code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( _UpperCAmelCase : int ) -> list[int]: __snake_case = str(_UpperCAmelCase ) __snake_case = [n] for i in range(1 , len(_UpperCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: if len(str(_UpperCAmelCase ) ) > 3: if not is_prime(int(str(_UpperCAmelCase )[-3:] ) ) or not is_prime(int(str(_UpperCAmelCase )[:3] ) ): return False return True def __UpperCAmelCase ( _UpperCAmelCase : int = 11 ) -> list[int]: __snake_case = [] __snake_case = 13 while len(_UpperCAmelCase ) != count: if validate(_UpperCAmelCase ): __snake_case = list_truncated_nums(_UpperCAmelCase ) if all(is_prime(_UpperCAmelCase ) for i in list_nums ): list_truncated_primes.append(_UpperCAmelCase ) num += 2 return list_truncated_primes def __UpperCAmelCase ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'''{sum(compute_truncated_primes(11)) = }''')
680
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig a : List[str] = logging.get_logger(__name__) a : Union[str, Any] = '''T5Config''' def __UpperCAmelCase ( _UpperCAmelCase : jnp.array , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> jnp.ndarray: __snake_case = jnp.zeros_like(_UpperCAmelCase ) __snake_case = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __snake_case = shifted_input_ids.at[:, 0].set(_UpperCAmelCase ) __snake_case = jnp.where(shifted_input_ids == -1_00 , _UpperCAmelCase , _UpperCAmelCase ) return shifted_input_ids class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mt5""" __SCREAMING_SNAKE_CASE = MTaConfig class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mt5""" __SCREAMING_SNAKE_CASE = MTaConfig class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mt5""" __SCREAMING_SNAKE_CASE = MTaConfig
680
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
1
'''simple docstring''' from collections.abc import Callable import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : Callable , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> np.ndarray: __snake_case = int(np.ceil((x_end - xa) / step_size ) ) __snake_case = np.zeros((n + 1,) ) __snake_case = ya __snake_case = xa for k in range(_UpperCAmelCase ): __snake_case = y[k] + step_size * ode_func(_UpperCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
1
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( _UpperCAmelCase : int = 1_00_01 ) -> int: __snake_case = 0 __snake_case = 1 while count != nth and number < 3: number += 1 if is_prime(_UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(_UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Dict , *a_ : int , **a_ : Tuple ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : Tuple ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : Tuple , *a_ : str , **a_ : Dict ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[str] , *a_ : Tuple , **a_ : Tuple ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Union[str, Any] , *a_ : Union[str, Any] , **a_ : Tuple ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : List[str] , *a_ : int , **a_ : List[str] ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[str] , *a_ : Union[str, Any] , **a_ : Dict ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Optional[Any] , *a_ : Tuple , **a_ : int ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : List[Any] , *a_ : Any , **a_ : Dict ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[str] , *a_ : Any , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : str , *a_ : Optional[int] , **a_ : int ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : Optional[int] , *a_ : List[Any] , **a_ : Optional[int] ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Dict , *a_ : Union[str, Any] , **a_ : Dict ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : int , *a_ : Dict , **a_ : List[str] ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : int , *a_ : str , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Union[str, Any] , *a_ : Any , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : str , *a_ : Tuple , **a_ : Optional[int] ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : Union[str, Any] , *a_ : Tuple , **a_ : List[str] ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Any , *a_ : Any , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Union[str, Any] , *a_ : Optional[int] , **a_ : List[Any] ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : int , *a_ : Tuple , **a_ : Any ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Optional[Any] , *a_ : List[Any] , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : List[Any] , *a_ : Optional[int] , **a_ : str ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : List[str] , *a_ : Optional[int] , **a_ : Tuple ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : str , *a_ : Any , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Optional[int] , *a_ : int , **a_ : List[Any] ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : str , *a_ : Dict , **a_ : Dict ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[str] , *a_ : Dict , **a_ : int ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : str , *a_ : Optional[Any] , **a_ : Any ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : List[Any] , *a_ : Optional[int] , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Tuple , *a_ : List[str] , **a_ : int ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Optional[int] , *a_ : Any , **a_ : Tuple ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : Optional[Any] , *a_ : Any , **a_ : Any ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : List[Any] , *a_ : Dict , **a_ : Any ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Dict , *a_ : Any , **a_ : List[Any] ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : Any , *a_ : List[str] , **a_ : str ): """simple docstring""" requires_backends(cls , ["flax"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""flax"""] def __init__( self : Optional[int] , *a_ : List[Any] , **a_ : List[str] ): """simple docstring""" requires_backends(self , ["flax"] ) @classmethod def A ( cls : Any , *a_ : int , **a_ : Any ): """simple docstring""" requires_backends(cls , ["flax"] ) @classmethod def A ( cls : List[Any] , *a_ : Union[str, Any] , **a_ : Any ): """simple docstring""" requires_backends(cls , ["flax"] )
680
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
1
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : List[str] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __snake_case = Rectangle(height=0.25 , width=0.25 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case = Text("CPU" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) __snake_case = [mem.copy() for i in range(4 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = Text("GPU" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = Text("Model" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) __snake_case = [] __snake_case = [] for i, rect in enumerate(a_ ): __snake_case = fill.copy().set_fill(a_ , opacity=0.8 ) target.move_to(a_ ) model_arr.append(a_ ) __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case = Text("Disk" , font_size=24 ) __snake_case = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4, -1.25, 0] ) self.add(a_ , a_ ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) __snake_case = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) __snake_case = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ ) ) __snake_case = Square(0.3 ) input.set_fill(a_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , a_ , buff=0.5 ) self.play(Write(a_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=a_ , buff=0.02 ) self.play(MoveToTarget(a_ ) ) self.play(FadeOut(a_ ) ) __snake_case = Arrow(start=a_ , end=a_ , color=a_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , a_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __snake_case = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) __snake_case = {"run_time": 1, "fade_in": True, "fade_out": True, "buff": 0.02} self.play( Write(a_ ) , Circumscribe(model_arr[0] , color=a_ , **a_ ) , Circumscribe(model_cpu_arr[0] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __snake_case = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , a_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __snake_case = AnimationGroup( FadeOut(a_ , run_time=0.5 ) , MoveToTarget(a_ , run_time=0.5 ) , FadeIn(a_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(a_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __snake_case = 0.7 self.play( Circumscribe(model_arr[i] , **a_ ) , Circumscribe(cpu_left_col_base[i] , **a_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , Circumscribe(model_arr[i + 1] , color=a_ , **a_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=a_ , **a_ ) , Circumscribe(cpu_left_col_base[-1] , color=a_ , **a_ ) , Circumscribe(gpu_rect[0] , color=a_ , **a_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __snake_case = a_c __snake_case = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(a_ ) , FadeOut(a_ , run_time=0.5 ) , ) __snake_case = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) , MoveToTarget(a_ ) ) self.wait()
680
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
1
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Optional[Any] , a_ : Union[str, Any] , a_ : Union[str, Any]=7 , a_ : List[str]=3 , a_ : List[str]=18 , a_ : Union[str, Any]=30 , a_ : List[str]=400 , a_ : int=True , a_ : List[Any]=None , a_ : str=True , ): """simple docstring""" __snake_case = size if size is not None else {"height": 18, "width": 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = apply_ocr def A ( self : Dict ): """simple docstring""" return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE__ ( _snake_case , unittest.TestCase ): __SCREAMING_SNAKE_CASE = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A ( self : int ): """simple docstring""" __snake_case = LayoutLMvaImageProcessingTester(self ) @property def A ( self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Any ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , "apply_ocr" ) ) def A ( self : str ): """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def A ( self : Any ): """simple docstring""" pass def A ( self : Tuple ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase__ ) self.assertIsInstance(encoding.boxes , lowerCAmelCase__ ) # Test batched __snake_case = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __snake_case = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def A ( self : int ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched __snake_case = image_processing(lowerCAmelCase__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def A ( self : Dict ): """simple docstring""" __snake_case = LayoutLMvaImageProcessor() from datasets import load_dataset __snake_case = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) __snake_case = Image.open(ds[0]["file"] ).convert("RGB" ) __snake_case = image_processing(lowerCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __snake_case = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 __snake_case = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase__ ) self.assertListEqual(encoding.boxes , lowerCAmelCase__ ) # with apply_OCR = False __snake_case = LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase__ ) __snake_case = image_processing(lowerCAmelCase__ , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a : int = logging.get_logger(__name__) a : Optional[int] = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } a : str = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } a : List[Any] = { 'jukebox': 512, } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_LYRIC_TOKENS_SIZES __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , a_ : Dict , a_ : Optional[Any] , a_ : str , a_ : Optional[Any]=["v3", "v2", "v2"] , a_ : Union[str, Any]=512 , a_ : Dict=5 , a_ : List[str]="<|endoftext|>" , **a_ : List[str] , ): """simple docstring""" __snake_case = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else unk_token super().