __magic_name__ = int(sys.argv[1]) # main working structure of this module. __magic_name__ = create_canvas(canvas_size) seed(c) __magic_name__ , __magic_name__ = plt.subplots() fig.show() __magic_name__ = ListedColormap(['''w''', '''k''']) try: while True: __magic_name__ = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] ): try: with open(__UpperCAmelCase , 'rb' ) as flax_state_f: __snake_case : int = from_bytes(__UpperCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ): try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights __snake_case : Tuple = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa , __UpperCAmelCase ) ).values() if any(__UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) __snake_case : Union[str, Any] = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCAmelCase ) __snake_case : Optional[int] = '' __snake_case : str = flatten_dict(__UpperCAmelCase , sep='.' ) __snake_case : Any = pt_model.state_dict() # keep track of unexpected & missing keys __snake_case : Tuple = [] __snake_case : Dict = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): __snake_case : List[str] = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: __snake_case : int = flax_key_tuple_array[:-1] + ['weight'] __snake_case : Union[str, Any] = jnp.transpose(__UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": __snake_case : str = flax_key_tuple_array[:-1] + ['weight'] __snake_case : List[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": __snake_case : Dict = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCAmelCase ): __snake_case : str = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) __snake_case : Optional[Any] = '.'.join(__UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ F"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict __snake_case : List[Any] = np.asarray(__UpperCAmelCase ) if not isinstance(__UpperCAmelCase , np.ndarray ) else flax_tensor __snake_case : Optional[Any] = torch.from_numpy(__UpperCAmelCase ) # remove from missing keys missing_keys.remove(__UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCAmelCase ) pt_model.load_state_dict(__UpperCAmelCase ) # re-transform missing_keys to list __snake_case : Tuple = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' F""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" F""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' F""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(__UpperCAmelCase ) > 0: logger.warning( F"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" F""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" ' use it for predictions and inference.' ) return pt_model
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __magic_name__ = { '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
def UpperCAmelCase__( __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 10_00 ): __snake_case : List[Any] = 1 __snake_case : Any = 0 for divide_by_number in range(__UpperCAmelCase , digit + 1 ): __snake_case : list[int] = [] __snake_case : List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__UpperCAmelCase ): __snake_case : Optional[int] = len(__UpperCAmelCase ) __snake_case : List[str] = divide_by_number else: has_been_divided.append(__UpperCAmelCase ) __snake_case : Union[str, Any] = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
def UpperCAmelCase__( ): __snake_case : int = [] __snake_case : str = 1 while len(__UpperCAmelCase ) < 1E6: constant.append(str(__UpperCAmelCase ) ) i += 1 __snake_case : str = ''.join(__UpperCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] ): # Initialise PyTorch model __snake_case : List[str] = LxmertConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : Optional[int] = LxmertForPreTraining(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = LayoutLMTokenizer __UpperCAmelCase = LayoutLMTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() __snake_case : Dict = [ '[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase_ ( self , **_UpperCAmelCase ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[str] = 'UNwant\u00E9d,running' __snake_case : Tuple = 'unwanted, running' return input_text, output_text def lowercase_ ( self ): __snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file ) __snake_case : Union[str, Any] = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(_UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] ) def lowercase_ ( self ): pass
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
import numpy # List of input, output pairs __magic_name__ = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) __magic_name__ = (((515, 22, 13), 555), ((61, 35, 49), 150)) __magic_name__ = [2, 4, 1, 5] __magic_name__ = len(train_data) __magic_name__ = 0.009 def UpperCAmelCase__( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any]="train" ): return calculate_hypothesis_value(__UpperCAmelCase , __UpperCAmelCase ) - output( __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): __snake_case : Optional[int] = 0 for i in range(len(__UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ): if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ): if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Union[str, Any]=m ): __snake_case : Optional[Any] = 0 for i in range(__UpperCAmelCase ): if index == -1: summation_value += _error(__UpperCAmelCase ) else: summation_value += _error(__UpperCAmelCase ) * train_data[i][0][index] return summation_value def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): __snake_case : List[str] = summation_of_cost_derivative(__UpperCAmelCase , __UpperCAmelCase ) / m return cost_derivative_value def UpperCAmelCase__( ): global parameter_vector # Tune these values to set a tolerance value for predicted output __snake_case : Tuple = 0.000002 __snake_case : str = 0 __snake_case : List[str] = 0 while True: j += 1 __snake_case : List[str] = [0, 0, 0, 0] for i in range(0 , len(__UpperCAmelCase ) ): __snake_case : Optional[int] = get_cost_derivative(i - 1 ) __snake_case : Any = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( __UpperCAmelCase , __UpperCAmelCase , atol=__UpperCAmelCase , rtol=__UpperCAmelCase , ): break __snake_case : Tuple = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCAmelCase__( ): for i in range(len(__UpperCAmelCase ) ): print(('Actual output value:', output(__UpperCAmelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(__UpperCAmelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print('''\nTesting gradient descent for a linear hypothesis function.\n''') test_gradient_descent()
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "donut-swin" __UpperCAmelCase = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-5 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : List[Any] = image_size __snake_case : Optional[Any] = patch_size __snake_case : Tuple = num_channels __snake_case : Dict = embed_dim __snake_case : Tuple = depths __snake_case : int = len(_UpperCAmelCase ) __snake_case : List[Any] = num_heads __snake_case : Optional[Any] = window_size __snake_case : Dict = mlp_ratio __snake_case : Optional[Any] = qkv_bias __snake_case : Optional[int] = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : int = drop_path_rate __snake_case : Tuple = hidden_act __snake_case : Optional[int] = use_absolute_embeddings __snake_case : Tuple = layer_norm_eps __snake_case : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case : Any = int(embed_dim * 2 ** (len(_UpperCAmelCase ) - 1) )
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
from __future__ import annotations import pandas as pd def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ): __snake_case : Dict = [0] * no_of_processes __snake_case : Any = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__UpperCAmelCase ): __snake_case : Dict = burst_time[i] __snake_case : int = 0 __snake_case : Tuple = 0 __snake_case : Tuple = 9_99_99_99_99 __snake_case : List[str] = 0 __snake_case : Tuple = False # Process until all processes are completed while complete != no_of_processes: for j in range(__UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __snake_case : List[str] = remaining_time[j] __snake_case : str = j __snake_case : List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __snake_case : Tuple = remaining_time[short] if minm == 0: __snake_case : Union[str, Any] = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __snake_case : Tuple = False # Find finish time of current process __snake_case : List[Any] = increment_time + 1 # Calculate waiting time __snake_case : str = finish_time - arrival_time[short] __snake_case : List[Any] = finar - burst_time[short] if waiting_time[short] < 0: __snake_case : Any = 0 # Increment time increment_time += 1 return waiting_time def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[int] ): __snake_case : Optional[Any] = [0] * no_of_processes for i in range(__UpperCAmelCase ): __snake_case : Optional[Any] = burst_time[i] + waiting_time[i] return turn_around_time def UpperCAmelCase__( __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int ): __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 for i in range(__UpperCAmelCase ): __snake_case : Dict = total_waiting_time + waiting_time[i] __snake_case : Any = total_turn_around_time + turn_around_time[i] print(F"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print('Average turn around time =' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') __magic_name__ = int(input()) __magic_name__ = [0] * no_of_processes __magic_name__ = [0] * no_of_processes __magic_name__ = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) __magic_name__ , __magic_name__ = map(int, input().split()) __magic_name__ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __magic_name__ = burst_time __magic_name__ = no_of_processes __magic_name__ = waiting_time __magic_name__ = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __magic_name__ = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = XLMProphetNetTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Optional[Any] = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ): __snake_case : Union[str, Any] = '[PAD]' __snake_case : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '[PAD]' ) self.assertEqual(vocab_keys[1] , '[CLS]' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_UpperCAmelCase ) , 1_012 ) def lowercase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def lowercase_ ( self ): __snake_case : Any = XLMProphetNetTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __snake_case : Tuple = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) __snake_case : Tuple = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __snake_case : List[str] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] , ) @cached_property def lowercase_ ( self ): return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def lowercase_ ( self ): __snake_case : Optional[Any] = 'Hello World!' __snake_case : Any = [35_389, 6_672, 49, 2] self.assertListEqual(_UpperCAmelCase , self.big_tokenizer.encode(_UpperCAmelCase ) ) @slow def lowercase_ ( self ): # fmt: off __snake_case : List[Any] = {'input_ids': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''T5Config''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mt5" __UpperCAmelCase = MTaConfig class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mt5" __UpperCAmelCase = MTaConfig class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "mt5" __UpperCAmelCase = MTaConfig
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import collections import importlib.util import os import re from pathlib import Path __magic_name__ = '''src/transformers''' # Matches is_xxx_available() __magic_name__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} __magic_name__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __magic_name__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available __magic_name__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") __magic_name__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __magic_name__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", __magic_name__ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], __magic_name__ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo __magic_name__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: __magic_name__ = re.compile(r'''^\s*try:''') # Catches a line with else: __magic_name__ = re.compile(r'''^\s*else:''') def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if _re_test_backend.search(__UpperCAmelCase ) is None: return None __snake_case : Optional[int] = [b[0] for b in _re_backend.findall(__UpperCAmelCase )] backends.sort() return "_and_".join(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): with open(__UpperCAmelCase , 'r' , encoding='utf-8' , newline='\n' ) as f: __snake_case : List[Any] = f.readlines() __snake_case : Any = 0 while line_index < len(__UpperCAmelCase ) and not lines[line_index].startswith('_import_structure = {' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(__UpperCAmelCase ): return None # First grab the objects without a specific backend in _import_structure __snake_case : Any = [] while not lines[line_index].startswith('if TYPE_CHECKING' ) and find_backend(lines[line_index] ) is None: __snake_case : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(__UpperCAmelCase ): __snake_case : List[str] = _re_one_line_import_struct.search(__UpperCAmelCase ).groups()[0] __snake_case : List[Any] = re.findall('\[([^\]]+)\]' , __UpperCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(', ' )] ) line_index += 1 continue __snake_case : Union[str, Any] = _re_import_struct_key_value.search(__UpperCAmelCase ) if single_line_import_search is not None: __snake_case : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(', ' ) if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) line_index += 1 __snake_case : Optional[int] = {'none': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('if TYPE_CHECKING' ): # If the line is an if not is_backend_available, we grab all objects associated. __snake_case : List[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __snake_case : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __snake_case : List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 4 ): __snake_case : List[Any] = lines[line_index] if _re_import_struct_add_one.search(__UpperCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(__UpperCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(__UpperCAmelCase ) is not None: __snake_case : int = _re_import_struct_add_many.search(__UpperCAmelCase ).groups()[0].split(', ' ) __snake_case : Union[str, Any] = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_between_brackets.search(__UpperCAmelCase ) is not None: __snake_case : Any = _re_between_brackets.search(__UpperCAmelCase ).groups()[0].split(', ' ) __snake_case : str = [obj[1:-1] for obj in imports if len(__UpperCAmelCase ) > 0] objects.extend(__UpperCAmelCase ) elif _re_quote_object.search(__UpperCAmelCase ) is not None: objects.append(_re_quote_object.search(__UpperCAmelCase ).groups()[0] ) elif line.startswith(' ' * 8 + '"' ): objects.append(line[9:-3] ) elif line.startswith(' ' * 12 + '"' ): objects.append(line[13:-3] ) line_index += 1 __snake_case : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __snake_case : Optional[Any] = [] while ( line_index < len(__UpperCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('else' ) ): __snake_case : Optional[Any] = lines[line_index] __snake_case : Optional[int] = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 8 ): objects.append(line[8:-2] ) line_index += 1 __snake_case : str = {'none': objects} # Let's continue with backend-specific objects while line_index < len(__UpperCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. __snake_case : Optional[Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __snake_case : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __snake_case : str = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(' ' * 8 ): __snake_case : List[str] = lines[line_index] __snake_case : Optional[int] = _re_import.search(__UpperCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(', ' ) ) elif line.startswith(' ' * 12 ): objects.append(line[12:-2] ) line_index += 1 __snake_case : Dict = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): def find_duplicates(__UpperCAmelCase : Union[str, Any] ): return [k for k, v in collections.Counter(__UpperCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __snake_case : Union[str, Any] = [] for key in import_dict_objects.keys(): __snake_case : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) __snake_case : Union[str, Any] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __snake_case : Dict = 'base imports' if key == 'none' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCAmelCase__( ): __snake_case : Optional[int] = [] for root, _, files in os.walk(__UpperCAmelCase ): if "__init__.py" in files: __snake_case : List[Any] = os.path.join(__UpperCAmelCase , '__init__.py' ) __snake_case : Any = parse_init(__UpperCAmelCase ) if objects is not None: __snake_case : int = analyze_results(*__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: __snake_case : List[Any] = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('\n'.join(__UpperCAmelCase ) ) if len(__UpperCAmelCase ) > 0: raise ValueError('\n\n'.join(__UpperCAmelCase ) ) def UpperCAmelCase__( ): __snake_case : str = [] for path, directories, files in os.walk(__UpperCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith('_' ): directories.remove(__UpperCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(__UpperCAmelCase ) / folder).glob('*.py' ) ) ) == 0: continue __snake_case : Dict = str((Path(__UpperCAmelCase ) / folder).relative_to(__UpperCAmelCase ) ) __snake_case : Optional[int] = short_path.replace(os.path.sep , '.' ) submodules.append(__UpperCAmelCase ) for fname in files: if fname == "__init__.py": continue __snake_case : Dict = str((Path(__UpperCAmelCase ) / fname).relative_to(__UpperCAmelCase ) ) __snake_case : Optional[int] = short_path.replace('.py' , '' ).replace(os.path.sep , '.' ) if len(submodule.split('.' ) ) == 1: submodules.append(__UpperCAmelCase ) return submodules __magic_name__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def UpperCAmelCase__( ): # This is to make sure the transformers module imported is the one in the repo. __snake_case : int = importlib.util.spec_from_file_location( 'transformers' , os.path.join(__UpperCAmelCase , '__init__.py' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) __snake_case : Any = spec.loader.load_module() __snake_case : Optional[int] = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(__UpperCAmelCase ) > 0: __snake_case : List[str] = '\n'.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( 'The following submodules are not properly registered in the main init of Transformers:\n' F"""{list_of_modules}\n""" 'Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.' ) if __name__ == "__main__": check_all_inits() check_submodules()