__init__( unk_token=UpperCAmelCase_ , n_genres=UpperCAmelCase_ , version=UpperCAmelCase_ , max_n_lyric_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) __snake_case = version __snake_case = max_n_lyric_tokens __snake_case = n_genres with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: __snake_case = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: __snake_case = json.load(UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: __snake_case = json.load(UpperCAmelCase_ ) __snake_case = r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: __snake_case = oov.replace(r"\-'" , r"\-+'" ) __snake_case = regex.compile(UpperCAmelCase_ ) __snake_case = {v: k for k, v in self.artists_encoder.items()} __snake_case = {v: k for k, v in self.genres_encoder.items()} __snake_case = {v: k for k, v in self.lyrics_encoder.items()} @property def A ( self : Union[str, Any] ): """simple docstring""" return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def A ( self : Tuple ): """simple docstring""" return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def A ( self : Dict , a_ : Tuple , a_ : str , a_ : List[str] ): """simple docstring""" __snake_case = [self.artists_encoder.get(UpperCAmelCase_ , 0 ) for artist in list_artists] for genres in range(len(UpperCAmelCase_ ) ): __snake_case = [self.genres_encoder.get(UpperCAmelCase_ , 0 ) for genre in list_genres[genres]] __snake_case = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) __snake_case = [[self.lyrics_encoder.get(UpperCAmelCase_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def A ( self : Dict , a_ : List[str] ): """simple docstring""" return list(UpperCAmelCase_ ) def A ( self : List[str] , a_ : str , a_ : int , a_ : List[Any] , **a_ : Optional[Any] ): """simple docstring""" __snake_case , __snake_case , __snake_case = self.prepare_for_tokenization(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case = self._tokenize(UpperCAmelCase_ ) return artist, genre, lyrics def A ( self : List[str] , a_ : str , a_ : str , a_ : str , a_ : bool = False ): """simple docstring""" for idx in range(len(self.version ) ): if self.version[idx] == "v3": __snake_case = artists[idx].lower() __snake_case = [genres[idx].lower()] else: __snake_case = self._normalize(artists[idx] ) + ".v2" __snake_case = [ self._normalize(UpperCAmelCase_ ) + ".v2" for genre in genres[idx].split("_" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": __snake_case = regex.compile(r"[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+" ) __snake_case = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n" __snake_case = {vocab[index]: index + 1 for index in range(len(UpperCAmelCase_ ) )} __snake_case = 0 __snake_case = len(UpperCAmelCase_ ) + 1 __snake_case = self.vocab __snake_case = {v: k for k, v in self.vocab.items()} __snake_case = "" else: __snake_case = regex.compile(r"[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+" ) __snake_case = self._run_strip_accents(UpperCAmelCase_ ) __snake_case = lyrics.replace("\\" , "\n" ) __snake_case = self.out_of_vocab.sub("" , UpperCAmelCase_ ), [], [] return artists, genres, lyrics def A ( self : Tuple , a_ : List[str] ): """simple docstring""" __snake_case = unicodedata.normalize("NFD" , UpperCAmelCase_ ) __snake_case = [] for char in text: __snake_case = unicodedata.category(UpperCAmelCase_ ) if cat == "Mn": continue output.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) def A ( self : List[Any] , a_ : str ): """simple docstring""" __snake_case = ( [chr(UpperCAmelCase_ ) for i in range(ord("a" ) , ord("z" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("A" ) , ord("Z" ) + 1 )] + [chr(UpperCAmelCase_ ) for i in range(ord("0" ) , ord("9" ) + 1 )] + ["."] ) __snake_case = frozenset(UpperCAmelCase_ ) __snake_case = re.compile(r"_+" ) __snake_case = "".join([c if c in accepted else "_" for c in text.lower()] ) __snake_case = pattern.sub("_" , UpperCAmelCase_ ).strip("_" ) return text def A ( self : List[Any] , a_ : List[str] ): """simple docstring""" return " ".join(UpperCAmelCase_ ) def A ( self : Tuple , a_ : str , a_ : Optional[Union[str, TensorType]] = None , a_ : bool = False ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): __snake_case = TensorType(UpperCAmelCase_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf __snake_case = tf.constant __snake_case = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed." ) import torch __snake_case = torch.tensor __snake_case = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed." ) import jax.numpy as jnp # noqa: F811 __snake_case = jnp.array __snake_case = _is_jax else: __snake_case = np.asarray __snake_case = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: __snake_case = [inputs] if not is_tensor(UpperCAmelCase_ ): __snake_case = as_tensor(UpperCAmelCase_ ) except: # noqa E722 raise ValueError( "Unable to create tensor, you should probably activate truncation and/or padding " "with 'padding=True' 'truncation=True' to have batched tensors with the same length." ) return inputs def __call__( self : Any , a_ : List[str] , a_ : List[str] , a_ : List[Any]="" , a_ : List[Any]="pt" ): """simple docstring""" __snake_case = [0, 0, 0] __snake_case = [artist] * len(self.version ) __snake_case = [genres] * len(self.version ) __snake_case , __snake_case , __snake_case = self.tokenize(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case = self._convert_token_to_id(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case = [-INFINITY] * len(full_tokens[-1] ) __snake_case = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCAmelCase_ ) for i in range(len(self.version ) ) ] return BatchEncoding({"input_ids": input_ids, "attention_masks": attention_masks} ) def A ( self : Optional[Any] , a_ : str , a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["artists_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCAmelCase_ ) ) __snake_case = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["genres_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCAmelCase_ ) ) __snake_case = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["lyrics_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCAmelCase_ ) ) return (artists_file, genres_file, lyrics_file) def A ( self : Union[str, Any] , a_ : List[str] , a_ : Dict , a_ : List[Any] ): """simple docstring""" __snake_case = self.artists_decoder.get(UpperCAmelCase_ ) __snake_case = [self.genres_decoder.get(UpperCAmelCase_ ) for genre in genres_index] __snake_case = [self.lyrics_decoder.get(UpperCAmelCase_ ) for character in lyric_index] return artist, genres, lyrics
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' def __UpperCAmelCase ( ) -> str: for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> List[Any]: __snake_case = 1 __snake_case = 2 while i * i <= n: __snake_case = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __UpperCAmelCase ( ) -> Any: return next(i for i in triangle_number_generator() if count_divisors(_UpperCAmelCase ) > 5_00 ) if __name__ == "__main__": print(solution())
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Optional[int] , a_ : bool = True , a_ : Dict[str, int] = None , a_ : float = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , **a_ : str , ): """simple docstring""" super().__init__(**UpperCamelCase_ ) __snake_case = size if size is not None else {'shortest_edge': 384} __snake_case = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __snake_case = do_resize __snake_case = size # Default value set here for backwards compatibility where the value in config is None __snake_case = crop_pct if crop_pct is not None else 224 / 256 __snake_case = resample __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Tuple , a_ : np.ndarray , a_ : Dict[str, int] , a_ : float , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : str , ): """simple docstring""" __snake_case = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) __snake_case = size['shortest_edge'] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct __snake_case = int(shortest_edge / crop_pct ) __snake_case = get_resize_output_image_size(UpperCamelCase_ , size=UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __snake_case = resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=UpperCamelCase_ , size=(shortest_edge, shortest_edge) , data_format=UpperCamelCase_ , **UpperCamelCase_ ) else: # warping (no cropping) when evaluated at 384 or larger return resize( UpperCamelCase_ , size=(shortest_edge, shortest_edge) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def A ( self : Dict , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ): """simple docstring""" return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def A ( self : Any , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Dict , ): """simple docstring""" return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def A ( self : List[str] , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : float = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : ChannelDimension = ChannelDimension.FIRST , **a_ : int , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = crop_pct if crop_pct is not None else self.crop_pct __snake_case = resample if resample is not None else self.resample __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = size if size is not None else self.size __snake_case = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ ) __snake_case = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(UpperCamelCase_ ) for image in images] if do_resize: __snake_case = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , crop_pct=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images] __snake_case = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] __snake_case = {'pixel_values': images} return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a : Optional[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): __SCREAMING_SNAKE_CASE = ["""input_values""", """padding_mask"""] def __init__( self : Any , a_ : int = 1 , a_ : int = 24_000 , a_ : float = 0.0 , a_ : float = None , a_ : float = None , **a_ : List[Any] , ): """simple docstring""" super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) __snake_case = chunk_length_s __snake_case = overlap @property def A ( self : Tuple ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : List[str] ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : str , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : Optional[Union[bool, str, PaddingStrategy]] = None , a_ : Optional[bool] = False , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[int] = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs __snake_case = True __snake_case = bool( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case = [np.asarray(__lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): __snake_case = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): __snake_case = raw_audio.astype(np.floataa ) # always return batch if not is_batched: __snake_case = [np.asarray(__lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__lowerCamelCase ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) __snake_case = None __snake_case = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: __snake_case = min(array.shape[0] for array in raw_audio ) __snake_case = int(np.floor(max_length / self.chunk_stride ) ) __snake_case = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: __snake_case = max(array.shape[0] for array in raw_audio ) __snake_case = int(np.ceil(max_length / self.chunk_stride ) ) __snake_case = (nb_step - 1) * self.chunk_stride + self.chunk_length __snake_case = "max_length" else: __snake_case = input_values # normal padding on batch if padded_inputs is None: __snake_case = self.pad( __lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , padding=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if padding: __snake_case = padded_inputs.pop("attention_mask" ) __snake_case = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: __snake_case = example[..., None] input_values.append(example.T ) __snake_case = input_values if return_tensors is not None: __snake_case = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' from typing import Any def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> list[Any]: if not input_list: return [] __snake_case = [input_list.count(lowerCamelCase_ ) for value in input_list] __snake_case = max(lowerCamelCase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCamelCase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): def A ( self : List[str] ): """simple docstring""" __snake_case = Rectangle(height=0.5 , width=0.5 ) __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __snake_case = Rectangle(height=0.25 , width=0.25 ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) __snake_case = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) __snake_case = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) __snake_case = Text("CPU" , font_size=24 ) __snake_case = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_lowercase ) __snake_case = [mem.copy() for i in range(4 )] __snake_case = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) __snake_case = Text("GPU" , font_size=24 ) __snake_case = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) gpu.move_to([-1, -1, 0] ) self.add(_lowercase ) __snake_case = [mem.copy() for i in range(6 )] __snake_case = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) __snake_case = Text("Model" , font_size=24 ) __snake_case = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) model.move_to([3, -1.0, 0] ) self.add(_lowercase ) __snake_case = [] __snake_case = [] for i, rect in enumerate(_lowercase ): __snake_case = fill.copy().set_fill(_lowercase , opacity=0.8 ) target.move_to(_lowercase ) model_arr.append(_lowercase ) __snake_case = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_lowercase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_lowercase ) self.add(*_lowercase , *_lowercase ) __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = [meta_mem.copy() for i in range(6 )] __snake_case = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) __snake_case = VGroup(*_lowercase ).arrange(_lowercase , buff=0 ) __snake_case = VGroup(_lowercase , _lowercase ).arrange(_lowercase , buff=0 ) __snake_case = Text("Disk" , font_size=24 ) __snake_case = Group(_lowercase , _lowercase ).arrange(_lowercase , buff=0.5 , aligned_edge=_lowercase ) disk.move_to([-4, -1.25, 0] ) self.add(_lowercase , _lowercase ) __snake_case = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_lowercase , _lowercase ) __snake_case = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_lowercase ) __snake_case = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase ) ) __snake_case = Square(0.3 ) input.set_fill(_lowercase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _lowercase , buff=0.5 ) self.play(Write(_lowercase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_lowercase , buff=0.02 ) self.play(MoveToTarget(_lowercase ) ) self.play(FadeOut(_lowercase ) ) __snake_case = Arrow(start=_lowercase , end=_lowercase , color=_lowercase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _lowercase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __snake_case = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) ) __snake_case = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_lowercase ) , Circumscribe(model_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_cpu_arr[0] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __snake_case = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _lowercase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __snake_case = AnimationGroup( FadeOut(_lowercase , run_time=0.5 ) , MoveToTarget(_lowercase , run_time=0.5 ) , FadeIn(_lowercase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_lowercase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __snake_case = 0.7 self.play( Circumscribe(model_arr[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i] , **_lowercase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , Circumscribe(model_arr[i + 1] , color=_lowercase , **_lowercase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_lowercase , **_lowercase ) , Circumscribe(cpu_left_col_base[-1] , color=_lowercase , **_lowercase ) , Circumscribe(gpu_rect[0] , color=_lowercase , **_lowercase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __snake_case = a_c __snake_case = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_lowercase ) , FadeOut(_lowercase , run_time=0.5 ) , ) __snake_case = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_lowercase , run_time=3 ) , MoveToTarget(_lowercase ) ) self.wait()
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from __future__ import annotations import math def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> list: if len(__A ) != 2 or len(a[0] ) != 2 or len(__A ) != 2 or len(b[0] ) != 2: raise Exception("Matrices are not 2x2" ) __snake_case = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> Optional[Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> Any: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__A ) ) ] def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple[list, list, list, list]: if len(__A ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("Odd matrices are not supported!" ) __snake_case = len(__A ) __snake_case = matrix_length // 2 __snake_case = [[a[i][j] for j in range(__A , __A )] for i in range(__A )] __snake_case = [ [a[i][j] for j in range(__A , __A )] for i in range(__A , __A ) ] __snake_case = [[a[i][j] for j in range(__A )] for i in range(__A )] __snake_case = [[a[i][j] for j in range(__A )] for i in range(__A , __A )] return top_left, top_right, bot_left, bot_right def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple[int, int]: return len(__A ), len(matrix[0] ) def __UpperCAmelCase ( _UpperCAmelCase : list ) -> None: print("\n".join(str(__A ) for line in matrix ) ) def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> list: if matrix_dimensions(__A ) == (2, 2): return default_matrix_multiplication(__A , __A ) __snake_case = split_matrix(__A ) __snake_case = split_matrix(__A ) __snake_case = actual_strassen(__A , matrix_subtraction(__A , __A ) ) __snake_case = actual_strassen(matrix_addition(__A , __A ) , __A ) __snake_case = actual_strassen(matrix_addition(__A , __A ) , __A ) __snake_case = actual_strassen(__A , matrix_subtraction(__A , __A ) ) __snake_case = actual_strassen(matrix_addition(__A , __A ) , matrix_addition(__A , __A ) ) __snake_case = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) __snake_case = actual_strassen(matrix_subtraction(__A , __A ) , matrix_addition(__A , __A ) ) __snake_case = matrix_addition(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) __snake_case = matrix_addition(__A , __A ) __snake_case = matrix_addition(__A , __A ) __snake_case = matrix_subtraction(matrix_subtraction(matrix_addition(__A , __A ) , __A ) , __A ) # construct the new matrix from our 4 quadrants __snake_case = [] for i in range(len(__A ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__A ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> list: if matrix_dimensions(__A )[1] != matrix_dimensions(__A )[0]: __snake_case = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F'''Matrix A: {matrixa}\n''' F'''Matrix B: {matrixa}''' ) raise Exception(__A ) __snake_case = matrix_dimensions(__A ) __snake_case = matrix_dimensions(__A ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __snake_case = max(*__A , *__A ) __snake_case = int(math.pow(2 , math.ceil(math.loga(__A ) ) ) ) __snake_case = matrixa __snake_case = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __snake_case = actual_strassen(__A , __A ) # Removing the additional zeros for i in range(0 , __A ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __A ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": a : List[str] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] a : List[Any] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' import pprint import requests a : Union[str, Any] = 'https://zenquotes.io/api' def __UpperCAmelCase ( ) -> Optional[Any]: return requests.get(API_ENDPOINT_URL + "/today" ).json() def __UpperCAmelCase ( ) -> Optional[Any]: return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": a : Dict = random_quotes() pprint.pprint(response)
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = "swinv2" __SCREAMING_SNAKE_CASE = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Union[str, Any] , a_ : List[str]=224 , a_ : Tuple=4 , a_ : Optional[Any]=3 , a_ : Optional[Any]=96 , a_ : List[Any]=[2, 2, 6, 2] , a_ : Union[str, Any]=[3, 6, 12, 24] , a_ : Any=7 , a_ : List[Any]=4.0 , a_ : Union[str, Any]=True , a_ : List[Any]=0.0 , a_ : int=0.0 , a_ : str=0.1 , a_ : Optional[int]="gelu" , a_ : Tuple=False , a_ : Optional[Any]=0.02 , a_ : Optional[int]=1e-5 , a_ : Union[str, Any]=32 , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**UpperCamelCase_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(UpperCamelCase_ ) __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case = int(embed_dim * 2 ** (len(UpperCamelCase_ ) - 1) ) __snake_case = (0, 0, 0, 0)
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip a : Any = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase ) -> Optional[Any]: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: return max(metric_fn(_lowerCAmelCase , _lowerCAmelCase ) for gt in ground_truths ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = [] if args.gold_data_mode == "qa": __snake_case = pd.read_csv(_lowerCAmelCase , sep="\t" , header=_lowerCAmelCase ) for answer_list in data[1]: __snake_case = ast.literal_eval(_lowerCAmelCase ) answers.append(_lowerCAmelCase ) else: __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = [[reference] for reference in references] __snake_case = 0 for prediction, ground_truths in zip(_lowerCAmelCase , _lowerCAmelCase ): total += 1 em += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) fa += metric_max_over_ground_truths(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __snake_case = 1_00.0 * em / total __snake_case = 1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: __snake_case = args.k __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = [line.strip() for line in open(_lowerCAmelCase , "r" ).readlines()] __snake_case = 0 for hypo, reference in zip(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = set(hypo.split("\t" )[:k] ) __snake_case = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k __snake_case = 1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: def strip_title(_UpperCAmelCase ): if title.startswith("\"" ): __snake_case = title[1:] if title.endswith("\"" ): __snake_case = title[:-1] return title __snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , )["input_ids"].to(args.device ) __snake_case = rag_model.rag.question_encoder(_lowerCAmelCase ) __snake_case = question_enc_outputs[0] __snake_case = rag_model.retriever( _lowerCAmelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) __snake_case = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) __snake_case = [] for docs in all_docs: __snake_case = [strip_title(_lowerCAmelCase ) for title in docs["title"]] provenance_strings.append("\t".join(_lowerCAmelCase ) ) return provenance_strings def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: with torch.no_grad(): __snake_case = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _lowerCAmelCase , return_tensors="pt" , padding=_lowerCAmelCase , truncation=_lowerCAmelCase ) __snake_case = inputs_dict.input_ids.to(args.device ) __snake_case = inputs_dict.attention_mask.to(args.device ) __snake_case = rag_model.generate( # rag_model overwrites generate _lowerCAmelCase , attention_mask=_lowerCAmelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_lowerCAmelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) __snake_case = rag_model.retriever.generator_tokenizer.batch_decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) if args.print_predictions: for q, a in zip(_lowerCAmelCase , _lowerCAmelCase ): logger.info("Q: {} - A: {}".format(_lowerCAmelCase , _lowerCAmelCase ) ) return answers def __UpperCAmelCase ( ) -> List[str]: __snake_case = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=_lowerCAmelCase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=_lowerCAmelCase , choices=["exact", "compressed", "legacy"] , type=_lowerCAmelCase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=_lowerCAmelCase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=_lowerCAmelCase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=_lowerCAmelCase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=_lowerCAmelCase , type=_lowerCAmelCase , required=_lowerCAmelCase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=_lowerCAmelCase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=_lowerCAmelCase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=_lowerCAmelCase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=_lowerCAmelCase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=_lowerCAmelCase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=_lowerCAmelCase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) __snake_case = parser.parse_args() __snake_case = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def __UpperCAmelCase ( _UpperCAmelCase ) -> List[Any]: __snake_case = {} if args.model_type is None: __snake_case = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): __snake_case = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration __snake_case = args.n_docs if args.index_name is not None: __snake_case = args.index_name if args.index_path is not None: __snake_case = args.index_path else: __snake_case = BartForConditionalGeneration __snake_case = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , _lowerCAmelCase ) __snake_case = get_scores if args.eval_mode == "e2e" else get_precision_at_k __snake_case = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(_lowerCAmelCase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): __snake_case = RagRetriever.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) __snake_case = model_class.from_pretrained(_lowerCAmelCase , retriever=_lowerCAmelCase , **_lowerCAmelCase ) model.retriever.init_retrieval() else: __snake_case = model_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: __snake_case = [] for line in tqdm(_lowerCAmelCase ): questions.append(line.strip() ) if len(_lowerCAmelCase ) == args.eval_batch_size: __snake_case = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) + "\n" ) preds_file.flush() __snake_case = [] if len(_lowerCAmelCase ) > 0: __snake_case = evaluate_batch_fn(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) preds_file.write("\n".join(_lowerCAmelCase ) ) preds_file.flush() score_fn(_lowerCAmelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": a : Any = get_args() main(args)
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def A ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def A ( self : Dict ): """simple docstring""" __snake_case = ort.SessionOptions() __snake_case = False return options def A ( self : int ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) __snake_case = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) __snake_case = """A red cat sitting on a park bench""" __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=_a , image=_a , mask_image=_a , guidance_scale=7.5 , num_inference_steps=10 , generator=_a , output_type="np" , ) __snake_case = output.images __snake_case = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __snake_case = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def A ( self : Optional[Any] ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) __snake_case = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" ) __snake_case = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=_a , safety_checker=_a , feature_extractor=_a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_a ) __snake_case = """A red cat sitting on a park bench""" __snake_case = np.random.RandomState(0 ) __snake_case = pipe( prompt=_a , image=_a , mask_image=_a , guidance_scale=7.5 , num_inference_steps=20 , generator=_a , output_type="np" , ) __snake_case = output.images __snake_case = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) __snake_case = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' a : int = [0, 2, 4, 6, 8] a : Any = [1, 3, 5, 7, 9] def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1 , -1 , -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __snake_case = 0 for digit in range(10 ): __snake_case = digit result += reversible_numbers( 0 , (remainder + 2 * digit) // 10 , __UpperCAmelCase , __UpperCAmelCase ) return result __snake_case = 0 for digita in range(10 ): __snake_case = digita if (remainder + digita) % 2 == 0: __snake_case = ODD_DIGITS else: __snake_case = EVEN_DIGITS for digita in other_parity_digits: __snake_case = digita result += reversible_numbers( remaining_length - 2 , (remainder + digita + digita) // 10 , __UpperCAmelCase , __UpperCAmelCase , ) return result def __UpperCAmelCase ( _UpperCAmelCase : Dict = 9 ) -> int: __snake_case = 0 for length in range(1 , max_power + 1 ): result += reversible_numbers(__UpperCAmelCase , 0 , [0] * length , __UpperCAmelCase ) return result if __name__ == "__main__": print(F'''{solution() = }''')
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy a : List[Any] = logging.getLogger(__name__) a : str = '''pytorch_model.bin''' @dataclasses.dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) __SCREAMING_SNAKE_CASE = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """A csv or a json file containing the validation data."""} ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """The name of the task to train on."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) __SCREAMING_SNAKE_CASE = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) __SCREAMING_SNAKE_CASE = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) __SCREAMING_SNAKE_CASE = dataclasses.field( default=_UpperCamelCase , metadata={"""help""": """Random seed for initialization."""} , ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: __snake_case = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: __snake_case = dataset.filter(lambda _UpperCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 __snake_case = int(eval_result * len(lowerCAmelCase__ ) ) print(lowerCAmelCase__ ) __snake_case = dataset.sort("probability" , reverse=lowerCAmelCase__ ) __snake_case = dataset.select(range(lowerCAmelCase__ ) ) __snake_case = dataset.remove_columns(["label", "probability"] ) __snake_case = dataset.rename_column("prediction" , "label" ) __snake_case = dataset.map(lambda _UpperCAmelCase : {"label": idalabel[example["label"]]} ) __snake_case = dataset.shuffle(seed=args.seed ) __snake_case = os.path.join(lowerCAmelCase__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowerCAmelCase__ , index=lowerCAmelCase__ ) else: dataset.to_json(lowerCAmelCase__ ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) -> int: __snake_case = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() __snake_case = STModelArguments(model_name_or_path=lowerCAmelCase__ ) __snake_case = STDataArguments(train_file=lowerCAmelCase__ , infer_file=lowerCAmelCase__ ) __snake_case = STTrainingArguments(output_dir=lowerCAmelCase__ ) __snake_case = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowerCAmelCase__ ).items(): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for key, value in kwargs.items(): if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Sanity checks __snake_case = {} __snake_case = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None __snake_case = args.train_file __snake_case = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None __snake_case = args.eval_file for key in data_files: __snake_case = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: __snake_case = extension else: assert extension == args.data_file_extension, F'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), F'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) __snake_case = F'''{args.output_dir}/self-train_iter-{{}}'''.format __snake_case = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) accelerator.wait_for_everyone() __snake_case = None __snake_case = None __snake_case = 0 __snake_case = False # Show the progress bar __snake_case = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): __snake_case = data_dir_format(lowerCAmelCase__ ) assert os.path.exists(lowerCAmelCase__ ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 __snake_case = os.path.join(lowerCAmelCase__ , "stage-1" ) __snake_case = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowerCAmelCase__ , lowerCAmelCase__ ): arguments_dict.update({key: value} ) __snake_case = os.path.join(lowerCAmelCase__ , "best-checkpoint" , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info("Self-training job completed: iteration: %d, stage: 1." , lowerCAmelCase__ ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data __snake_case = os.path.join(lowerCAmelCase__ , "best-checkpoint" ) __snake_case = os.path.join(lowerCAmelCase__ , "stage-2" ) # Update arguments_dict __snake_case = model_path __snake_case = data_files["train"] __snake_case = current_output_dir __snake_case = os.path.join(lowerCAmelCase__ , "best-checkpoint" , lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , lowerCAmelCase__ , lowerCAmelCase__ , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , lowerCAmelCase__ ) finetune(**lowerCAmelCase__ ) accelerator.wait_for_everyone() assert os.path.exists(lowerCAmelCase__ ) logger.info("Self-training job completed: iteration: %d, stage: 2." , lowerCAmelCase__ ) __snake_case = iteration __snake_case = data_dir_format(iteration + 1 ) __snake_case = AutoConfig.from_pretrained(os.path.join(lowerCAmelCase__ , "best-checkpoint" ) ) __snake_case = config.idalabel __snake_case = os.path.join(lowerCAmelCase__ , "eval_results_best-checkpoint.json" ) __snake_case = os.path.join(lowerCAmelCase__ , "test_results_best-checkpoint.json" ) assert os.path.exists(lowerCAmelCase__ ) with open(lowerCAmelCase__ , "r" ) as f: __snake_case = float(json.load(lowerCAmelCase__ )[args.eval_metric] ) __snake_case = os.path.join(lowerCAmelCase__ , "infer_output_best-checkpoint.csv" ) assert os.path.exists(lowerCAmelCase__ ) # Loading the dataset from local csv or json files. __snake_case = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] __snake_case = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , F'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowerCAmelCase__ ): shutil.copy(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , F'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.wait_for_everyone() __snake_case = os.path.join(lowerCAmelCase__ , F'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: __snake_case = eval_result if best_iteration is None: __snake_case = new_iteration __snake_case = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: __snake_case = new_iteration __snake_case = new_eval_result __snake_case = 0 else: if new_eval_result == best_eval_result: __snake_case = new_iteration __snake_case = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: __snake_case = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , lowerCAmelCase__ ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , F'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowerCAmelCase__ , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowerCAmelCase__ , F'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowerCAmelCase__ , "eval_results_best-iteration.json" ) , )
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Any = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): __SCREAMING_SNAKE_CASE = """poolformer""" def __init__( self : int , a_ : int=3 , a_ : int=16 , a_ : List[Any]=16 , a_ : Optional[int]=3 , a_ : Union[str, Any]=4.0 , a_ : Optional[Any]=[2, 2, 6, 2] , a_ : int=[64, 128, 320, 512] , a_ : Any=[7, 3, 3, 3] , a_ : List[str]=[4, 2, 2, 2] , a_ : List[Any]=[2, 1, 1, 1] , a_ : List[str]=4 , a_ : Dict=0.0 , a_ : Optional[int]="gelu" , a_ : List[Any]=True , a_ : str=1e-5 , a_ : List[str]=0.02 , **a_ : Optional[int] , ): """simple docstring""" __snake_case = num_channels __snake_case = patch_size __snake_case = stride __snake_case = padding __snake_case = pool_size __snake_case = hidden_sizes __snake_case = mlp_ratio __snake_case = depths __snake_case = patch_sizes __snake_case = strides __snake_case = num_encoder_blocks __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_layer_scale __snake_case = layer_scale_init_value __snake_case = initializer_range super().__init__(**_UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : Tuple ): """simple docstring""" return 2e-3
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A__ ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> Union[str, Any]: __snake_case = 0 if start < end: __snake_case = randint(_lowerCamelCase , _lowerCamelCase ) __snake_case = a[end] __snake_case = a[pivot] __snake_case = temp __snake_case = _in_place_partition(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) count += _in_place_quick_sort(_lowerCamelCase , _lowerCamelCase , p - 1 ) count += _in_place_quick_sort(_lowerCamelCase , p + 1 , _lowerCamelCase ) return count def A__ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: __snake_case = 0 __snake_case = randint(_lowerCamelCase , _lowerCamelCase ) __snake_case = a[end] __snake_case = a[pivot] __snake_case = temp __snake_case = start - 1 for index in range(_lowerCamelCase , _lowerCamelCase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value __snake_case = new_pivot_index + 1 __snake_case = a[new_pivot_index] __snake_case = a[index] __snake_case = temp __snake_case = a[new_pivot_index + 1] __snake_case = a[end] __snake_case = temp return new_pivot_index + 1, count a : List[Any] = TemporaryFile() a : str = 100 # 1000 elements are to be sorted a , a : Optional[int] = 0, 1 # mean and standard deviation a : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array a : Optional[Any] = np.load(outfile) a : str = len(M) - 1 a : Dict = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Union[str, Any] = { '''configuration_instructblip''': [ '''INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InstructBlipConfig''', '''InstructBlipQFormerConfig''', '''InstructBlipVisionConfig''', ], '''processing_instructblip''': ['''InstructBlipProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InstructBlipQFormerModel''', '''InstructBlipPreTrainedModel''', '''InstructBlipForConditionalGeneration''', '''InstructBlipVisionModel''', ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' import re def __UpperCAmelCase ( _UpperCAmelCase : str ) -> list: return [char.split() for char in re.split(R"[^ a-z A-Z 0-9 \s]" , str_ )] def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = split_input(str_ ) return "".join( ["".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : bool , _UpperCAmelCase : str ) -> str: try: __snake_case = split_input(a_ ) if upper: __snake_case = ''''''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: __snake_case = ''''''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return to_simple_case(a_ ) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: try: __snake_case = to_simple_case(a_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : bool ) -> str: return to_complex_case(a_ , a_ , "_" ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : bool ) -> str: return to_complex_case(a_ , a_ , "-" ) if __name__ == "__main__": __import__('''doctest''').testmod()
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str , **_UpperCAmelCase : List[Any] ) -> str: __snake_case = AutoConfig.from_pretrained(_A , **_A ) __snake_case = AutoModelForSeqaSeqLM.from_config(_A ) model.save_pretrained(_A ) AutoTokenizer.from_pretrained(_A ).save_pretrained(_A ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) __snake_case = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __snake_case = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __snake_case = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case = model(snake_case_ )["last_hidden_state"].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1e-3 ) ) @slow def A ( self : Tuple ): """simple docstring""" __snake_case = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) __snake_case = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house __snake_case = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim __snake_case = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __snake_case = model(snake_case_ )["last_hidden_state"].detach() self.assertEqual(output.shape , snake_case_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , snake_case_ , atol=1e-3 ) )
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE = """""" __SCREAMING_SNAKE_CASE = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __SCREAMING_SNAKE_CASE = None # compression type in fsspec. ex: "gzip" __SCREAMING_SNAKE_CASE = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : str , a_ : Union[str, Any] = "" , a_ : Optional[Any] = None , a_ : List[str] = None , **a_ : Optional[int] ): """simple docstring""" super().__init__(self , **_lowercase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __snake_case = fsspec.open( _lowercase , mode="rb" , protocol=_lowercase , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __snake_case = os.path.basename(self.file.path.split("::" )[0] ) __snake_case = ( self.compressed_name[: self.compressed_name.rindex("." )] if """.""" in self.compressed_name else self.compressed_name ) __snake_case = None @classmethod def A ( cls : List[str] , a_ : Tuple ): """simple docstring""" return super()._strip_protocol(_lowercase ).lstrip("/" ) def A ( self : List[str] ): """simple docstring""" if self.dir_cache is None: __snake_case = {**self.file.fs.info(self.file.path ), """name""": self.uncompressed_name} __snake_case = {f["""name"""]: f} def A ( self : Tuple , a_ : int ): """simple docstring""" return self.file.open().read() def A ( self : List[str] , a_ : Optional[Any] , a_ : Optional[int] = "rb" , a_ : int=None , a_ : Any=True , a_ : Union[str, Any]=None , **a_ : List[Any] , ): """simple docstring""" __snake_case = self._strip_protocol(_lowercase ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE = """bz2""" __SCREAMING_SNAKE_CASE = """bz2""" __SCREAMING_SNAKE_CASE = """.bz2""" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE = """gzip""" __SCREAMING_SNAKE_CASE = """gzip""" __SCREAMING_SNAKE_CASE = """.gz""" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE = """lz4""" __SCREAMING_SNAKE_CASE = """lz4""" __SCREAMING_SNAKE_CASE = """.lz4""" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE = """xz""" __SCREAMING_SNAKE_CASE = """xz""" __SCREAMING_SNAKE_CASE = """.xz""" class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): __SCREAMING_SNAKE_CASE = """zstd""" __SCREAMING_SNAKE_CASE = """zstd""" __SCREAMING_SNAKE_CASE = """.zst""" def __init__( self : str , a_ : Union[str, Any] , a_ : Dict = "rb" , a_ : Dict = None , a_ : List[Any] = None , a_ : str = DEFAULT_BLOCK_SIZE , **a_ : str , ): """simple docstring""" super().__init__( fo=_lowercase , mode=_lowercase , target_protocol=_lowercase , target_options=_lowercase , block_size=_lowercase , **_lowercase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __snake_case = self.file.__enter__ class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , a_ : List[str] ): """simple docstring""" __snake_case = file_ def __enter__( self : List[Any] ): """simple docstring""" self._file.__enter__() return self def __exit__( self : List[str] , *a_ : Union[str, Any] , **a_ : Optional[int] ): """simple docstring""" self._file.__exit__(*_lowercase , **_lowercase ) def __iter__( self : Tuple ): """simple docstring""" return iter(self._file ) def A ( self : str ): """simple docstring""" return next(self._file ) def __getattr__( self : str , a_ : List[str] ): """simple docstring""" return getattr(self._file , _lowercase ) def fixed_enter(*a_ : Union[str, Any] , **a_ : List[str] ): return WrappedFile(_enter(*_lowercase , **_lowercase ) ) __snake_case = fixed_enter
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : int , a_ : Tuple , a_ : str=7 , a_ : Tuple=3 , a_ : List[Any]=18 , a_ : List[str]=30 , a_ : Optional[Any]=400 , a_ : Any=True , a_ : Optional[Any]=None , a_ : List[str]=True , ): """simple docstring""" __snake_case = size if size is not None else {"height": 18, "width": 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize def A ( self : List[str] ): """simple docstring""" return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _lowercase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ImageGPTImageProcessor if is_vision_available() else None def A ( self : List[Any] ): """simple docstring""" __snake_case = ImageGPTImageProcessingTester(self ) @property def A ( self : List[str] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : Any ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , "clusters" ) ) self.assertTrue(hasattr(A_ , "do_resize" ) ) self.assertTrue(hasattr(A_ , "size" ) ) self.assertTrue(hasattr(A_ , "do_normalize" ) ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) __snake_case = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ , obj[key] ) ) else: self.assertEqual(obj[key] , A_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = os.path.join(A_ , "image_processor.json" ) image_processor_first.to_json_file(A_ ) __snake_case = self.image_processing_class.from_json_file(A_ ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , A_ ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(A_ ) __snake_case = self.image_processing_class.from_pretrained(A_ ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(A_ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , A_ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def A ( self : Optional[Any] ): """simple docstring""" pass def __UpperCAmelCase ( ) -> int: __snake_case = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) __snake_case = Image.open(dataset[4]["file"] ) __snake_case = Image.open(dataset[5]["file"] ) __snake_case = [imagea, imagea] return images @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : str ): """simple docstring""" __snake_case = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) __snake_case = prepare_images() # test non-batched __snake_case = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_024) ) __snake_case = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() , A_ ) # test batched __snake_case = image_processing(A_ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_024) ) __snake_case = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , A_ )