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = (DDIMParallelScheduler,) __UpperCAmelCase = (("eta", 0.0), ("num_inference_steps", 5_0)) def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : Union[str, Any] = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'clip_sample': True, } config.update(**_UpperCAmelCase ) return config def lowercase_ ( self , **_UpperCAmelCase ): __snake_case : int = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(**_UpperCAmelCase ) __snake_case : List[Any] = scheduler_class(**_UpperCAmelCase ) __snake_case , __snake_case : List[str] = 10, 0.0 __snake_case : Optional[int] = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for t in scheduler.timesteps: __snake_case : Optional[Any] = model(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def lowercase_ ( self ): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowercase_ ( self ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) __snake_case : List[str] = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : int = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def lowercase_ ( self ): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowercase_ ( self ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowercase_ ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowercase_ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=_UpperCAmelCase ) def lowercase_ ( self ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_UpperCAmelCase ) def lowercase_ ( self ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_UpperCAmelCase ) def lowercase_ ( self ): self.check_over_configs(thresholding=_UpperCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_UpperCAmelCase , prediction_type=_UpperCAmelCase , sample_max_value=_UpperCAmelCase , ) def lowercase_ ( self ): for t in [1, 10, 49]: self.check_over_forward(time_step=_UpperCAmelCase ) def lowercase_ ( self ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase ) def lowercase_ ( self ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_UpperCAmelCase , eta=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config() __snake_case : Tuple = scheduler_class(**_UpperCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14771 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32460 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def lowercase_ ( self ): __snake_case : Tuple = self.scheduler_classes[0] __snake_case : List[Any] = self.get_scheduler_config() __snake_case : str = scheduler_class(**_UpperCAmelCase ) __snake_case , __snake_case : List[Any] = 10, 0.0 scheduler.set_timesteps(_UpperCAmelCase ) __snake_case : Optional[Any] = self.dummy_model() __snake_case : Any = self.dummy_sample_deter __snake_case : Optional[int] = self.dummy_sample_deter + 0.1 __snake_case : int = self.dummy_sample_deter - 0.1 __snake_case : List[Any] = samplea.shape[0] __snake_case : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : Union[str, Any] = torch.arange(_UpperCAmelCase )[0:3, None].repeat(1 , _UpperCAmelCase ) __snake_case : Optional[Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : int = scheduler.batch_step_no_noise(_UpperCAmelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , _UpperCAmelCase ) __snake_case : Optional[int] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : Dict = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 1147.7904 ) < 1E-2 assert abs(result_mean.item() - 0.4982 ) < 1E-3 def lowercase_ ( self ): __snake_case : Optional[Any] = self.full_loop() __snake_case : Dict = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 172.0067 ) < 1E-2 assert abs(result_mean.item() - 0.223967 ) < 1E-3 def lowercase_ ( self ): __snake_case : Any = self.full_loop(prediction_type='v_prediction' ) __snake_case : str = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : List[str] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 52.5302 ) < 1E-2 assert abs(result_mean.item() - 0.0684 ) < 1E-3 def lowercase_ ( self ): # We specify different beta, so that the first alpha is 0.99 __snake_case : Union[str, Any] = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) __snake_case : Any = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : Optional[Any] = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 149.8295 ) < 1E-2 assert abs(result_mean.item() - 0.1951 ) < 1E-3 def lowercase_ ( self ): # We specify different beta, so that the first alpha is 0.99 __snake_case : Optional[Any] = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) __snake_case : List[str] = torch.sum(torch.abs(_UpperCAmelCase ) ) __snake_case : int = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 149.0784 ) < 1E-2 assert abs(result_mean.item() - 0.1941 ) < 1E-3
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = logging.get_logger() # the current default level is logging.WARNING __snake_case : Any = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = logging.get_verbosity() __snake_case : Dict = logging.get_logger('transformers.models.bart.tokenization_bart' ) __snake_case : List[str] = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(_UpperCAmelCase ) as cl: logger.warning(_UpperCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(_UpperCAmelCase ) as cl: logger.warning(_UpperCAmelCase ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(_UpperCAmelCase ) as cl: logger.warning(_UpperCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(_UpperCAmelCase ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def lowercase_ ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case : Optional[Any] = logging.get_logger('transformers.models.bart.tokenization_bart' ) __snake_case : Optional[Any] = os.getenv('TRANSFORMERS_VERBOSITY' , _UpperCAmelCase ) __snake_case : List[Any] = logging.log_levels[env_level_str] __snake_case : Optional[int] = logging.get_verbosity() self.assertEqual( _UpperCAmelCase , _UpperCAmelCase , F"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case : Union[str, Any] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def lowercase_ ( self ): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __snake_case : Optional[int] = logging.logging.getLogger() with CaptureLogger(_UpperCAmelCase ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def lowercase_ ( self ): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __snake_case : str = logging.get_logger('transformers.models.bart.tokenization_bart' ) __snake_case : Dict = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(_UpperCAmelCase ) as cl: logger.warning_advice(_UpperCAmelCase ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(_UpperCAmelCase ) as cl: logger.warning_advice(_UpperCAmelCase ) self.assertEqual(cl.out , msg + '\n' ) def UpperCAmelCase__( ): disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): super().__init__() # make sure scheduler can always be converted to DDIM __snake_case : List[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = None , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 50 , _UpperCAmelCase = None , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , _UpperCAmelCase ): __snake_case : Optional[int] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __snake_case : str = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) __snake_case : List[str] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case : Optional[int] = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case : List[Any] = self.scheduler.step( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , eta=_UpperCAmelCase , use_clipped_model_output=_UpperCAmelCase , generator=_UpperCAmelCase ).prev_sample __snake_case : Dict = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : List[str] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass __magic_name__ = (3, 9, -11, 0, 7, 5, 1, -1) __magic_name__ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Node | None = None for i in sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ): __snake_case : Tuple = Node(_UpperCAmelCase , self.head ) def __iter__( self ): __snake_case : Dict = self.head while node: yield node.data __snake_case : List[Any] = node.next_node def __len__( self ): return sum(1 for _ in self ) def __str__( self ): return " -> ".join([str(_UpperCAmelCase ) for node in self] ) def UpperCAmelCase__( __UpperCAmelCase : SortedLinkedList , __UpperCAmelCase : SortedLinkedList ): return SortedLinkedList(list(__UpperCAmelCase ) + list(__UpperCAmelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() __magic_name__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __magic_name__ = argparse.ArgumentParser('''Stable Diffusion script with intel optimization''', add_help=False) parser.add_argument('''--dpm''', action='''store_true''', help='''Enable DPMSolver or not''') parser.add_argument('''--steps''', default=None, type=int, help='''Num inference steps''') __magic_name__ = parser.parse_args() __magic_name__ = '''cpu''' __magic_name__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' __magic_name__ = '''path-to-your-trained-model''' __magic_name__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __magic_name__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __magic_name__ = pipe.to(device) # to channels last __magic_name__ = pipe.unet.to(memory_format=torch.channels_last) __magic_name__ = pipe.vae.to(memory_format=torch.channels_last) __magic_name__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __magic_name__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __magic_name__ = torch.randn(2, 4, 64, 64) __magic_name__ = torch.rand(1) * 999 __magic_name__ = torch.randn(2, 77, 768) __magic_name__ = (sample, timestep, encoder_hidden_status) try: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __magic_name__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __magic_name__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __magic_name__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __magic_name__ = 666 __magic_name__ = torch.Generator(device).manual_seed(seed) __magic_name__ = {'''generator''': generator} if args.steps is not None: __magic_name__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __magic_name__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('''generated.png''')
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : List[Any] = torch.load(__UpperCAmelCase , map_location='cpu' ) if "model" in sd.keys(): __snake_case : List[Any] = torch.load(__UpperCAmelCase , map_location='cpu' )['model'] # pop unnecessary weights __snake_case : List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(__UpperCAmelCase ) __snake_case : List[str] = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __snake_case : List[str] = sd.pop(__UpperCAmelCase ) __snake_case : Optional[int] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __snake_case : Dict = sd[key] # We split QKV in separate Q,K,V __snake_case : Dict = key.replace('.qkv_proj.' , '.q_proj.' ) __snake_case : Optional[Any] = key.replace('.qkv_proj.' , '.k_proj.' ) __snake_case : Optional[int] = key.replace('.qkv_proj.' , '.v_proj.' ) __snake_case : Optional[int] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __snake_case , __snake_case , __snake_case : Any = torch.split(__UpperCAmelCase , depth // 3 , dim=0 ) __snake_case : Tuple = q __snake_case : Optional[Any] = k __snake_case : Optional[Any] = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any=None ): __snake_case : Optional[Any] = load_checkpoint(__UpperCAmelCase ) if config is not None: __snake_case : str = OPTConfig.from_pretrained(__UpperCAmelCase ) else: __snake_case : str = OPTConfig() __snake_case : List[Any] = OPTModel(__UpperCAmelCase ).half().eval() model.load_state_dict(__UpperCAmelCase ) # Check results Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') __magic_name__ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
from __future__ import annotations class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = order # a_{0} ... a_{k} __snake_case : Optional[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} __snake_case : Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __snake_case : List[Any] = [0.0] * self.order # y[n-1] ... y[n-k] __snake_case : Any = [0.0] * self.order def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): if len(_UpperCAmelCase ) < self.order: __snake_case : Union[str, Any] = [1.0, *a_coeffs] if len(_UpperCAmelCase ) != self.order + 1: __snake_case : List[str] = ( F"""Expected a_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != self.order + 1: __snake_case : str = ( F"""Expected b_coeffs to have {self.order + 1} elements """ F"""for {self.order}-order filter, got {len(_UpperCAmelCase )}""" ) raise ValueError(_UpperCAmelCase ) __snake_case : List[str] = a_coeffs __snake_case : Optional[Any] = b_coeffs def lowercase_ ( self , _UpperCAmelCase ): __snake_case : int = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __snake_case : Optional[Any] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __snake_case : Dict = self.input_history[:-1] __snake_case : List[Any] = self.output_history[:-1] __snake_case : List[str] = sample __snake_case : Dict = result return result
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Optional[int] = eval_examples __snake_case : int = post_process_function def lowercase_ ( self , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = None , _UpperCAmelCase = "eval" , **_UpperCAmelCase , ): __snake_case : Any = gen_kwargs.copy() __snake_case : Optional[int] = ( gen_kwargs['max_length'] if gen_kwargs.get('max_length' ) is not None else self.args.generation_max_length ) __snake_case : Dict = ( gen_kwargs['num_beams'] if gen_kwargs.get('num_beams' ) is not None else self.args.generation_num_beams ) __snake_case : str = gen_kwargs __snake_case : List[str] = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case : Optional[Any] = self.get_eval_dataloader(_UpperCAmelCase ) __snake_case : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case : int = self.compute_metrics __snake_case : Any = None __snake_case : int = time.time() __snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case : Union[str, Any] = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: __snake_case : Optional[int] = compute_metrics __snake_case : Any = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case : Optional[Any] = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Any = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __snake_case : Dict = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: __snake_case : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase = "test" , **_UpperCAmelCase ): __snake_case : List[Any] = gen_kwargs.copy() __snake_case : Optional[int] = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case : List[Any] = self.compute_metrics __snake_case : str = None __snake_case : Any = time.time() __snake_case : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: __snake_case : Dict = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: __snake_case : Dict = compute_metrics __snake_case : str = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case : int = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , 'predict' ) __snake_case : List[Any] = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): __snake_case : List[str] = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "beit" def __init__( self , _UpperCAmelCase=8_192 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=224 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=[3, 5, 7, 11] , _UpperCAmelCase=[1, 2, 3, 6] , _UpperCAmelCase=True , _UpperCAmelCase=0.4 , _UpperCAmelCase=256 , _UpperCAmelCase=1 , _UpperCAmelCase=False , _UpperCAmelCase=255 , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Dict = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Tuple = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = image_size __snake_case : Any = patch_size __snake_case : List[str] = num_channels __snake_case : List[str] = use_mask_token __snake_case : Tuple = use_absolute_position_embeddings __snake_case : Optional[int] = use_relative_position_bias __snake_case : Union[str, Any] = use_shared_relative_position_bias __snake_case : str = layer_scale_init_value __snake_case : int = drop_path_rate __snake_case : Union[str, Any] = use_mean_pooling # decode head attributes (semantic segmentation) __snake_case : List[str] = out_indices __snake_case : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) __snake_case : Optional[Any] = use_auxiliary_head __snake_case : Union[str, Any] = auxiliary_loss_weight __snake_case : Any = auxiliary_channels __snake_case : Union[str, Any] = auxiliary_num_convs __snake_case : str = auxiliary_concat_input __snake_case : List[str] = semantic_loss_ignore_index class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = version.parse("1.11") @property def lowercase_ ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowercase_ ( self ): return 1E-4
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
def UpperCAmelCase__( __UpperCAmelCase : int ): if n == 1 or not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return 0 elif n == 2: return 1 else: __snake_case : List[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : List[Any] = 0 __snake_case : Any = 2 while digits < n: index += 1 __snake_case : Optional[Any] = len(str(fibonacci(__UpperCAmelCase ) ) ) return index def UpperCAmelCase__( __UpperCAmelCase : int = 10_00 ): return fibonacci_digits_index(__UpperCAmelCase ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "roberta" def __init__( self , _UpperCAmelCase=50_265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : Any = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : List[str] = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : str = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : int = initializer_range __snake_case : Union[str, Any] = layer_norm_eps __snake_case : int = position_embedding_type __snake_case : int = use_cache __snake_case : str = classifier_dropout class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" @property def lowercase_ ( self ): if self.task == "multiple-choice": __snake_case : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __snake_case : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : float , __UpperCAmelCase : float ): return round(float(moles / volume ) * nfactor ) def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float ): if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __magic_name__ = parser.parse_args() __magic_name__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __magic_name__ = CLIPImageProcessor() __magic_name__ = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __magic_name__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __magic_name__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = ["pixel_values"] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : str = size if size is not None else {'shortest_edge': 224} __snake_case : List[Any] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) __snake_case : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224} __snake_case : str = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase , param_name='crop_size' ) __snake_case : Optional[Any] = do_resize __snake_case : Dict = size __snake_case : Optional[int] = resample __snake_case : Union[str, Any] = do_center_crop __snake_case : Optional[Any] = crop_size __snake_case : List[str] = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : Union[str, Any] = do_normalize __snake_case : Optional[Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case : Dict = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case : Optional[int] = do_convert_rgb def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BICUBIC , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[str] = get_size_dict(_UpperCAmelCase , default_to_square=_UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) __snake_case : Tuple = get_resize_output_image_size(_UpperCAmelCase , size=size['shortest_edge'] , default_to_square=_UpperCAmelCase ) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : str = get_size_dict(_UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_UpperCAmelCase , size=(size['height'], size['width']) , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): __snake_case : Optional[Any] = do_resize if do_resize is not None else self.do_resize __snake_case : str = size if size is not None else self.size __snake_case : Optional[int] = get_size_dict(_UpperCAmelCase , param_name='size' , default_to_square=_UpperCAmelCase ) __snake_case : Tuple = resample if resample is not None else self.resample __snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Union[str, Any] = crop_size if crop_size is not None else self.crop_size __snake_case : int = get_size_dict(_UpperCAmelCase , param_name='crop_size' , default_to_square=_UpperCAmelCase ) __snake_case : List[Any] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Any = image_std if image_std is not None else self.image_std __snake_case : List[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case : Union[str, Any] = make_list_of_images(_UpperCAmelCase ) if not valid_images(_UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case : Optional[int] = [convert_to_rgb(_UpperCAmelCase ) for image in images] # All transformations expect numpy arrays. __snake_case : Dict = [to_numpy_array(_UpperCAmelCase ) for image in images] if do_resize: __snake_case : List[Any] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase ) for image in images] if do_center_crop: __snake_case : Optional[Any] = [self.center_crop(image=_UpperCAmelCase , size=_UpperCAmelCase ) for image in images] if do_rescale: __snake_case : Optional[int] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase ) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase ) for image in images] __snake_case : List[str] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase ) for image in images] __snake_case : Dict = {'pixel_values': images} return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase )
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
from __future__ import annotations from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : int = data __snake_case : Tuple = self __snake_case : Tuple = 0 class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): # map from node name to the node object __snake_case : dict[T, DisjointSetTreeNode[T]] = {} def lowercase_ ( self , _UpperCAmelCase ): # create a new set with x as its member __snake_case : Optional[Any] = DisjointSetTreeNode(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): # find the set x belongs to (with path-compression) __snake_case : Tuple = self.map[data] if elem_ref != elem_ref.parent: __snake_case : Dict = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): # helper function for union operation if nodea.rank > nodea.rank: __snake_case : List[str] = nodea else: __snake_case : Optional[Any] = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase ): # merge 2 disjoint sets self.link(self.find_set(_UpperCAmelCase ) , self.find_set(_UpperCAmelCase ) ) class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): # connections: map from the node to the neighbouring nodes (with weights) __snake_case : dict[T, dict[T, int]] = {} def lowercase_ ( self , _UpperCAmelCase ): # add a node ONLY if its not present in the graph if node not in self.connections: __snake_case : Any = {} def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # add an edge with the given weight self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) __snake_case : str = weight __snake_case : str = weight def lowercase_ ( self ): __snake_case : List[str] = [] __snake_case : List[str] = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda _UpperCAmelCase : x[2] ) # creating the disjoint set __snake_case : Union[str, Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(_UpperCAmelCase ) # MST generation __snake_case : str = 0 __snake_case : Union[str, Any] = 0 __snake_case : str = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __snake_case , __snake_case , __snake_case : Optional[int] = edges[index] index += 1 __snake_case : Tuple = disjoint_set.find_set(_UpperCAmelCase ) __snake_case : Any = disjoint_set.find_set(_UpperCAmelCase ) if parent_u != parent_v: num_edges += 1 graph.add_edge(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) disjoint_set.union(_UpperCAmelCase , _UpperCAmelCase ) return graph
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase="None" , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : Any = parent __snake_case : int = batch_size __snake_case : str = seq_length __snake_case : Tuple = is_training __snake_case : Optional[int] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Any = use_labels __snake_case : Optional[Any] = vocab_size __snake_case : Dict = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Dict = initializer_range __snake_case : str = num_labels __snake_case : Any = num_choices __snake_case : Any = relative_attention __snake_case : List[Any] = position_biased_input __snake_case : Tuple = pos_att_type __snake_case : List[Any] = scope def lowercase_ ( self ): __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Dict = None __snake_case : Tuple = None __snake_case : str = None if self.use_labels: __snake_case : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase_ ( self , _UpperCAmelCase ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = DebertaVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )[0] __snake_case : List[str] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )[0] __snake_case : str = model(_UpperCAmelCase )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = DebertaVaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : Any = DebertaVaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DebertaVaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = DebertaVaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = DebertaVaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Any = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Union[str, Any] = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[int] = config_and_inputs __snake_case : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = DebertaVaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[Any] = DebertaVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def lowercase_ ( self ): pass @slow def lowercase_ ( self ): __snake_case : Optional[Any] = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __snake_case : Optional[Any] = torch.tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __snake_case : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] # compare the actual values for a slice. __snake_case : Dict = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) , F"""{output[:, 1:4, 1:4]}""" )
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __magic_name__ = logging.get_logger(__name__) # pylint: disable=invalid-name def UpperCAmelCase__( __UpperCAmelCase : str ): if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(__UpperCAmelCase ): return ext raise Exception( F"""Unable to determine file format from file extension {path}. """ F"""Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}""" ) def UpperCAmelCase__( __UpperCAmelCase : Any ): __snake_case : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) __snake_case : str = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format __snake_case : Union[str, Any] = PipelineDataFormat.from_str( format=__UpperCAmelCase , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(__UpperCAmelCase , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = nlp __snake_case : Optional[Any] = reader @staticmethod def lowercase_ ( _UpperCAmelCase ): __snake_case : Optional[Any] = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=_UpperCAmelCase , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=_UpperCAmelCase , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=_UpperCAmelCase , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=_UpperCAmelCase , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=_UpperCAmelCase , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=_UpperCAmelCase , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=_UpperCAmelCase , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=_UpperCAmelCase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : int = self._nlp, [] for entry in self._reader: __snake_case : Union[str, Any] = nlp(**_UpperCAmelCase ) if self._reader.is_multi_columns else nlp(_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): outputs.append(_UpperCAmelCase ) else: outputs += output # Saving data if self._nlp.binary_output: __snake_case : Tuple = self._reader.save_binary(_UpperCAmelCase ) logger.warning(F"""Current pipeline requires output to be in binary format, saving at {binary_path}""" ) else: self._reader.save(_UpperCAmelCase )
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType __magic_name__ = get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple=0 ): os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case : Optional[Any] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case : Dict = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __snake_case : List[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F"""Saving model to {output_model_file}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case : Union[str, Any] = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Saving model to {output_model_file}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case : Union[str, Any] = os.path.join(__UpperCAmelCase , F"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) logger.info(F"""Saving model to {ckpt_dir}""" ) __snake_case : Optional[Any] = {'model': state_dict} dist_cp.save_state_dict( state_dict=__UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F"""Model saved to {ckpt_dir}""" ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return __snake_case : str = F"""{MODEL_NAME}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}.bin""" __snake_case : Any = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Loading model from {input_model_file}""" ) __snake_case : List[Any] = torch.load(__UpperCAmelCase ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case : Tuple = ( F"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else F"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) __snake_case : Union[str, Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Loading model from {input_model_file}""" ) __snake_case : Tuple = torch.load(__UpperCAmelCase ) logger.info(F"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case : Tuple = ( os.path.join(__UpperCAmelCase , F"""{MODEL_NAME}_{model_index}""" ) if F"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading model from {ckpt_dir}""" ) __snake_case : Union[str, Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case : Union[str, Any] = state_dict['model'] logger.info(F"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict=0 ): os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case : Tuple = FSDP.optim_state_dict(__UpperCAmelCase , __UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case : Optional[int] = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __snake_case : Optional[int] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Optimizer state saved in {output_optimizer_file}""" ) else: __snake_case : str = os.path.join(__UpperCAmelCase , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__UpperCAmelCase , exist_ok=__UpperCAmelCase ) logger.info(F"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F"""Optimizer state saved in {ckpt_dir}""" ) def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any]=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case : Any = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case : Tuple = ( F"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else F"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) __snake_case : Dict = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) logger.info(F"""Loading Optimizer state from {input_optimizer_file}""" ) __snake_case : str = torch.load(__UpperCAmelCase ) logger.info(F"""Optimizer state loaded from {input_optimizer_file}""" ) else: __snake_case : Optional[Any] = ( os.path.join(__UpperCAmelCase , F"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if F"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(F"""Loading Optimizer from {ckpt_dir}""" ) __snake_case : str = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__UpperCAmelCase ) , ) __snake_case : Union[str, Any] = optim_state['optimizer'] logger.info(F"""Optimizer loaded from {ckpt_dir}""" ) __snake_case : Optional[Any] = FSDP.optim_state_dict_to_load(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) optimizer.load_state_dict(__UpperCAmelCase )
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): __snake_case : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('module.encoder' ): __snake_case : Dict = key.replace('module.encoder' , 'glpn.encoder' ) if key.startswith('module.decoder' ): __snake_case : Tuple = key.replace('module.decoder' , 'decoder.stages' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 __snake_case : Dict = key[key.find('patch_embed' ) + len('patch_embed' )] __snake_case : List[Any] = key.replace(F"""patch_embed{idx}""" , F"""patch_embeddings.{int(__UpperCAmelCase )-1}""" ) if "norm" in key: __snake_case : Tuple = key.replace('norm' , 'layer_norm' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 __snake_case : Any = key[key.find('glpn.encoder.layer_norm' ) + len('glpn.encoder.layer_norm' )] __snake_case : List[Any] = key.replace(F"""layer_norm{idx}""" , F"""layer_norm.{int(__UpperCAmelCase )-1}""" ) if "layer_norm1" in key: __snake_case : Union[str, Any] = key.replace('layer_norm1' , 'layer_norm_1' ) if "layer_norm2" in key: __snake_case : int = key.replace('layer_norm2' , 'layer_norm_2' ) if "block" in key: # replace for example block1 by block.0 __snake_case : Optional[Any] = key[key.find('block' ) + len('block' )] __snake_case : str = key.replace(F"""block{idx}""" , F"""block.{int(__UpperCAmelCase )-1}""" ) if "attn.q" in key: __snake_case : List[str] = key.replace('attn.q' , 'attention.self.query' ) if "attn.proj" in key: __snake_case : str = key.replace('attn.proj' , 'attention.output.dense' ) if "attn" in key: __snake_case : Any = key.replace('attn' , 'attention.self' ) if "fc1" in key: __snake_case : List[Any] = key.replace('fc1' , 'dense1' ) if "fc2" in key: __snake_case : Tuple = key.replace('fc2' , 'dense2' ) if "linear_pred" in key: __snake_case : str = key.replace('linear_pred' , 'classifier' ) if "linear_fuse" in key: __snake_case : str = key.replace('linear_fuse.conv' , 'linear_fuse' ) __snake_case : int = key.replace('linear_fuse.bn' , 'batch_norm' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 __snake_case : Union[str, Any] = key[key.find('linear_c' ) + len('linear_c' )] __snake_case : str = key.replace(F"""linear_c{idx}""" , F"""linear_c.{int(__UpperCAmelCase )-1}""" ) if "bot_conv" in key: __snake_case : int = key.replace('bot_conv' , '0.convolution' ) if "skip_conv1" in key: __snake_case : List[Any] = key.replace('skip_conv1' , '1.convolution' ) if "skip_conv2" in key: __snake_case : Dict = key.replace('skip_conv2' , '2.convolution' ) if "fusion1" in key: __snake_case : Optional[Any] = key.replace('fusion1' , '1.fusion' ) if "fusion2" in key: __snake_case : Any = key.replace('fusion2' , '2.fusion' ) if "fusion3" in key: __snake_case : int = key.replace('fusion3' , '3.fusion' ) if "fusion" in key and "conv" in key: __snake_case : Any = key.replace('conv' , 'convolutional_layer' ) if key.startswith('module.last_layer_depth' ): __snake_case : Dict = key.replace('module.last_layer_depth' , 'head.head' ) __snake_case : Optional[int] = value return new_state_dict def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) __snake_case : str = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.weight""" ) __snake_case : str = state_dict.pop(F"""glpn.encoder.block.{i}.