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') a : str = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') a : int = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = CamembertTokenizer __SCREAMING_SNAKE_CASE = CamembertTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : str ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __snake_case = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : int ): """simple docstring""" __snake_case = "<pad>" __snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(a_ ) , 1_004 ) def A ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def A ( self : List[str] ): """simple docstring""" __snake_case = CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) __snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.encode(a_ ) __snake_case = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) __snake_case = tokenizer.encode(a_ , add_special_tokens=a_ ) __snake_case = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __snake_case = tokenizer.convert_ids_to_tokens(a_ ) __snake_case = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def A ( self : Dict ): """simple docstring""" if not self.test_rust_tokenizer: return __snake_case = self.get_tokenizer() __snake_case = self.get_rust_tokenizer() __snake_case = "I was born in 92000, and this is falsé." __snake_case = tokenizer.tokenize(a_ ) __snake_case = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __snake_case = tokenizer.encode(a_ , add_special_tokens=a_ ) __snake_case = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) __snake_case = self.get_rust_tokenizer() __snake_case = tokenizer.encode(a_ ) __snake_case = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) @slow def A ( self : Any ): """simple docstring""" __snake_case = {"input_ids": [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __snake_case = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=a_ , )
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[str] , a_ : List[str] = 16 , a_ : List[Any] = 88 , a_ : Optional[int] = None , a_ : List[Any] = 1 , a_ : List[str] = 0.0 , a_ : Any = 32 , a_ : Optional[int] = None , a_ : str = False , a_ : Dict = None , a_ : Any = None , a_ : List[str] = "geglu" , a_ : Tuple = None , ): """simple docstring""" super().__init__() __snake_case = nn.ModuleList( [ TransformeraDModel( num_attention_heads=a_ , attention_head_dim=a_ , in_channels=a_ , num_layers=a_ , dropout=a_ , norm_num_groups=a_ , cross_attention_dim=a_ , attention_bias=a_ , sample_size=a_ , num_vector_embeds=a_ , activation_fn=a_ , num_embeds_ada_norm=a_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference __snake_case = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` __snake_case = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` __snake_case = [1, 0] def A ( self : Optional[int] , a_ : Union[str, Any] , a_ : str , a_ : Optional[int]=None , a_ : Dict=None , a_ : str=None , a_ : List[str] = True , ): """simple docstring""" __snake_case = hidden_states __snake_case = [] __snake_case = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens __snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] __snake_case = self.transformer_index_for_condition[i] __snake_case = self.transformers[transformer_index]( a_ , encoder_hidden_states=a_ , timestep=a_ , cross_attention_kwargs=a_ , return_dict=a_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] __snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) __snake_case = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=a_ )
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): def __init__( self : Optional[Any] , a_ : List[str] , a_ : Dict=13 , a_ : str=7 , a_ : int=True , a_ : Union[str, Any]=True , a_ : Union[str, Any]=False , a_ : Tuple=True , a_ : Any=99 , a_ : Any=32 , a_ : Dict=5 , a_ : Optional[int]=4 , a_ : Tuple=37 , a_ : Dict="gelu" , a_ : Dict=0.1 , a_ : Any=0.1 , a_ : List[Any]=512 , a_ : Union[str, Any]=16 , a_ : Any=2 , a_ : List[str]=0.02 , a_ : Optional[Any]=3 , a_ : Union[str, Any]=4 , a_ : Tuple=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[Any] ): """simple docstring""" return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A ( self : Any , a_ : Optional[int] , a_ : str , a_ : List[str] , a_ : Tuple , a_ : Union[str, Any] , a_ : Any ): """simple docstring""" __snake_case = DistilBertModel(config=__A ) model.to(__A ) model.eval() __snake_case = model(__A , __A ) __snake_case = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : List[Any] , a_ : str , a_ : int , a_ : int ): """simple docstring""" __snake_case = DistilBertForMaskedLM(config=__A ) model.to(__A ) model.eval() __snake_case = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[str] , a_ : Tuple , a_ : Optional[int] , a_ : Optional[int] , a_ : Tuple , a_ : Dict , a_ : Any ): """simple docstring""" __snake_case = DistilBertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __snake_case = model( __A , attention_mask=__A , start_positions=__A , end_positions=__A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : int , a_ : str , a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[int] , a_ : List[Any] , a_ : Dict ): """simple docstring""" __snake_case = self.num_labels __snake_case = DistilBertForSequenceClassification(__A ) model.to(__A ) model.eval() __snake_case = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , a_ : Dict , a_ : Optional[Any] , a_ : int , a_ : List[str] , a_ : Tuple , a_ : Any ): """simple docstring""" __snake_case = self.num_labels __snake_case = DistilBertForTokenClassification(config=__A ) model.to(__A ) model.eval() __snake_case = model(__A , attention_mask=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : List[Any] , a_ : str , a_ : str , a_ : Dict , a_ : Optional[Any] , a_ : Any , a_ : Tuple ): """simple docstring""" __snake_case = self.num_choices __snake_case = DistilBertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = model( __A , attention_mask=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() (__snake_case) = config_and_inputs __snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": DistilBertModel, """fill-mask""": DistilBertForMaskedLM, """question-answering""": DistilBertForQuestionAnswering, """text-classification""": DistilBertForSequenceClassification, """token-classification""": DistilBertForTokenClassification, """zero-shot""": DistilBertForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Tuple ): """simple docstring""" __snake_case = DistilBertModelTester(self ) __snake_case = ConfigTester(self , config_class=__A , dim=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Any ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__A ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__A ) def A ( self : List[str] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__A ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__A ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__A ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__A ) @slow def A ( self : List[Any] ): """simple docstring""" for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = DistilBertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @slow @require_torch_gpu def A ( self : Dict ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case = True __snake_case = model_class(config=__A ) __snake_case = self._prepare_for_class(__A , __A ) __snake_case = torch.jit.trace( __A , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__A , os.path.join(__A , "traced_model.pt" ) ) __snake_case = torch.jit.load(os.path.join(__A , "traced_model.pt" ) , map_location=__A ) loaded(inputs_dict["input_ids"].to(__A ) , inputs_dict["attention_mask"].to(__A ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DistilBertModel.from_pretrained("distilbert-base-uncased" ) __snake_case = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __snake_case = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case = model(__A , attention_mask=__A )[0] __snake_case = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) __snake_case = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Tuple = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] ) -> str: __snake_case = int(_UpperCAmelCase ) assert noofclusters < len(_UpperCAmelCase ) # Find out the dimensionality __snake_case = len(vectors[0] ) # Will help select random centroids from among the available vectors __snake_case = list(range(len(_UpperCAmelCase ) ) ) shuffle(_UpperCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __snake_case = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __snake_case = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __snake_case = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_UpperCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __snake_case = tf.placeholder("float64" , [dim] ) __snake_case = [] for centroid in centroids: cent_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __snake_case = [tf.Variable(0 ) for i in range(len(_UpperCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __snake_case = tf.placeholder("int32" ) __snake_case = [] for assignment in assignments: cluster_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __snake_case = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __snake_case = tf.reduce_mean(_UpperCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __snake_case = tf.placeholder("float" , [dim] ) __snake_case = tf.placeholder("float" , [dim] ) __snake_case = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_UpperCAmelCase , _UpperCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __snake_case = tf.placeholder("float" , [noofclusters] ) __snake_case = tf.argmin(_UpperCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __snake_case = tf.initialize_all_variables() # Initialize all variables sess.run(_UpperCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __snake_case = 1_00 for _ in range(_UpperCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_UpperCAmelCase ) ): __snake_case = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __snake_case = [ sess.run(_UpperCAmelCase , feed_dict={va: vect, va: sess.run(_UpperCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __snake_case = sess.run( _UpperCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_UpperCAmelCase ): # Collect all the vectors assigned to this cluster __snake_case = [ vectors[i] for i in range(len(_UpperCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __snake_case = sess.run( _UpperCAmelCase , feed_dict={mean_input: array(_UpperCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __snake_case = sess.run(_UpperCAmelCase ) __snake_case = sess.run(_UpperCAmelCase ) return centroids, assignments