{j}.attention.self.kv.bias""" ) # next, add keys and values (in that order) to the state dict __snake_case : Optional[int] = kv_weight[ : config.hidden_sizes[i], : ] __snake_case : str = kv_bias[: config.hidden_sizes[i]] __snake_case : str = kv_weight[ config.hidden_sizes[i] :, : ] __snake_case : int = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase__( ): __snake_case : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : Tuple = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) return image @torch.no_grad() def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : Any=None ): __snake_case : Union[str, Any] = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) __snake_case : List[str] = GLPNImageProcessor() # prepare image __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values logger.info('Converting model...' ) # load original state dict __snake_case : str = torch.load(__UpperCAmelCase , map_location=torch.device('cpu' ) ) # rename keys __snake_case : Optional[int] = rename_keys(__UpperCAmelCase ) # key and value matrices need special treatment read_in_k_v(__UpperCAmelCase , __UpperCAmelCase ) # create HuggingFace model and load state dict __snake_case : int = GLPNForDepthEstimation(__UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # forward pass __snake_case : Optional[Any] = model(__UpperCAmelCase ) __snake_case : List[str] = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: __snake_case : Optional[Any] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: __snake_case : Optional[Any] = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F"""Unknown model name: {model_name}""" ) __snake_case : List[str] = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) print('Looks ok!' ) # finally, push to hub if required if push_to_hub: logger.info('Pushing model and image processor to the hub...' ) model.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=__UpperCAmelCase , ) image_processor.push_to_hub( repo_path_or_name=Path(__UpperCAmelCase , __UpperCAmelCase ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=__UpperCAmelCase , ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to upload the model to the HuggingFace hub.''' ) parser.add_argument( '''--model_name''', default='''glpn-kitti''', type=str, help='''Name of the model in case you\'re pushing to the hub.''', ) __magic_name__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = DebertaVaTokenizer __UpperCAmelCase = DebertaVaTokenizerFast __UpperCAmelCase = True __UpperCAmelCase = True def lowercase_ ( self ): super().setUp() # We have a SentencePiece fixture for testing __snake_case : Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = 'this is a test' __snake_case : List[str] = 'this is a test' return input_text, output_text def lowercase_ ( self ): __snake_case : str = '<pad>' __snake_case : List[str] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(_UpperCAmelCase ) , 30_001 ) def lowercase_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def lowercase_ ( self ): # fmt: off __snake_case : Optional[Any] = ' \tHeLLo!how \n Are yoU? ' __snake_case : List[Any] = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on __snake_case : List[Any] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) __snake_case : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : str = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) __snake_case : Any = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowercase_ ( self ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): # fmt: off __snake_case : Dict = 'I was born in 92000, and this is falsé.' __snake_case : List[Any] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __snake_case : Any = DebertaVaTokenizer(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Tuple = DebertaVaTokenizerFast(_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): # fmt: off __snake_case : Optional[int] = 'I was born in 92000, and this is falsé.' __snake_case : str = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __snake_case : int = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): # fmt: off __snake_case : Union[str, Any] = 'I was born in 92000, and this is falsé.' __snake_case : Optional[Any] = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __snake_case : Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : Tuple = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): # fmt: off __snake_case : Tuple = 'I was born in 92000, and this is falsé.' __snake_case : List[Any] = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on __snake_case : List[str] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): # fmt: off __snake_case : List[Any] = ' \tHeLLo!how \n Are yoU? ' __snake_case : List[str] = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on __snake_case : Optional[int] = DebertaVaTokenizer(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = DebertaVaTokenizerFast(_UpperCAmelCase , do_lower_case=_UpperCAmelCase , split_by_punct=_UpperCAmelCase ) __snake_case : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Tuple = self.get_rust_tokenizer() __snake_case : Dict = 'I was born in 92000, and this is falsé.' __snake_case : Tuple = tokenizer.convert_ids_to_tokens(tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) __snake_case : Optional[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) __snake_case : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Any = self.get_rust_tokenizer() __snake_case : int = tokenizer.encode(_UpperCAmelCase ) __snake_case : Optional[int] = rust_tokenizer.encode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = 'This is a test' __snake_case : Optional[Any] = [13, 1, 4_398, 25, 21, 1_289] __snake_case : Optional[int] = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] __snake_case : Optional[int] = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] __snake_case : Any = DebertaVaTokenizer(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __snake_case : str = DebertaVaTokenizerFast(_UpperCAmelCase , keep_accents=_UpperCAmelCase ) __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Any = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : List[str] = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) # fmt: off __snake_case : Optional[Any] = 'I was born in 92000, and this is falsé.' __snake_case : Union[str, Any] = [13, 1, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] __snake_case : Tuple = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] __snake_case : str = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on __snake_case : Optional[Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : int = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Tuple = rust_tokenizer.tokenize(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = rust_tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = DebertaVaTokenizer(_UpperCAmelCase ) __snake_case : List[str] = tokenizer.encode('sequence builders' ) __snake_case : Dict = tokenizer.encode('multi-sequence build' ) __snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , _UpperCAmelCase ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , _UpperCAmelCase , ) @slow def lowercase_ ( self ): # fmt: off __snake_case : Dict = {'input_ids': [[1, 39_867, 36, 19_390, 486, 27, 35_052, 81_436, 18, 60_685, 1_225, 7, 35_052, 81_436, 18, 9_367, 16_899, 18, 15_937, 53, 594, 773, 18, 16_287, 30_465, 36, 15_937, 6, 41_139, 38, 36_979, 60_763, 191, 6, 34_132, 99, 6, 50_538, 390, 43_230, 6, 34_132, 2_779, 20_850, 14, 699, 1_072, 1_194, 36, 382, 10_901, 53, 7, 699, 1_072, 2_084, 36, 20_422, 630, 53, 19, 105, 3_049, 1_896, 1_053, 16_899, 1_506, 11, 37_978, 4_243, 7, 1_237, 31_869, 200, 16_566, 654, 6, 35_052, 81_436, 7, 55_630, 13_593, 4, 2], [1, 26, 15_011, 13, 667, 8, 1_053, 18, 23_611, 1_237, 72_356, 12_820, 34, 104_134, 1_209, 35, 13_313, 6_627, 21, 202, 347, 7, 164, 2_399, 11, 46, 4_485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_232, 2_864, 15_785, 14_951, 105, 5, 8_581, 1_250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
from dataclasses import dataclass, field from typing import Optional @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."}) __UpperCAmelCase = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."}) __UpperCAmelCase = field(default=2 , metadata={"help": "Batch size for training."}) __UpperCAmelCase = field(default=2 , metadata={"help": "Batch size for evaluation."}) __UpperCAmelCase = field(default=0.1 , metadata={"help": "Value of weight decay."}) __UpperCAmelCase = field( default=1_0_0_0_0 , metadata={"help": "Size of buffer used to shuffle streaming dataset."}) __UpperCAmelCase = field(default=2E-4 , metadata={"help": "Learning rate fo training."}) __UpperCAmelCase = field(default="cosine" , metadata={"help": "Learning rate."}) __UpperCAmelCase = field( default=7_5_0 , metadata={"help": "Number of warmup steps in the learning rate schedule."}) __UpperCAmelCase = field( default=1_6 , metadata={"help": "Number of gradient accumulation steps."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Use gradient checkpointing to reduce memory footprint."}) __UpperCAmelCase = field(default=5_0_0_0_0 , metadata={"help": "Maximum number of training steps."}) __UpperCAmelCase = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}) __UpperCAmelCase = field(default=1_0_2_4 , metadata={"help": "Sequence lengths used for training."}) __UpperCAmelCase = field(default=1 , metadata={"help": "Training seed."}) __UpperCAmelCase = field( default=1_0_2_4 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "States path if the training should continue from a checkpoint folder."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "If True the data is pretokenized."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."}) __UpperCAmelCase = field(default=2 , metadata={"help": "Batch size used for evaluation."}) __UpperCAmelCase = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."}) __UpperCAmelCase = field(default=1_0_2_4 , metadata={"help": "Length of sequences to be evaluated."}) __UpperCAmelCase = field(default=1 , metadata={"help": "Random seed used for evaluation."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Sample from the language model's output distribution."}) __UpperCAmelCase = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."}) __UpperCAmelCase = field(default=2_5_6 , metadata={"help": "Maximum number of newly generated tokens."}) __UpperCAmelCase = field(default=0 , metadata={"help": "Top-k parameter used for generation."}) __UpperCAmelCase = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."}) __UpperCAmelCase = field(default=1_0 , metadata={"help": "Number of generations to run in parallel."}) __UpperCAmelCase = field( default=2_0_0 , metadata={"help": "Number of completions to generate for each sample."}) __UpperCAmelCase = field(default=1 , metadata={"help": "Random seed used for evaluation."}) __UpperCAmelCase = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."}) __UpperCAmelCase = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"}) __UpperCAmelCase = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) __UpperCAmelCase = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."}) __UpperCAmelCase = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."}) __UpperCAmelCase = field( default=1_0_0_0_0_0 , metadata={"help": "Number of files to save per JSON output file."}) __UpperCAmelCase = field(default="content" , metadata={"help": "Column containing text data to process."}) __UpperCAmelCase = field( default=1_0_0_0 , metadata={"help": "Maximum line length in file, otherwise file is filtered."}) __UpperCAmelCase = field( default=1_0_0 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."}) __UpperCAmelCase = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."}) __UpperCAmelCase = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."}) __UpperCAmelCase = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."}) __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "If True, near-duplicate samples are removed."}) __UpperCAmelCase = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."}) __UpperCAmelCase = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."}) __UpperCAmelCase = field(default="content" , metadata={"help": "Column containing text data to process."}) __UpperCAmelCase = field(default=2_0_0_0_0_0 , metadata={"help": "Number of examples to train tokenizer on."}) __UpperCAmelCase = field( default=3_2_7_6_8 , metadata={"help": "Number of examples to train the tokenizer on."}) __UpperCAmelCase = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."}) __UpperCAmelCase = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."}) __UpperCAmelCase = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Number of workers used for code evaluation."}) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."}) __UpperCAmelCase = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."}) __UpperCAmelCase = field(default="codeparrot" , metadata={"help": "Name of the created model."}) __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "Push saved tokenizer to the hub."})
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Any = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] __snake_case : List[str] = True if 'large' in model_name or 'huge' in model_name else False __snake_case : Optional[Any] = True if 'large' in model_name or 'huge' in model_name else False __snake_case : Any = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Any = [3, 3, 3, 3] __snake_case : str = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Optional[int] = [4, 4, 4, 4] __snake_case : int = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : Optional[int] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Optional[int] = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : List[Any] = 96 elif "small" in model_name: __snake_case : int = 96 elif "base" in model_name: __snake_case : Optional[Any] = 1_28 elif "large" in model_name: __snake_case : Union[str, Any] = 1_92 elif "xlarge" in model_name: __snake_case : int = 2_56 elif "huge" in model_name: __snake_case : Any = 3_52 # set label information __snake_case : Optional[Any] = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: __snake_case : Union[str, Any] = 'imagenet-22k-id2label.json' else: __snake_case : List[str] = 'imagenet-1k-id2label.json' __snake_case : Any = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='dataset' ) , 'r' ) ) __snake_case : Any = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case : List[str] = {v: k for k, v in idalabel.items()} __snake_case : List[str] = FocalNetConfig( embed_dim=__UpperCAmelCase , depths=__UpperCAmelCase , focal_levels=__UpperCAmelCase , focal_windows=__UpperCAmelCase , use_conv_embed=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase , use_post_layernorm=__UpperCAmelCase , use_layerscale=__UpperCAmelCase , ) return config def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if "patch_embed.proj" in name: __snake_case : List[str] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __snake_case : Dict = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: __snake_case : Union[str, Any] = 'encoder.' + name if "encoder.layers" in name: __snake_case : Optional[Any] = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: __snake_case : Any = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: __snake_case : Any = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Optional[int] = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : Union[str, Any] = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : Any = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": __snake_case : Any = 'layernorm.weight' if name == "norm.bias": __snake_case : List[Any] = 'layernorm.bias' if "head" in name: __snake_case : Dict = name.replace('head' , 'classifier' ) else: __snake_case : Optional[int] = 'focalnet.' + name return name def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Any , __UpperCAmelCase : Dict=False ): # fmt: off __snake_case : Any = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on __snake_case : str = model_name_to_url[model_name] print('Checkpoint URL: ' , __UpperCAmelCase ) __snake_case : int = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): __snake_case : Optional[Any] = state_dict.pop(__UpperCAmelCase ) __snake_case : Any = val __snake_case : Any = get_focalnet_config(__UpperCAmelCase ) __snake_case : List[str] = FocalNetForImageClassification(__UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(__UpperCAmelCase ) # verify conversion __snake_case : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' __snake_case : int = BitImageProcessor( do_resize=__UpperCAmelCase , size={'shortest_edge': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCAmelCase , crop_size=2_24 , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , ) __snake_case : Any = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) __snake_case : Optional[int] = processor(images=__UpperCAmelCase , return_tensors='pt' ) __snake_case : Union[str, Any] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : Tuple = image_transforms(__UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __UpperCAmelCase , atol=1E-4 ) __snake_case : Optional[Any] = model(**__UpperCAmelCase ) __snake_case : List[Any] = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Tuple = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : Optional[int] = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : List[Any] = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : List[str] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Union[str, Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : Tuple = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''focalnet-tiny''', type=str, help='''Name of the FocalNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub.''', ) __magic_name__ = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
679
from ....configuration_utils import PretrainedConfig from ....utils import logging __magic_name__ = logging.get_logger(__name__) # TODO: upload to AWS __magic_name__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "retribert" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=8 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=True , _UpperCAmelCase=128 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : List[Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : List[Any] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : Union[str, Any] = initializer_range __snake_case : Optional[Any] = layer_norm_eps __snake_case : int = share_encoders __snake_case : Optional[Any] = projection_dim
679
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
1
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Union[str, Any] = num_of_nodes __snake_case : list[list[int]] = [] __snake_case : dict[int, int] = {} def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): self.m_edges.append([u_node, v_node, weight] ) def lowercase_ ( self , _UpperCAmelCase ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowercase_ ( self , _UpperCAmelCase ): if self.m_component[u_node] != u_node: for k in self.m_component: __snake_case : List[str] = self.find_component(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if component_size[u_node] <= component_size[v_node]: __snake_case : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(_UpperCAmelCase ) elif component_size[u_node] >= component_size[v_node]: __snake_case : Optional[int] = self.find_component(_UpperCAmelCase ) component_size[u_node] += component_size[v_node] self.set_component(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = [] __snake_case : Tuple = 0 __snake_case : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __snake_case : Optional[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __snake_case , __snake_case , __snake_case : Optional[int] = edge __snake_case : Any = self.m_component[u] __snake_case : Dict = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __snake_case : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case , __snake_case , __snake_case : List[str] = edge __snake_case : str = self.m_component[u] __snake_case : List[str] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) print(F"""Added edge [{u} - {v}]\nAdded weight: {w}\n""" ) num_of_components -= 1 __snake_case : int = [-1] * self.m_num_of_nodes print(F"""The total weight of the minimal spanning tree is: {mst_weight}""" ) def UpperCAmelCase__( ): pass if __name__ == "__main__": import doctest doctest.testmod()
679
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self ): __snake_case : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , 'num_attention_heads' ) ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=640 , _UpperCAmelCase=4 , _UpperCAmelCase="silu" , _UpperCAmelCase=3 , _UpperCAmelCase=32 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=10 , _UpperCAmelCase=None , ): __snake_case : List[str] = parent __snake_case : Tuple = batch_size __snake_case : str = image_size __snake_case : Union[str, Any] = patch_size __snake_case : Optional[int] = num_channels __snake_case : List[str] = last_hidden_size __snake_case : Optional[Any] = num_attention_heads __snake_case : Dict = hidden_act __snake_case : List[Any] = conv_kernel_size __snake_case : int = output_stride __snake_case : Optional[Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Any = classifier_dropout_prob __snake_case : str = use_labels __snake_case : Optional[Any] = is_training __snake_case : Dict = num_labels __snake_case : str = initializer_range __snake_case : Union[str, Any] = scope def lowercase_ ( self ): __snake_case : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None __snake_case : Dict = None if self.use_labels: __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case : Tuple = self.get_config() return config, pixel_values, labels, pixel_labels def lowercase_ ( self ): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[Any] = MobileViTModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Tuple = self.num_labels __snake_case : Tuple = MobileViTForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = self.num_labels __snake_case : int = MobileViTForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowercase_ ( self ): __snake_case : Optional[int] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case , __snake_case : Any = config_and_inputs __snake_case : Optional[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __UpperCAmelCase = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : Dict = MobileViTModelTester(self ) __snake_case : str = MobileViTConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def lowercase_ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def lowercase_ ( self ): pass @unittest.skip(reason='MobileViT does not output attentions' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Tuple = model_class(_UpperCAmelCase ) __snake_case : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase_ ( self ): pass def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : str = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): __snake_case : str = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case : Optional[Any] = outputs.hidden_states __snake_case : str = 5 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. __snake_case : Optional[Any] = 2 for i in range(len(_UpperCAmelCase ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Tuple = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def lowercase_ ( self ): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = MobileViTModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @cached_property def lowercase_ ( self ): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def lowercase_ ( self ): __snake_case : Tuple = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Tuple = model(**_UpperCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) __snake_case : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : int = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : List[Any] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Optional[int] = prepare_img() __snake_case : Tuple = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : int = model(**_UpperCAmelCase ) __snake_case : int = outputs.logits # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __snake_case : Optional[int] = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : str = model.to(_UpperCAmelCase ) __snake_case : Dict = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) __snake_case : Any = prepare_img() __snake_case : Optional[int] = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Optional[Any] = model(**_UpperCAmelCase ) __snake_case : str = outputs.logits.detach().cpu() __snake_case : Dict = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase , target_sizes=[(50, 60)] ) __snake_case : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase ) __snake_case : Tuple = image_processor.post_process_semantic_segmentation(outputs=_UpperCAmelCase ) __snake_case : List[str] = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , _UpperCAmelCase )
679
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __magic_name__ = '''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Optional[Any]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : Optional[Any]=None , ): if attention_mask is None: __snake_case : Tuple = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __snake_case : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __snake_case : Any = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case : Optional[int] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=0.02 , ): __snake_case : Dict = parent __snake_case : str = batch_size __snake_case : Optional[Any] = seq_length __snake_case : Optional[int] = is_training __snake_case : Optional[int] = use_labels __snake_case : Tuple = vocab_size __snake_case : Optional[int] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Any = intermediate_size __snake_case : Any = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Dict = max_position_embeddings __snake_case : Any = eos_token_id __snake_case : Union[str, Any] = pad_token_id __snake_case : int = bos_token_id __snake_case : Union[str, Any] = initializer_range def lowercase_ ( self ): __snake_case : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __snake_case : Optional[Any] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __snake_case : List[Any] = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) __snake_case : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , ) __snake_case : Optional[Any] = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowercase_ ( self ): __snake_case , __snake_case : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = 20 __snake_case : Tuple = model_class_name(_UpperCAmelCase ) __snake_case : Dict = model.encode(inputs_dict['input_ids'] ) __snake_case , __snake_case : Optional[Any] = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __snake_case : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Dict = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __snake_case : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __snake_case : Tuple = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __snake_case : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __snake_case : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) __snake_case : Dict = model.decode(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : List[str] = 20 __snake_case : List[str] = model_class_name(_UpperCAmelCase ) __snake_case : str = model.encode(inputs_dict['input_ids'] ) __snake_case , __snake_case : Any = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __snake_case : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __snake_case : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) __snake_case : Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __snake_case : str = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __snake_case : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __snake_case : Dict = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __snake_case : Dict = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) __snake_case : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" __UpperCAmelCase = 9_9 def lowercase_ ( self ): __snake_case : int = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __snake_case : List[str] = input_ids.shape[0] __snake_case : List[str] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase_ ( self ): __snake_case , __snake_case , __snake_case : int = self._get_config_and_data() __snake_case : Tuple = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase ) __snake_case : Union[str, Any] = lm_model(input_ids=_UpperCAmelCase ) __snake_case : Optional[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Dict = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __snake_case : List[Any] = FlaxBlenderbotForConditionalGeneration(_UpperCAmelCase ) __snake_case : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __snake_case : int = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __snake_case : List[str] = lm_model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) __snake_case : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __snake_case : Any = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) __snake_case : Any = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() __snake_case : List[Any] = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase , UpperCamelCase): """simple docstring""" __UpperCAmelCase = True __UpperCAmelCase = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) __UpperCAmelCase = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowercase_ ( self ): __snake_case : List[str] = FlaxBlenderbotModelTester(self ) def lowercase_ ( self ): __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : List[Any] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __snake_case : Any = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest('JIT Enabled' ): __snake_case : Any = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __snake_case : Optional[int] = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase_ ( self ): __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __snake_case : List[Any] = model_class(_UpperCAmelCase ) __snake_case : int = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __snake_case : int = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest('JIT Enabled' ): __snake_case : int = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __snake_case : Union[str, Any] = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase_ ( self ): for model_class_name in self.all_model_classes: __snake_case : Any = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __snake_case : List[str] = np.ones((1, 1) ) * model.config.eos_token_id __snake_case : Optional[int] = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def lowercase_ ( self ): __snake_case : Union[str, Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} __snake_case : Union[str, Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} __snake_case : List[str] = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=_UpperCAmelCase ) __snake_case : List[str] = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) __snake_case : str = ['Sam'] __snake_case : int = tokenizer(_UpperCAmelCase , return_tensors='jax' ) __snake_case : Tuple = model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : List[str] = 'Sam is a great name. It means "sun" in Gaelic.' __snake_case : Optional[int] = tokenizer.batch_decode(_UpperCAmelCase , **_UpperCAmelCase ) assert generated_txt[0].strip() == tgt_text
679
def UpperCAmelCase__( __UpperCAmelCase : int | float | str ): try: __snake_case : int = float(__UpperCAmelCase ) except ValueError: raise ValueError('Please enter a valid number' ) __snake_case : Any = decimal - int(__UpperCAmelCase ) if fractional_part == 0: return int(__UpperCAmelCase ), 1 else: __snake_case : Tuple = len(str(__UpperCAmelCase ).split('.' )[1] ) __snake_case : Tuple = int(decimal * (10**number_of_frac_digits) ) __snake_case : List[Any] = 10**number_of_frac_digits __snake_case , __snake_case : List[Any] = denominator, numerator while True: __snake_case : Any = dividend % divisor if remainder == 0: break __snake_case , __snake_case : Optional[int] = divisor, remainder __snake_case , __snake_case : Union[str, Any] = numerator / divisor, denominator / divisor return int(__UpperCAmelCase ), int(__UpperCAmelCase ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(89.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
679
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''CLIPFeatureExtractor'''] __magic_name__ = ['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') __magic_name__ = logging.getLogger(__name__) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __UpperCAmelCase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = field(default=UpperCamelCase , metadata={"help": "The input training data file (a text file)."}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"}) __UpperCAmelCase = field( default=UpperCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __UpperCAmelCase = field( default=UpperCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def lowercase_ ( self ): if self.train_file is not None: __snake_case : Union[str, Any] = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case : List[str] = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = True __UpperCAmelCase = None __UpperCAmelCase = None def __call__( self , _UpperCAmelCase ): __snake_case : Tuple = 'label' if 'label' in features[0].keys() else 'labels' __snake_case : Dict = [feature.pop(_UpperCAmelCase ) for feature in features] __snake_case : List[Any] = len(_UpperCAmelCase ) __snake_case : Union[str, Any] = len(features[0]['input_ids'] ) __snake_case : Union[str, Any] = [ [{k: v[i] for k, v in feature.items()} for i in range(_UpperCAmelCase )] for feature in features ] __snake_case : Union[str, Any] = list(chain(*_UpperCAmelCase ) ) __snake_case : Optional[Any] = self.tokenizer.pad( _UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case : Any = {k: v.view(_UpperCAmelCase , _UpperCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case : int = torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) return batch def UpperCAmelCase__( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case : Dict = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case : Tuple = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. __snake_case : Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case : str = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case : Optional[int] = {} if data_args.train_file is not None: __snake_case : Optional[int] = data_args.train_file if data_args.validation_file is not None: __snake_case : int = data_args.validation_file __snake_case : int = data_args.train_file.split('.' )[-1] __snake_case : Tuple = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case : Optional[int] = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case : List[Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case : str = [F"""ending{i}""" for i in range(4 )] __snake_case : Optional[Any] = 'sent1' __snake_case : Tuple = 'sent2' if data_args.max_seq_length is None: __snake_case : List[Any] = tokenizer.model_max_length if max_seq_length > 10_24: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case : List[Any] = 10_24 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __snake_case : str = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase : Tuple ): __snake_case : Union[str, Any] = [[context] * 4 for context in examples[context_name]] __snake_case : Union[str, Any] = examples[question_header_name] __snake_case : Optional[int] = [ [F"""{header} {examples[end][i]}""" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out __snake_case : Optional[Any] = list(chain(*__UpperCAmelCase ) ) __snake_case : int = list(chain(*__UpperCAmelCase ) ) # Tokenize __snake_case : Tuple = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case : Optional[Any] = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case : Tuple = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) __snake_case : List[str] = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case : int = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case : Optional[Any] = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case : List[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) __snake_case : Optional[Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case : List[Any] = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase : int ): __snake_case , __snake_case : Union[str, Any] = eval_predictions __snake_case : Tuple = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case : List[str] = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: __snake_case : Dict = None if training_args.resume_from_checkpoint is not None: __snake_case : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case : List[str] = last_checkpoint __snake_case : List[str] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case : List[Any] = train_result.metrics __snake_case : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) __snake_case : Tuple = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('train' , __UpperCAmelCase ) trainer.save_metrics('train' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : Dict = trainer.evaluate() __snake_case : Any = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) __snake_case : Optional[Any] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('eval' , __UpperCAmelCase ) trainer.save_metrics('eval' , __UpperCAmelCase ) __snake_case : List[Any] = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
679
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "openai/whisper-base" __UpperCAmelCase = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __UpperCAmelCase = "transcriber" __UpperCAmelCase = WhisperProcessor __UpperCAmelCase = WhisperForConditionalGeneration __UpperCAmelCase = ["audio"] __UpperCAmelCase = ["text"] def lowercase_ ( self , _UpperCAmelCase ): return self.pre_processor(_UpperCAmelCase , return_tensors='pt' ).input_features def lowercase_ ( self , _UpperCAmelCase ): return self.model.generate(inputs=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0]
679
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = '''▁''' __magic_name__ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } __magic_name__ = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': 1_024, } __magic_name__ = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] __magic_name__ = {'''mustc''': MUSTC_LANGS} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = MAX_MODEL_INPUT_SIZES __UpperCAmelCase = ["input_ids", "attention_mask"] __UpperCAmelCase = [] def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase = None , **_UpperCAmelCase , ): __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __snake_case : Dict = do_upper_case __snake_case : Optional[Any] = do_lower_case __snake_case : List[Any] = load_json(_UpperCAmelCase ) __snake_case : Dict = {v: k for k, v in self.encoder.items()} __snake_case : Optional[Any] = spm_file __snake_case : Any = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: __snake_case : Optional[Any] = lang_codes __snake_case : int = LANGUAGES[lang_codes] __snake_case : str = [F"""<lang:{lang}>""" for lang in self.langs] __snake_case : Dict = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} __snake_case : Dict = self.lang_tokens __snake_case : str = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __snake_case : Optional[int] = {} @property def lowercase_ ( self ): return len(self.encoder ) @property def lowercase_ ( self ): return self._tgt_lang @tgt_lang.setter def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Tuple = self.lang_code_to_id[tgt_lang] __snake_case : Optional[Any] = [lang_code_id] def lowercase_ ( self , _UpperCAmelCase ): return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase ): return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase , self.unk_token ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : str = [] __snake_case : Any = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __snake_case : Dict = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __snake_case : Any = [] else: current_sub_tokens.append(_UpperCAmelCase ) __snake_case : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = [1] * len(self.prefix_tokens ) __snake_case : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowercase_ ( self ): __snake_case : List[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __snake_case : int = self.__dict__.copy() __snake_case : str = None return state def __setstate__( self , _UpperCAmelCase ): __snake_case : List[Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __snake_case : Optional[int] = {} __snake_case : int = load_spm(self.spm_file , self.sp_model_kwargs ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : str = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" __snake_case : int = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __snake_case : Union[str, Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , 'wb' ) as fi: __snake_case : List[str] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Dict[str, Any] ): __snake_case : List[str] = sentencepiece.SentencePieceProcessor(**__UpperCAmelCase ) spm.Load(str(__UpperCAmelCase ) ) return spm def UpperCAmelCase__( __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'r' ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ): with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=2 )
679
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] __snake_case : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __snake_case : Optional[Any] = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], 'do_convert_rgb': True, } __snake_case : Optional[Any] = os.path.join(self.tmpdirname , _UpperCAmelCase ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self ): shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ): __snake_case : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase_ ( self ): __snake_case : Dict = self.get_tokenizer() __snake_case : int = self.get_rust_tokenizer() __snake_case : int = self.get_image_processor() __snake_case : Union[str, Any] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) __snake_case : Dict = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase ) __snake_case : List[str] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) __snake_case : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case : str = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) __snake_case : Dict = self.get_image_processor(do_normalize=_UpperCAmelCase ) __snake_case : str = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=_UpperCAmelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : str = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : List[str] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __snake_case : int = self.prepare_image_inputs() __snake_case : Optional[int] = image_processor(_UpperCAmelCase , return_tensors='np' ) __snake_case : List[str] = processor(images=_UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ): __snake_case : List[Any] = self.get_image_processor() __snake_case : Optional[Any] = self.get_tokenizer() __snake_case : Dict = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __snake_case : Optional[int] = 'Alexandra,T-shirt的价格是15便士。' __snake_case : Tuple = processor(text=_UpperCAmelCase ) __snake_case : List[str] = tokenizer(_UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase_ ( self ): __snake_case : Dict = self.get_image_processor() __snake_case : int = self.get_tokenizer() __snake_case : Dict = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __snake_case : Optional[int] = 'Alexandra,T-shirt的价格是15便士。' __snake_case : Any = self.prepare_image_inputs() __snake_case : Union[str, Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowercase_ ( self ): __snake_case : int = self.get_image_processor() __snake_case : List[str] = self.get_tokenizer() __snake_case : Dict = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __snake_case : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case : List[Any] = processor.batch_decode(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.batch_decode(_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.get_image_processor() __snake_case : List[Any] = self.get_tokenizer() __snake_case : Optional[Any] = ChineseCLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase ) __snake_case : List[Any] = 'Alexandra,T-shirt的价格是15便士。' __snake_case : int = self.prepare_image_inputs() __snake_case : List[str] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
679
def UpperCAmelCase__( __UpperCAmelCase : list ): __snake_case : List[Any] = len(__UpperCAmelCase ) for _ in range(__UpperCAmelCase ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __snake_case , __snake_case : int = arr[i + 1], arr[i] return arr if __name__ == "__main__": __magic_name__ = list(range(10, 0, -1)) print(F'''Original: {arr}. Sorted: {odd_even_transposition(arr)}''')
679
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ = '''pt''' elif is_tf_available(): __magic_name__ = '''tf''' else: __magic_name__ = '''jax''' class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = PerceiverTokenizer __UpperCAmelCase = False def lowercase_ ( self ): super().setUp() __snake_case : str = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def lowercase_ ( self , **_UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __snake_case : List[Any] = [] for i in range(len(_UpperCAmelCase ) ): try: __snake_case : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case : List[Any] = list(filter(lambda _UpperCAmelCase : re.match(R'^[ a-zA-Z]+$' , t[1] ) , _UpperCAmelCase ) ) __snake_case : Dict = list(filter(lambda _UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase ) , _UpperCAmelCase ) ) if max_length is not None and len(_UpperCAmelCase ) > max_length: __snake_case : List[str] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase ) < min_length and len(_UpperCAmelCase ) > 0: while len(_UpperCAmelCase ) < min_length: __snake_case : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] __snake_case : List[Any] = [t[0] for t in toks] # Ensure consistency __snake_case : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) if " " not in output_txt and len(_UpperCAmelCase ) > 1: __snake_case : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase ) ) if with_prefix_space: __snake_case : List[Any] = ' ' + output_txt __snake_case : Optional[int] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) return output_txt, output_ids def lowercase_ ( self ): __snake_case : List[Any] = self.perceiver_tokenizer __snake_case : Dict = 'Unicode €.' __snake_case : Union[str, Any] = tokenizer(_UpperCAmelCase ) __snake_case : Dict = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : int = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]Unicode €.[SEP]' ) __snake_case : Optional[Any] = tokenizer('e è é ê ë' ) __snake_case : Dict = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase ) # decoding __snake_case : str = tokenizer.decode(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.perceiver_tokenizer __snake_case : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __snake_case : str = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0] # fmt: on __snake_case : Dict = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) if FRAMEWORK != "jax": __snake_case : List[str] = list(batch.input_ids.numpy()[0] ) else: __snake_case : List[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowercase_ ( self ): __snake_case : Dict = self.perceiver_tokenizer __snake_case : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase ) self.assertIn('attention_mask' , _UpperCAmelCase ) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[str] = self.perceiver_tokenizer __snake_case : Tuple = [ 'Summary of the text.', 'Another summary.', ] __snake_case : int = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def lowercase_ ( self ): # safety check on max_len default value so we are sure the test works __snake_case : Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __snake_case : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[Any] = ' He is very happy, UNwant\u00E9d,running' __snake_case : Tuple = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : List[str] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) shutil.rmtree(_UpperCAmelCase ) __snake_case : Dict = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __snake_case : Tuple = tempfile.mkdtemp() __snake_case : Optional[int] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __snake_case : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __snake_case : Any = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) tokenizer.save_pretrained(_UpperCAmelCase ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase ) __snake_case : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __snake_case : List[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __snake_case : Any = json.load(_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : List[str] = [F"""<extra_id_{i}>""" for i in range(125 )] __snake_case : Dict = added_tokens_extra_ids + [ 'an_additional_special_token' ] __snake_case : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case : Optional[Any] = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case : Any = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase )] __snake_case : str = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase_ ( self ): __snake_case : Tuple = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([178] ) , '�' ) def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): pass def lowercase_ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens __snake_case : Optional[Any] = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): __snake_case : Union[str, Any] = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] __snake_case : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase )
679
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="Translation" , init=UpperCamelCase , repr=UpperCamelCase) def __call__( self ): return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def lowercase_ ( self ): from .features import Value return {k: Value('string' ) for k in sorted(self.languages )} @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __UpperCAmelCase = None __UpperCAmelCase = None __UpperCAmelCase = None # Automatically constructed __UpperCAmelCase = "dict" __UpperCAmelCase = None __UpperCAmelCase = field(default="TranslationVariableLanguages" , init=UpperCamelCase , repr=UpperCamelCase) def lowercase_ ( self ): __snake_case : List[str] = sorted(set(self.languages ) ) if self.languages else None __snake_case : Optional[Any] = len(self.languages ) if self.languages else None def __call__( self ): return pa.struct({'language': pa.list_(pa.string() ), 'translation': pa.list_(pa.string() )} ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( F"""Some languages in example ({", ".join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({", ".join(_UpperCAmelCase )}).""" ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. __snake_case : Any = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. __snake_case , __snake_case : Any = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def lowercase_ ( self ): from .features import Sequence, Value return { "language": Sequence(Value('string' ) ), "translation": Sequence(Value('string' ) ), }
679
1
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = {'''vocab_file''': '''vocab.json'''} __magic_name__ = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } __magic_name__ = {'''mgp-str''': 27} class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase="[GO]" , _UpperCAmelCase="[GO]" , _UpperCAmelCase="[s]" , _UpperCAmelCase="[GO]" , **_UpperCAmelCase ): super().__init__( unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , **_UpperCAmelCase , ) with open(_UpperCAmelCase , encoding='utf-8' ) as vocab_handle: __snake_case : List[str] = json.load(_UpperCAmelCase ) __snake_case : Any = {v: k for k, v in self.vocab.items()} @property def lowercase_ ( self ): return len(self.vocab ) def lowercase_ ( self ): return dict(self.vocab , **self.added_tokens_encoder ) def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = [] for s in text: char_tokens.extend(_UpperCAmelCase ) return char_tokens def lowercase_ ( self , _UpperCAmelCase ): return self.vocab.get(_UpperCAmelCase , self.vocab.get(self.unk_token ) ) def lowercase_ ( self , _UpperCAmelCase ): return self.decoder.get(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error('Vocabulary path ({}) should be a directory'.format(_UpperCAmelCase ) ) return __snake_case : Optional[int] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_UpperCAmelCase , ensure_ascii=_UpperCAmelCase ) + '\n' ) return (vocab_file,)
679
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_vision_model" def __init__( self , _UpperCAmelCase=1_408 , _UpperCAmelCase=6_144 , _UpperCAmelCase=39 , _UpperCAmelCase=16 , _UpperCAmelCase=224 , _UpperCAmelCase=14 , _UpperCAmelCase="gelu" , _UpperCAmelCase=1E-6 , _UpperCAmelCase=0.0 , _UpperCAmelCase=1E-10 , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase ) __snake_case : Optional[Any] = hidden_size __snake_case : Any = intermediate_size __snake_case : str = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : int = patch_size __snake_case : Dict = image_size __snake_case : Any = initializer_range __snake_case : List[Any] = attention_dropout __snake_case : Optional[Any] = layer_norm_eps __snake_case : Optional[int] = hidden_act __snake_case : int = qkv_bias @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip_qformer" def __init__( self , _UpperCAmelCase=30_522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3_072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1E-12 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=2 , _UpperCAmelCase=1_408 , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[Any] = hidden_size __snake_case : str = num_hidden_layers __snake_case : Dict = num_attention_heads __snake_case : Optional[Any] = hidden_act __snake_case : int = intermediate_size __snake_case : str = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : Dict = initializer_range __snake_case : Any = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[int] = cross_attention_frequency __snake_case : Union[str, Any] = encoder_hidden_size @classmethod def lowercase_ ( cls , _UpperCAmelCase , **_UpperCAmelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) __snake_case , __snake_case : Optional[int] = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __snake_case : List[Any] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "instructblip" __UpperCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=32 , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) if vision_config is None: __snake_case : List[str] = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __snake_case : Union[str, Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __snake_case : str = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __snake_case : Optional[Any] = InstructBlipVisionConfig(**_UpperCAmelCase ) __snake_case : Tuple = InstructBlipQFormerConfig(**_UpperCAmelCase ) __snake_case : List[Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' __snake_case : str = CONFIG_MAPPING[text_model_type](**_UpperCAmelCase ) __snake_case : List[Any] = self.text_config.tie_word_embeddings __snake_case : Optional[int] = self.text_config.is_encoder_decoder __snake_case : List[str] = num_query_tokens __snake_case : Tuple = self.vision_config.hidden_size __snake_case : Any = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __snake_case : str = 1.0 __snake_case : Optional[int] = 0.02 @classmethod def lowercase_ ( cls , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Tuple = copy.deepcopy(self.__dict__ ) __snake_case : Tuple = self.vision_config.to_dict() __snake_case : List[Any] = self.qformer_config.to_dict() __snake_case : Optional[int] = self.text_config.to_dict() __snake_case : List[str] = self.__class__.model_type return output
679
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_perceiver''': ['''PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PerceiverConfig''', '''PerceiverOnnxConfig'''], '''tokenization_perceiver''': ['''PerceiverTokenizer'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''PerceiverFeatureExtractor'''] __magic_name__ = ['''PerceiverImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PerceiverForImageClassificationConvProcessing''', '''PerceiverForImageClassificationFourier''', '''PerceiverForImageClassificationLearned''', '''PerceiverForMaskedLM''', '''PerceiverForMultimodalAutoencoding''', '''PerceiverForOpticalFlow''', '''PerceiverForSequenceClassification''', '''PerceiverLayer''', '''PerceiverModel''', '''PerceiverPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __magic_name__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase ): warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
679
1
import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str , __UpperCAmelCase : str ): def get_masked_lm_array(__UpperCAmelCase : str ): __snake_case : List[Any] = F"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: __snake_case : str = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_array(__UpperCAmelCase : str ): __snake_case : Any = F"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[Any] = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: __snake_case : str = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_layer_array(__UpperCAmelCase : int , __UpperCAmelCase : str ): __snake_case : Tuple = F"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : int = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) if "kernel" in name: __snake_case : List[Any] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) def get_encoder_attention_layer_array(__UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Any ): __snake_case : Any = F"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : int = tf.train.load_variable(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : int = array.reshape(__UpperCAmelCase ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(__UpperCAmelCase ) print(F"""Loading model based on config from {config_path}...""" ) __snake_case : int = BertConfig.from_json_file(__UpperCAmelCase ) __snake_case : Dict = BertForMaskedLM(__UpperCAmelCase ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : Dict = get_encoder_attention_layer_array( __UpperCAmelCase , '_query_dense/kernel' , self_attn.query.weight.data.shape ) __snake_case : Optional[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_query_dense/bias' , self_attn.query.bias.data.shape ) __snake_case : Optional[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_key_dense/kernel' , self_attn.key.weight.data.shape ) __snake_case : Optional[int] = get_encoder_attention_layer_array( __UpperCAmelCase , '_key_dense/bias' , self_attn.key.bias.data.shape ) __snake_case : Optional[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_value_dense/kernel' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_value_dense/bias' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : List[Any] = get_encoder_attention_layer_array( __UpperCAmelCase , '_output_dense/kernel' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( __UpperCAmelCase , '_output_dense/bias' , self_output.dense.bias.data.shape ) __snake_case : List[Any] = get_encoder_layer_array(__UpperCAmelCase , '_attention_layer_norm/gamma' ) __snake_case : Dict = get_encoder_layer_array(__UpperCAmelCase , '_attention_layer_norm/beta' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : Any = get_encoder_layer_array(__UpperCAmelCase , '_intermediate_dense/kernel' ) __snake_case : Dict = get_encoder_layer_array(__UpperCAmelCase , '_intermediate_dense/bias' ) # Output __snake_case : BertOutput = layer.output __snake_case : Any = get_encoder_layer_array(__UpperCAmelCase , '_output_dense/kernel' ) __snake_case : List[str] = get_encoder_layer_array(__UpperCAmelCase , '_output_dense/bias' ) __snake_case : Dict = get_encoder_layer_array(__UpperCAmelCase , '_output_layer_norm/gamma' ) __snake_case : Tuple = get_encoder_layer_array(__UpperCAmelCase , '_output_layer_norm/beta' ) # Embeddings __snake_case : Dict = get_encoder_array('_position_embedding_layer/embeddings' ) __snake_case : Dict = get_encoder_array('_type_embedding_layer/embeddings' ) __snake_case : Dict = get_encoder_array('_embedding_norm_layer/gamma' ) __snake_case : Optional[int] = get_encoder_array('_embedding_norm_layer/beta' ) # LM Head __snake_case : Tuple = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('dense/kernel' ) __snake_case : Optional[int] = get_masked_lm_array('dense/bias' ) __snake_case : List[Any] = get_masked_lm_array('layer_norm/gamma' ) __snake_case : int = get_masked_lm_array('layer_norm/beta' ) __snake_case : List[Any] = get_masked_lm_array('embedding_table' ) # Pooling __snake_case : Tuple = BertPooler(config=__UpperCAmelCase ) __snake_case : BertPooler = get_encoder_array('_pooler_layer/kernel' ) __snake_case : BertPooler = get_encoder_array('_pooler_layer/bias' ) # Export final model model.save_pretrained(__UpperCAmelCase ) # Integration test - should load without any errors ;) __snake_case : Tuple = BertForMaskedLM.from_pretrained(__UpperCAmelCase ) print(new_model.eval() ) print('Model conversion was done sucessfully!' ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow Token Dropping checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model.''', ) __magic_name__ = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
679
import math import os import sys def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Union[str, Any] = '' try: with open(__UpperCAmelCase , 'rb' ) as binary_file: __snake_case : Optional[Any] = binary_file.read() for dat in data: __snake_case : Tuple = F"""{dat:08b}""" result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : dict[str, str] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : str ): lexicon.pop(__UpperCAmelCase ) __snake_case : Union[str, Any] = last_match_id if math.loga(__UpperCAmelCase ).is_integer(): for curr_key in lexicon: __snake_case : Tuple = '0' + lexicon[curr_key] __snake_case : Any = bin(__UpperCAmelCase )[2:] def UpperCAmelCase__( __UpperCAmelCase : str ): __snake_case : Tuple = {'0': '0', '1': '1'} __snake_case , __snake_case : Optional[int] = '', '' __snake_case : str = len(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue __snake_case : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) index += 1 __snake_case : Union[str, Any] = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": __snake_case : Any = lexicon[curr_string] result += last_match_id return result def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = os.path.getsize(__UpperCAmelCase ) __snake_case : List[Any] = bin(__UpperCAmelCase )[2:] __snake_case : Any = len(__UpperCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : Tuple = 8 try: with open(__UpperCAmelCase , 'wb' ) as opened_file: __snake_case : int = [ to_write[i : i + byte_length] for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__UpperCAmelCase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : str ): __snake_case : str = read_file_binary(__UpperCAmelCase ) __snake_case : Tuple = compress_data(__UpperCAmelCase ) __snake_case : int = add_file_length(__UpperCAmelCase , __UpperCAmelCase ) write_file_binary(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
679
1
from __future__ import annotations def UpperCAmelCase__( __UpperCAmelCase : float , __UpperCAmelCase : float , __UpperCAmelCase : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
679
from itertools import permutations def UpperCAmelCase__( __UpperCAmelCase : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __snake_case : Any = [7, 11, 13, 17] for i, test in enumerate(__UpperCAmelCase ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase__( __UpperCAmelCase : int = 10 ): return sum( int(''.join(map(__UpperCAmelCase , __UpperCAmelCase ) ) ) for num in permutations(range(__UpperCAmelCase ) ) if is_substring_divisible(__UpperCAmelCase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
679
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''MobileViTFeatureExtractor'''] __magic_name__ = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
679
# Function to print upper half of diamond (pyramid) def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(0 , __UpperCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): for i in range(__UpperCAmelCase , 0 , -1 ): for _ in range(__UpperCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def UpperCAmelCase__( __UpperCAmelCase : List[Any] ): if n <= 0: print(' ... .... nothing printing :(' ) return floyd(__UpperCAmelCase ) # upper half reverse_floyd(__UpperCAmelCase ) # lower half if __name__ == "__main__": print(r'''| /\ | |- | |- |--| |\ /| |-''') print(r'''|/ \| |- |_ |_ |__| | \/ | |_''') __magic_name__ = 1 while K: __magic_name__ = int(input('''enter the number and , and see the magic : ''')) print() pretty_print(user_number) __magic_name__ = int(input('''press 0 to exit... and 1 to continue...''')) print('''Good Bye...''')
679
1
import math def UpperCAmelCase__( __UpperCAmelCase : int ): __snake_case : Dict = [True] * n __snake_case : List[Any] = False __snake_case : Tuple = False __snake_case : List[str] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): __snake_case : Dict = i * 2 while index < n: __snake_case : Tuple = False __snake_case : str = index + i __snake_case : List[Any] = [2] for i in range(3 , __UpperCAmelCase , 2 ): if is_prime[i]: primes.append(__UpperCAmelCase ) return primes def UpperCAmelCase__( __UpperCAmelCase : int = 99_99_66_66_33_33 ): __snake_case : Any = math.floor(math.sqrt(__UpperCAmelCase ) ) + 1_00 __snake_case : List[str] = prime_sieve(__UpperCAmelCase ) __snake_case : Tuple = 0 __snake_case : int = 0 __snake_case : Union[str, Any] = primes[prime_index] while (last_prime**2) <= limit: __snake_case : List[str] = primes[prime_index + 1] __snake_case : List[str] = last_prime**2 __snake_case : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) __snake_case : Optional[int] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) __snake_case : List[Any] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps __snake_case : Union[str, Any] = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair __snake_case : Any = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
679
from timeit import timeit def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Dict = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase__( __UpperCAmelCase : int ): if number < 0: raise ValueError('the value of input must not be negative' ) __snake_case : Tuple = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase__( ): def do_benchmark(__UpperCAmelCase : int ) -> None: __snake_case : Optional[Any] = 'import __main__ as z' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit('z.get_set_bits_count_using_modulo_operator(25)' , setup=__UpperCAmelCase ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__UpperCAmelCase ) = }""" ) __snake_case : Dict = timeit( 'z.get_set_bits_count_using_brian_kernighans_algorithm(25)' , setup=__UpperCAmelCase , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
679
1
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __magic_name__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ): inspect_dataset(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = path + '.py' assert script_name in os.listdir(__UpperCAmelCase ) assert "__pycache__" not in os.listdir(__UpperCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] ): inspect_metric(__UpperCAmelCase , __UpperCAmelCase ) __snake_case : Optional[Any] = path + '.py' assert script_name in os.listdir(__UpperCAmelCase ) assert "__pycache__" not in os.listdir(__UpperCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): __snake_case : Dict = get_dataset_config_info(__UpperCAmelCase , config_name=__UpperCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any ): with pytest.raises(__UpperCAmelCase ): get_dataset_config_info(__UpperCAmelCase , config_name=__UpperCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Any ): __snake_case : Any = get_dataset_config_names(__UpperCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : int ): __snake_case : str = get_dataset_infos(__UpperCAmelCase ) assert list(infos.keys() ) == expected_configs __snake_case : Tuple = expected_configs[0] assert expected_config in infos __snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int ): __snake_case : List[Any] = get_dataset_infos(__UpperCAmelCase ) assert expected_config in infos __snake_case : Optional[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] ): with pytest.raises(__UpperCAmelCase ): get_dataset_split_names(__UpperCAmelCase , config_name=__UpperCAmelCase )
679
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def UpperCAmelCase__( __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict=False ): try: __snake_case : Optional[int] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Optional[Any] = strtobool(__UpperCAmelCase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __magic_name__ = parse_flag_from_env('''RUN_SLOW''', default=False) __magic_name__ = parse_flag_from_env('''RUN_REMOTE''', default=False) __magic_name__ = parse_flag_from_env('''RUN_LOCAL''', default=True) __magic_name__ = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression __magic_name__ = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') __magic_name__ = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') __magic_name__ = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio __magic_name__ = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam __magic_name__ = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility __magic_name__ = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows __magic_name__ = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def UpperCAmelCase__( __UpperCAmelCase : Any ): try: import faiss # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires faiss' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import regex # noqa except ImportError: __snake_case : List[str] = unittest.skip('test requires regex' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[Any] ): try: import elasticsearch # noqa except ImportError: __snake_case : Tuple = unittest.skip('test requires elasticsearch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import sqlalchemy # noqa except ImportError: __snake_case : Dict = unittest.skip('test requires sqlalchemy' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): if not config.TORCH_AVAILABLE: __snake_case : Optional[int] = unittest.skip('test requires PyTorch' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not config.TF_AVAILABLE: __snake_case : Optional[Any] = unittest.skip('test requires TensorFlow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): if not config.JAX_AVAILABLE: __snake_case : int = unittest.skip('test requires JAX' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): if not config.PIL_AVAILABLE: __snake_case : Any = unittest.skip('test requires Pillow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): try: import transformers # noqa F401 except ImportError: return unittest.skip('test requires transformers' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): try: import tiktoken # noqa F401 except ImportError: return unittest.skip('test requires tiktoken' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Tuple ): try: import spacy # noqa F401 except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Optional[int] ): def _require_spacy_model(__UpperCAmelCase : List[str] ): try: import spacy # noqa F401 spacy.load(__UpperCAmelCase ) except ImportError: return unittest.skip('test requires spacy' )(__UpperCAmelCase ) except OSError: return unittest.skip('test requires spacy model \'{}\''.format(__UpperCAmelCase ) )(__UpperCAmelCase ) else: return test_case return _require_spacy_model def UpperCAmelCase__( __UpperCAmelCase : int ): try: import pyspark # noqa F401 except ImportError: return unittest.skip('test requires pyspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : List[str] ): try: import joblibspark # noqa F401 except ImportError: return unittest.skip('test requires joblibspark' )(__UpperCAmelCase ) else: return test_case def UpperCAmelCase__( __UpperCAmelCase : Any ): if not _run_slow_tests or _run_slow_tests == 0: __snake_case : List[str] = unittest.skip('test is slow' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : Dict ): if not _run_local_tests or _run_local_tests == 0: __snake_case : Tuple = unittest.skip('test is local' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : int ): if not _run_packaged_tests or _run_packaged_tests == 0: __snake_case : Dict = unittest.skip('test is packaged' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( __UpperCAmelCase : str ): if not _run_remote_tests or _run_remote_tests == 0: __snake_case : Tuple = unittest.skip('test requires remote' )(__UpperCAmelCase ) return test_case def UpperCAmelCase__( *__UpperCAmelCase : Any ): def decorate(cls : List[str] ): for name, fn in cls.__dict__.items(): if callable(__UpperCAmelCase ) and name.startswith('test' ): for decorator in decorators: __snake_case : Optional[Any] = decorator(__UpperCAmelCase ) setattr(cls , __UpperCAmelCase , __UpperCAmelCase ) return cls return decorate class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" pass class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = 0 __UpperCAmelCase = 1 __UpperCAmelCase = 2 @contextmanager def UpperCAmelCase__( __UpperCAmelCase : Union[str, Any]=OfflineSimulationMode.CONNECTION_FAILS , __UpperCAmelCase : List[Any]=1E-16 ): __snake_case : Optional[Any] = requests.Session().request def timeout_request(__UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , **__UpperCAmelCase : Union[str, Any] ): # Change the url to an invalid url so that the connection hangs __snake_case : int = 'https://10.255.255.1' if kwargs.get('timeout' ) is None: raise RequestWouldHangIndefinitelyError( F"""Tried a call to {url} in offline mode with no timeout set. Please set a timeout.""" ) __snake_case : str = timeout try: return online_request(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier __snake_case : Any = url __snake_case : Union[str, Any] = e.args[0] __snake_case : int = (max_retry_error.args[0].replace('10.255.255.1' , F"""OfflineMock[{url}]""" ),) __snake_case : str = (max_retry_error,) raise def raise_connection_error(__UpperCAmelCase : str , __UpperCAmelCase : Dict , **__UpperCAmelCase : List[str] ): raise requests.ConnectionError('Offline mode is enabled.' , request=__UpperCAmelCase ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('requests.Session.send' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('requests.Session.request' , __UpperCAmelCase ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('datasets.config.HF_DATASETS_OFFLINE' , __UpperCAmelCase ): yield else: raise ValueError('Please use a value from the OfflineSimulationMode enum.' ) @contextmanager def UpperCAmelCase__( *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : int ): __snake_case : Dict = str(Path().resolve() ) with tempfile.TemporaryDirectory(*__UpperCAmelCase , **__UpperCAmelCase ) as tmp_dir: try: os.chdir(__UpperCAmelCase ) yield finally: os.chdir(__UpperCAmelCase ) @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : Any = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def UpperCAmelCase__( ): import gc gc.collect() __snake_case : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def UpperCAmelCase__( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ): return deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() == deepcopy(__UpperCAmelCase ).integers(0 , 1_00 , 10 ).tolist() def UpperCAmelCase__( __UpperCAmelCase : List[str] ): import decorator from requests.exceptions import HTTPError def _wrapper(__UpperCAmelCase : str , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): try: return func(*__UpperCAmelCase , **__UpperCAmelCase ) except HTTPError as err: if str(__UpperCAmelCase ).startswith('500' ) or str(__UpperCAmelCase ).startswith('502' ): pytest.xfail(str(__UpperCAmelCase ) ) raise err return decorator.decorator(_wrapper , __UpperCAmelCase ) class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : int = returncode __snake_case : Tuple = stdout __snake_case : List[Any] = stderr async def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] ): while True: __snake_case : Optional[int] = await stream.readline() if line: callback(__UpperCAmelCase ) else: break async def UpperCAmelCase__( __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict=None , __UpperCAmelCase : int=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=False , __UpperCAmelCase : int=False ): if echo: print('\nRunning: ' , ' '.join(__UpperCAmelCase ) ) __snake_case : Tuple = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__UpperCAmelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__UpperCAmelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Any = [] __snake_case : Tuple = [] def tee(__UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any]="" ): __snake_case : int = line.decode('utf-8' ).rstrip() sink.append(__UpperCAmelCase ) if not quiet: print(__UpperCAmelCase , __UpperCAmelCase , file=__UpperCAmelCase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stdout , label='stdout:' ) ), _read_stream(p.stderr , lambda __UpperCAmelCase : tee(__UpperCAmelCase , __UpperCAmelCase , sys.stderr , label='stderr:' ) ), ] , timeout=__UpperCAmelCase , ) return _RunOutput(await p.wait() , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase__( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : List[str]=1_80 , __UpperCAmelCase : Any=False , __UpperCAmelCase : int=True ): __snake_case : Any = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(__UpperCAmelCase , env=__UpperCAmelCase , stdin=__UpperCAmelCase , timeout=__UpperCAmelCase , quiet=__UpperCAmelCase , echo=__UpperCAmelCase ) ) __snake_case : Dict = ' '.join(__UpperCAmelCase ) if result.returncode > 0: __snake_case : List[Any] = '\n'.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F"""'{cmd_str}' produced no output.""" ) return result def UpperCAmelCase__( ): __snake_case : List[str] = os.environ.get('PYTEST_XDIST_WORKER' , 'gw0' ) __snake_case : Optional[Any] = re.sub(r'^gw' , '' , __UpperCAmelCase , 0 , re.M ) return int(__UpperCAmelCase ) def UpperCAmelCase__( ): __snake_case : Dict = 2_95_00 __snake_case : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
679
1
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets __magic_name__ = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __magic_name__ = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' __magic_name__ = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __SCREAMING_SNAKE_CASE ( datasets.Metric): """simple docstring""" def lowercase_ ( self ): if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , ): __snake_case : List[Any] = len(references[0] ) if any(len(_UpperCAmelCase ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __snake_case : Optional[int] = [[refs[i] for refs in references] for i in range(_UpperCAmelCase )] __snake_case : Union[str, Any] = TER( normalized=_UpperCAmelCase , no_punct=_UpperCAmelCase , asian_support=_UpperCAmelCase , case_sensitive=_UpperCAmelCase , ) __snake_case : Union[str, Any] = sb_ter.corpus_score(_UpperCAmelCase , _UpperCAmelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
679
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar __magic_name__ = TypeVar('''T''') class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self , _UpperCAmelCase ): __snake_case : Optional[Any] = data __snake_case : Node[T] | None = None def __str__( self ): return F"""{self.data}""" class __SCREAMING_SNAKE_CASE ( Generic[T]): """simple docstring""" def __init__( self ): __snake_case : Node[T] | None = None def __iter__( self ): __snake_case : List[str] = self.top while node: yield node.data __snake_case : Union[str, Any] = node.next def __str__( self ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self ): return len(tuple(iter(self ) ) ) def lowercase_ ( self ): return self.top is None def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Any = Node(_UpperCAmelCase ) if not self.is_empty(): __snake_case : Any = self.top __snake_case : Dict = node def lowercase_ ( self ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) __snake_case : Optional[int] = self.top __snake_case : Dict = self.top.next return pop_node.data def lowercase_ ( self ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowercase_ ( self ): __snake_case : Optional[int] = None if __name__ == "__main__": from doctest import testmod testmod()
679
1
import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Tuple = inspect.getfile(accelerate.test_utils ) __snake_case : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) __snake_case : str = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def lowercase_ ( self ): __snake_case : Tuple = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() __snake_case : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy() )
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , ): __snake_case : List[str] = size if size is not None else {'shortest_edge': 18} __snake_case : Optional[int] = crop_size if crop_size is not None else {'height': 18, 'width': 18} __snake_case : Optional[int] = parent __snake_case : int = batch_size __snake_case : Optional[Any] = num_channels __snake_case : Optional[Any] = image_size __snake_case : int = min_resolution __snake_case : Tuple = max_resolution __snake_case : Optional[Any] = do_resize __snake_case : List[Any] = size __snake_case : Optional[Any] = do_center_crop __snake_case : Optional[int] = crop_size __snake_case : str = do_normalize __snake_case : Tuple = image_mean __snake_case : Optional[Any] = image_std def lowercase_ ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = LevitImageProcessor if is_vision_available() else None def lowercase_ ( self ): __snake_case : List[Any] = LevitImageProcessingTester(self ) @property def lowercase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self ): __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) def lowercase_ ( self ): __snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowercase_ ( self ): pass def lowercase_ ( self ): # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input __snake_case : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase_ ( self ): # Initialize image_processing __snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input __snake_case : Tuple = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : List[Any] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowercase_ ( self ): # Initialize image_processing __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched __snake_case : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
679
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__( __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any ): # Initialise PyTorch model __snake_case : List[str] = TaConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) __snake_case : int = TaForConditionalGeneration(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(__UpperCAmelCase ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __magic_name__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
679
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "speech_to_text" __UpperCAmelCase = ["past_key_values"] __UpperCAmelCase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , _UpperCAmelCase=10_000 , _UpperCAmelCase=12 , _UpperCAmelCase=2_048 , _UpperCAmelCase=4 , _UpperCAmelCase=6 , _UpperCAmelCase=2_048 , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=2 , _UpperCAmelCase=True , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=6_000 , _UpperCAmelCase=1_024 , _UpperCAmelCase=2 , _UpperCAmelCase=(5, 5) , _UpperCAmelCase=1_024 , _UpperCAmelCase=80 , _UpperCAmelCase=1 , **_UpperCAmelCase , ): __snake_case : Any = vocab_size __snake_case : Optional[Any] = d_model __snake_case : Union[str, Any] = encoder_ffn_dim __snake_case : List[str] = encoder_layers __snake_case : int = encoder_attention_heads __snake_case : Dict = decoder_ffn_dim __snake_case : str = decoder_layers __snake_case : List[Any] = decoder_attention_heads __snake_case : Tuple = dropout __snake_case : Optional[int] = attention_dropout __snake_case : List[str] = activation_dropout __snake_case : int = activation_function __snake_case : Union[str, Any] = init_std __snake_case : str = encoder_layerdrop __snake_case : List[str] = decoder_layerdrop __snake_case : Union[str, Any] = use_cache __snake_case : Any = encoder_layers __snake_case : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True __snake_case : Dict = max_source_positions __snake_case : int = max_target_positions __snake_case : str = num_conv_layers __snake_case : Any = list(_UpperCAmelCase ) __snake_case : Optional[Any] = conv_channels __snake_case : Dict = input_feat_per_channel __snake_case : Tuple = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ F"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
679
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __magic_name__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): __snake_case : List[Any] = self.layer[current_layer](_UpperCAmelCase , _UpperCAmelCase , head_mask[current_layer] ) __snake_case : Optional[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[Any] = BertEncoderWithPabee(_UpperCAmelCase ) self.init_weights() __snake_case : str = 0 __snake_case : List[str] = 0 __snake_case : int = 0 __snake_case : Tuple = 0 def lowercase_ ( self , _UpperCAmelCase ): __snake_case : Dict = threshold def lowercase_ ( self , _UpperCAmelCase ): __snake_case : List[Any] = patience def lowercase_ ( self ): __snake_case : Dict = 0 __snake_case : Dict = 0 def lowercase_ ( self ): __snake_case : Union[str, Any] = self.inference_layers_num / self.inference_instances_num __snake_case : int = ( F"""*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =""" F""" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***""" ) print(_UpperCAmelCase ) @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: __snake_case : Union[str, Any] = input_ids.size() elif inputs_embeds is not None: __snake_case : int = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) __snake_case : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case : List[str] = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) if token_type_ids is None: __snake_case : int = torch.zeros(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case : torch.Tensor = self.get_extended_attention_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case : Optional[int] = encoder_hidden_states.size() __snake_case : List[Any] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case : Tuple = torch.ones(_UpperCAmelCase , device=_UpperCAmelCase ) __snake_case : Optional[int] = self.invert_attention_mask(_UpperCAmelCase ) else: __snake_case : str = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case : int = self.get_head_mask(_UpperCAmelCase , self.config.num_hidden_layers ) __snake_case : Any = self.embeddings( input_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase ) __snake_case : List[str] = embedding_output if self.training: __snake_case : Dict = [] for i in range(self.config.num_hidden_layers ): __snake_case : str = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = self.pooler(_UpperCAmelCase ) __snake_case : Any = output_layers[i](output_dropout(_UpperCAmelCase ) ) res.append(_UpperCAmelCase ) elif self.patience == 0: # Use all layers for inference __snake_case : Dict = self.encoder( _UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) __snake_case : str = self.pooler(encoder_outputs[0] ) __snake_case : Tuple = [output_layers[self.config.num_hidden_layers - 1](_UpperCAmelCase )] else: __snake_case : List[str] = 0 __snake_case : str = None __snake_case : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case : List[Any] = self.encoder.adaptive_forward( _UpperCAmelCase , current_layer=_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case : Any = self.pooler(_UpperCAmelCase ) __snake_case : int = output_layers[i](_UpperCAmelCase ) if regression: __snake_case : Optional[int] = logits.detach() if patient_result is not None: __snake_case : Dict = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case : Any = 0 else: __snake_case : str = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case : List[str] = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_UpperCAmelCase ) ): patient_counter += 1 else: __snake_case : Dict = 0 __snake_case : str = logits if patient_counter == self.patience: break __snake_case : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , UpperCamelCase , ) class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" def __init__( self , _UpperCAmelCase ): super().__init__(_UpperCAmelCase ) __snake_case : List[str] = config.num_labels __snake_case : Dict = BertModelWithPabee(_UpperCAmelCase ) __snake_case : int = nn.Dropout(config.hidden_dropout_prob ) __snake_case : Optional[int] = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_UpperCAmelCase ) def lowercase_ ( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): __snake_case : List[str] = self.bert( input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , position_ids=_UpperCAmelCase , head_mask=_UpperCAmelCase , inputs_embeds=_UpperCAmelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case : int = (logits[-1],) if labels is not None: __snake_case : List[Any] = None __snake_case : Optional[int] = 0 for ix, logits_item in enumerate(_UpperCAmelCase ): if self.num_labels == 1: # We are doing regression __snake_case : List[str] = MSELoss() __snake_case : List[str] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case : List[str] = CrossEntropyLoss() __snake_case : Optional[int] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case : List[Any] = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case : int = (total_loss / total_weights,) + outputs return outputs
679
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = "umt5" __UpperCAmelCase = ["past_key_values"] def __init__( self , _UpperCAmelCase=250_112 , _UpperCAmelCase=512 , _UpperCAmelCase=64 , _UpperCAmelCase=1_024 , _UpperCAmelCase=8 , _UpperCAmelCase=None , _UpperCAmelCase=6 , _UpperCAmelCase=32 , _UpperCAmelCase=128 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1E-6 , _UpperCAmelCase=1.0 , _UpperCAmelCase="gated-gelu" , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase="T5Tokenizer" , _UpperCAmelCase=True , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): super().__init__( is_encoder_decoder=_UpperCAmelCase , tokenizer_class=_UpperCAmelCase , tie_word_embeddings=_UpperCAmelCase , pad_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : Optional[int] = vocab_size __snake_case : Any = d_model __snake_case : Optional[Any] = d_kv __snake_case : int = d_ff __snake_case : Tuple = num_layers __snake_case : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case : Optional[int] = num_heads __snake_case : str = relative_attention_num_buckets __snake_case : List[Any] = relative_attention_max_distance __snake_case : Dict = dropout_rate __snake_case : List[Any] = layer_norm_epsilon __snake_case : Optional[Any] = initializer_factor __snake_case : str = feed_forward_proj __snake_case : Optional[Any] = use_cache __snake_case : Tuple = self.feed_forward_proj.split('-' ) __snake_case : Dict = act_info[-1] __snake_case : Dict = act_info[0] == 'gated' if len(_UpperCAmelCase ) > 1 and act_info[0] != "gated" or len(_UpperCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": __snake_case : Union[str, Any] = 'gelu_new' @property def lowercase_ ( self ): return self.d_model @property def lowercase_ ( self ): return self.num_heads @property def lowercase_ ( self ): return self.num_layers class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowercase_ ( self ): __snake_case : Dict = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __snake_case : List[str] = 'past_encoder_sequence + sequence' __snake_case : Union[str, Any] = {0: 'batch'} __snake_case : Optional[int] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __snake_case : List[str] = {0: 'batch', 1: 'decoder_sequence'} __snake_case : Any = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_UpperCAmelCase , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowercase_ ( self ): return 13 @property def lowercase_ ( self ): return 5E-4
679
def UpperCAmelCase__( __UpperCAmelCase : str ): if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) __snake_case : str = sorted(string.lower() ) return len(__UpperCAmelCase ) == len(set(__UpperCAmelCase ) ) if __name__ == "__main__": __magic_name__ = input('''Enter a string ''').strip() __magic_name__ = is_isogram(input_str) print(F'''{input_str} is {"an" if isogram else "not an"} isogram.''')
679
1