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCAmelCase ( _UpperCAmelCase : Namespace ) -> Optional[int]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) a : Union[str, Any] = ''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class SCREAMING_SNAKE_CASE__ ( __a ): @staticmethod def A ( a_ : ArgumentParser ): """simple docstring""" __snake_case = parser.add_parser( "convert" , help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints." , ) train_parser.add_argument("--model_type" , type=a_ , required=a_ , help="Model's type." ) train_parser.add_argument( "--tf_checkpoint" , type=a_ , required=a_ , help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output" , type=a_ , required=a_ , help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config" , type=a_ , default="" , help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name" , type=a_ , default=a_ , help="Optional fine-tuning task name if the TF model was a finetuned model." , ) train_parser.set_defaults(func=a_ ) def __init__( self : Any , a_ : str , a_ : str , a_ : str , a_ : str , a_ : str , *a_ : int , ): """simple docstring""" __snake_case = logging.get_logger("transformers-cli/converting" ) self._logger.info(f'''Loading model {model_type}''' ) __snake_case = model_type __snake_case = tf_checkpoint __snake_case = pytorch_dump_output __snake_case = config __snake_case = finetuning_task_name def A ( self : Union[str, Any] ): """simple docstring""" if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) if "ckpt" in self._tf_checkpoint.lower(): __snake_case = self._tf_checkpoint __snake_case = """""" else: __snake_case = self._tf_checkpoint __snake_case = """""" convert_transfo_xl_checkpoint_to_pytorch( a_ , self._config , self._pytorch_dump_output , a_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() a : Tuple = logging.get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> int: __snake_case = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __snake_case = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , __snake_case ) if matches: __snake_case = float(matches[1] ) __snake_case = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __snake_case = 10_01 __snake_case = "imagenet-1k-id2label.json" __snake_case = "huggingface/label-files" __snake_case = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) __snake_case = {int(__snake_case ) + 1: v for k, v in idalabel.items()} __snake_case = "background" __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} return config def __UpperCAmelCase ( ) -> Optional[Any]: __snake_case = "http://images.cocodataset.org/val2017/000000039769.jpg" __snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=False ) -> List[str]: __snake_case = get_mobilenet_va_config(__snake_case ) # Load 🤗 model __snake_case = MobileNetVaForImageClassification(__snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(__snake_case , __snake_case , __snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __snake_case = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) __snake_case = image_processor(images=prepare_img() , return_tensors="pt" ) __snake_case = model(**__snake_case ) __snake_case = outputs.logits assert logits.shape == (1, 10_01) if model_name == "mobilenet_v1_1.0_224": __snake_case = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": __snake_case = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: __snake_case = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , __snake_case , atol=1E-4 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print("Pushing to the hub..." ) __snake_case = "google/" + model_name image_processor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a : int = logging.get_logger(__name__) a : Optional[Any] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): __SCREAMING_SNAKE_CASE = """gptj""" __SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , a_ : str=50_400 , a_ : Any=2_048 , a_ : Any=4_096 , a_ : int=28 , a_ : List[str]=16 , a_ : Optional[Any]=64 , a_ : Union[str, Any]=None , a_ : Dict="gelu_new" , a_ : int=0.0 , a_ : Union[str, Any]=0.0 , a_ : int=0.0 , a_ : Any=1e-5 , a_ : Optional[int]=0.02 , a_ : str=True , a_ : str=50_256 , a_ : List[str]=50_256 , a_ : str=False , **a_ : str , ): """simple docstring""" __snake_case = vocab_size __snake_case = n_positions __snake_case = n_embd __snake_case = n_layer __snake_case = n_head __snake_case = n_inner __snake_case = rotary_dim __snake_case = activation_function __snake_case = resid_pdrop __snake_case = embd_pdrop __snake_case = attn_pdrop __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = bos_token_id __snake_case = eos_token_id super().__init__( bos_token_id=lowercase_ , eos_token_id=lowercase_ , tie_word_embeddings=lowercase_ , **lowercase_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self : Union[str, Any] , a_ : PretrainedConfig , a_ : str = "default" , a_ : List[PatchingSpec] = None , a_ : bool = False , ): """simple docstring""" super().__init__(lowercase_ , task=lowercase_ , patching_specs=lowercase_ , use_past=lowercase_ ) if not getattr(self._config , "pad_token_id" , lowercase_ ): # TODO: how to do that better? __snake_case = 0 @property def A ( self : int ): """simple docstring""" __snake_case = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(lowercase_ , direction="inputs" ) __snake_case = {0: """batch""", 1: """past_sequence + sequence"""} else: __snake_case = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Optional[Any] ): """simple docstring""" return self._config.n_layer @property def A ( self : Dict ): """simple docstring""" return self._config.n_head def A ( self : Dict , a_ : PreTrainedTokenizer , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = super(lowercase_ , self ).generate_dummy_inputs( lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __snake_case = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(self.num_layers ) ] __snake_case = common_inputs["""attention_mask"""] if self.use_past: __snake_case = ordered_inputs["""attention_mask"""].dtype __snake_case = torch.cat( [ordered_inputs["attention_mask"], torch.ones(lowercase_ , lowercase_ , dtype=lowercase_ )] , dim=1 ) return ordered_inputs @property def A ( self : Union[str, Any] ): """simple docstring""" return 13
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : list ) -> list: if len(_lowercase ) == 0: return [] __snake_case = min(_lowercase ), max(_lowercase ) __snake_case = int(max_value - min_value ) + 1 __snake_case = [[] for _ in range(_lowercase )] for i in my_list: buckets[int(i - min_value )].append(_lowercase ) return [v for bucket in buckets for v in sorted(_lowercase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> int: if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , ) -> str: if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , ) -> int: if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( UpperCAmelCase__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" __snake_case = "ylacombe/bark-small" __snake_case = tempfile.mkdtemp() __snake_case = "en_speaker_1" __snake_case = "This is a test string" __snake_case = "speaker_embeddings_path.json" __snake_case = "speaker_embeddings" def A ( self : List[str] , **a_ : Dict ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **UpperCAmelCase_ ) def A ( self : int ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Tuple ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = BarkProcessor(tokenizer=UpperCAmelCase_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __snake_case = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __snake_case = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def A ( self : Any ): """simple docstring""" __snake_case = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __snake_case = 35 __snake_case = 2 __snake_case = 8 __snake_case = { "semantic_prompt": np.ones(UpperCAmelCase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __snake_case = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) __snake_case = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __snake_case = os.path.join(self.tmpdirname , "file.npz" ) np.savez(UpperCAmelCase_ , **UpperCAmelCase_ ) __snake_case = processor(text=self.input_string , voice_preset=UpperCAmelCase_ ) __snake_case = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(UpperCAmelCase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __snake_case = processor(text=self.input_string , voice_preset=self.voice_preset ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.get_tokenizer() __snake_case = BarkProcessor(tokenizer=UpperCAmelCase_ ) __snake_case = processor(text=self.input_string ) __snake_case = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' from __future__ import annotations class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , a_ : int ): """simple docstring""" __snake_case = data __snake_case = None __snake_case = None def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Tuple: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Any: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def __UpperCAmelCase ( ) -> str: # Main function for testing. __snake_case = Node(1 ) __snake_case = Node(2 ) __snake_case = Node(3 ) __snake_case = Node(4 ) __snake_case = Node(5 ) __snake_case = Node(6 ) __snake_case = Node(7 ) __snake_case = Node(8 ) __snake_case = Node(9 ) print(is_full_binary_tree(_lowercase ) ) print(depth_of_tree(_lowercase ) ) print("Tree is: " ) display(_lowercase ) if __name__ == "__main__": main()
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> int: # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def A ( *a_ : Tuple , **a_ : Optional[int] ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def A ( self : int , a_ : str , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __snake_case = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def A ( self : str , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = object_detector(examples[0] , threshold=0.0 ) __snake_case = len(a_ ) self.assertGreater(a_ , 0 ) self.assertEqual( a_ , [ { "score": ANY(a_ ), "label": ANY(a_ ), "box": {"xmin": ANY(a_ ), "ymin": ANY(a_ ), "xmax": ANY(a_ ), "ymax": ANY(a_ )}, } for i in range(a_ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A ( self : List[Any] ): """simple docstring""" pass @require_torch def A ( self : Tuple ): """simple docstring""" __snake_case = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) __snake_case = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) __snake_case = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = pipeline("zero-shot-object-detection" ) __snake_case = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) __snake_case = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def A ( self : Union[str, Any] ): """simple docstring""" pass @require_torch @slow def A ( self : Optional[int] ): """simple docstring""" __snake_case = 0.2 __snake_case = pipeline("zero-shot-object-detection" ) __snake_case = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=a_ , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def A ( self : int ): """simple docstring""" __snake_case = 2 __snake_case = pipeline("zero-shot-object-detection" ) __snake_case = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=a_ , ) self.assertEqual( nested_simplify(a_ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch a : Optional[int] = random.Random() def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str]=1.0 , _UpperCAmelCase : Any=None , _UpperCAmelCase : Dict=None ) -> List[Any]: if rng is None: __snake_case = global_rng __snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : Any , a_ : List[str] , a_ : Optional[int]=7 , a_ : Dict=400 , a_ : Dict=2_000 , a_ : List[Any]=10 , a_ : Optional[int]=160 , a_ : Tuple=8 , a_ : Tuple=0.0 , a_ : Optional[Any]=4_000 , a_ : str=False , a_ : Dict=True , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = min_seq_length __snake_case = max_seq_length __snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __snake_case = padding_value __snake_case = sampling_rate __snake_case = return_attention_mask __snake_case = do_normalize __snake_case = feature_size __snake_case = chunk_length __snake_case = hop_length def A ( self : Optional[int] ): """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def A ( self : Optional[int] , a_ : Optional[int]=False , a_ : Union[str, Any]=False ): """simple docstring""" def _flatten(a_ : Any ): return list(itertools.chain(*__lowercase ) ) if equal_length: __snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __snake_case = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = WhisperFeatureExtractor if is_speech_available() else None def A ( self : int ): """simple docstring""" __snake_case = WhisperFeatureExtractionTester(self ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = feat_extract_first.save_pretrained(__lowercase )[0] check_json_file_has_correct_format(__lowercase ) __snake_case = self.feature_extraction_class.from_pretrained(__lowercase ) __snake_case = feat_extract_first.to_dict() __snake_case = feat_extract_second.to_dict() __snake_case = feat_extract_first.mel_filters __snake_case = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def A ( self : Any ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = os.path.join(__lowercase , "feat_extract.json" ) feat_extract_first.to_json_file(__lowercase ) __snake_case = self.feature_extraction_class.from_json_file(__lowercase ) __snake_case = feat_extract_first.to_dict() __snake_case = feat_extract_second.to_dict() __snake_case = feat_extract_first.mel_filters __snake_case = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __snake_case = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __snake_case = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test feature size __snake_case = feature_extractor(__lowercase , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __snake_case = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features __snake_case = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test batched __snake_case = feature_extractor(__lowercase , return_tensors="np" ).input_features __snake_case = feature_extractor(__lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. __snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] __snake_case = np.asarray(__lowercase ) __snake_case = feature_extractor(__lowercase , return_tensors="np" ).input_features __snake_case = feature_extractor(__lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) # Test truncation required __snake_case = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __snake_case = [np.asarray(__lowercase ) for speech_input in speech_inputs] __snake_case = [x[: feature_extractor.n_samples] for x in speech_inputs] __snake_case = [np.asarray(__lowercase ) for speech_input in speech_inputs_truncated] __snake_case = feature_extractor(__lowercase , return_tensors="np" ).input_features __snake_case = feature_extractor(__lowercase , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1e-3 ) ) def A ( self : Dict ): """simple docstring""" import torch __snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case = np.random.rand(100 , 32 ).astype(np.floataa ) __snake_case = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __snake_case = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __snake_case = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def A ( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __snake_case = ds.sort("id" ).select(range(__lowercase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def A ( self : Optional[int] ): """simple docstring""" __snake_case = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __snake_case = self._load_datasamples(1 ) __snake_case = WhisperFeatureExtractor() __snake_case = feature_extractor(__lowercase , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __lowercase , atol=1e-4 ) ) def A ( self : Any ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __snake_case = self._load_datasamples(1 )[0] __snake_case = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue __snake_case = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowercase )[0] self.assertTrue(np.all(np.mean(__lowercase ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowercase ) - 1 ) < 1e-3 ) )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableUnCLIPPipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __SCREAMING_SNAKE_CASE = False def A ( self : List[str] ): """simple docstring""" __snake_case = 32 __snake_case = embedder_hidden_size # prior components torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A_ , projection_dim=A_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __snake_case = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=A_ , num_layers=1 , ) torch.manual_seed(0 ) __snake_case = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=A_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __snake_case = StableUnCLIPImageNormalizer(embedding_dim=A_ ) __snake_case = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=A_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=A_ , layers_per_block=1 , upcast_attention=A_ , use_linear_projection=A_ , ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=A_ , steps_offset=1 , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL() __snake_case = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def A ( self : int , a_ : List[str] , a_ : List[str]=0 ): """simple docstring""" if str(A_ ).startswith("mps" ): __snake_case = torch.manual_seed(A_ ) else: __snake_case = torch.Generator(device=A_ ).manual_seed(A_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def A ( self : Tuple ): """simple docstring""" __snake_case = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=A_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=A_ ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Tuple ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __snake_case = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case = pipe("anime turle" , generator=A_ , output_type="np" ) __snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ ) def A ( self : Optional[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __snake_case = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import argparse import struct import unittest class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , a_ : str ): """simple docstring""" __snake_case = data # Initialize hash values __snake_case = [ 0x6a_09_e6_67, 0xbb_67_ae_85, 0x3c_6e_f3_72, 0xa5_4f_f5_3a, 0x51_0e_52_7f, 0x9b_05_68_8c, 0x1f_83_d9_ab, 0x5b_e0_cd_19, ] # Initialize round constants __snake_case = [ 0x42_8a_2f_98, 0x71_37_44_91, 0xb5_c0_fb_cf, 0xe9_b5_db_a5, 0x39_56_c2_5b, 0x59_f1_11_f1, 0x92_3f_82_a4, 0xab_1c_5e_d5, 0xd8_07_aa_98, 0x12_83_5b_01, 0x24_31_85_be, 0x55_0c_7d_c3, 0x72_be_5d_74, 0x80_de_b1_fe, 0x9b_dc_06_a7, 0xc1_9b_f1_74, 0xe4_9b_69_c1, 0xef_be_47_86, 0x0f_c1_9d_c6, 0x24_0c_a1_cc, 0x2d_e9_2c_6f, 0x4a_74_84_aa, 0x5c_b0_a9_dc, 0x76_f9_88_da, 0x98_3e_51_52, 0xa8_31_c6_6d, 0xb0_03_27_c8, 0xbf_59_7f_c7, 0xc6_e0_0b_f3, 0xd5_a7_91_47, 0x06_ca_63_51, 0x14_29_29_67, 0x27_b7_0a_85, 0x2e_1b_21_38, 0x4d_2c_6d_fc, 0x53_38_0d_13, 0x65_0a_73_54, 0x76_6a_0a_bb, 0x81_c2_c9_2e, 0x92_72_2c_85, 0xa2_bf_e8_a1, 0xa8_1a_66_4b, 0xc2_4b_8b_70, 0xc7_6c_51_a3, 0xd1_92_e8_19, 0xd6_99_06_24, 0xf4_0e_35_85, 0x10_6a_a0_70, 0x19_a4_c1_16, 0x1e_37_6c_08, 0x27_48_77_4c, 0x34_b0_bc_b5, 0x39_1c_0c_b3, 0x4e_d8_aa_4a, 0x5b_9c_ca_4f, 0x68_2e_6f_f3, 0x74_8f_82_ee, 0x78_a5_63_6f, 0x84_c8_78_14, 0x8c_c7_02_08, 0x90_be_ff_fa, 0xa4_50_6c_eb, 0xbe_f9_a3_f7, 0xc6_71_78_f2, ] __snake_case = self.preprocessing(self.data ) self.final_hash() @staticmethod def A ( a_ : Dict ): """simple docstring""" __snake_case = B"\x80" + (B"\x00" * (63 - (len(a_ ) + 8) % 64)) __snake_case = struct.pack(">Q" , (len(a_ ) * 8) ) return data + padding + big_endian_integer def A ( self : List[str] ): """simple docstring""" __snake_case = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers __snake_case = list(struct.unpack(">16L" , a_ ) ) # add 48 0-ed integers words += [0] * 48 __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array __snake_case = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) __snake_case = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) __snake_case = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression __snake_case = self.ror(a_ , 6 ) ^ self.ror(a_ , 11 ) ^ self.ror(a_ , 25 ) __snake_case = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g) __snake_case = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 __snake_case = self.ror(a_ , 2 ) ^ self.ror(a_ , 13 ) ^ self.ror(a_ , 22 ) __snake_case = (a & b) ^ (a & c) ^ (b & c) __snake_case = (sa + maj) % 0x1_00_00_00_00 __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) __snake_case = [a, b, c, d, e, f, g, h] # Modify final values __snake_case = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] __snake_case = "".join([hex(a_ )[2:].zfill(8 ) for value in self.hashes] ) def A ( self : List[str] , a_ : Tuple , a_ : Union[str, Any] ): """simple docstring""" return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" import hashlib __snake_case = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(a_ ).hash , hashlib.shaaaa(a_ ).hexdigest() ) def __UpperCAmelCase ( ) -> List[str]: import doctest doctest.testmod() __snake_case = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) __snake_case = parser.parse_args() __snake_case = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: __snake_case = f.read() else: __snake_case = bytes(_UpperCAmelCase , "utf-8" ) print(SHAaaa(_UpperCAmelCase ).hash ) if __name__ == "__main__": main()
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] , a_ : Optional[int] , a_ : Optional[int]=12 , a_ : Union[str, Any]=7 , a_ : List[Any]=True , a_ : Optional[int]=True , a_ : Dict=True , a_ : Dict=99 , a_ : str=32 , a_ : List[str]=32 , a_ : Dict=2 , a_ : int=4 , a_ : Any=37 , a_ : Optional[Any]=0.1 , a_ : Any=0.1 , a_ : Tuple=512 , a_ : List[Any]=0.02 , a_ : List[Any]=0 , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = projection_dim __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = dropout __snake_case = attention_dropout __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = scope __snake_case = bos_token_id def A ( self : Optional[Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __snake_case = input_mask.numpy() __snake_case = input_mask.shape __snake_case = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(lowerCamelCase__ ): __snake_case = 1 __snake_case = 0 __snake_case = self.get_config() return config, input_ids, tf.convert_to_tensor(lowerCamelCase__ ) def A ( self : str ): """simple docstring""" return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def A ( self : Any , a_ : int , a_ : str , a_ : Tuple ): """simple docstring""" __snake_case = TFBlipTextModel(config=lowerCamelCase__ ) __snake_case = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , training=lowerCamelCase__ ) __snake_case = model(lowerCamelCase__ , training=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : Any ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case = config_and_inputs __snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (TFBlipTextModel,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : str ): """simple docstring""" __snake_case = BlipTextModelTester(self ) __snake_case = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def A ( self : Optional[Any] ): """simple docstring""" pass def A ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason="Blip does not use inputs_embeds" ) def A ( self : Optional[int] ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A ( self : str ): """simple docstring""" pass @unittest.skip(reason="BlipTextModel has no base class and is not available in MODEL_MAPPING" ) def A ( self : Union[str, Any] ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = TFBlipTextModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def A ( self : str , a_ : Tuple=True ): """simple docstring""" super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCamelCase__ )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : int = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( __a ): __SCREAMING_SNAKE_CASE = "switch_transformers" __SCREAMING_SNAKE_CASE = ["past_key_values"] __SCREAMING_SNAKE_CASE = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Tuple , a_ : Optional[Any]=32_128 , a_ : Any=768 , a_ : Union[str, Any]=64 , a_ : List[Any]=2_048 , a_ : Optional[int]=64 , a_ : Any=12 , a_ : Union[str, Any]=3 , a_ : Tuple=12 , a_ : Union[str, Any]=3 , a_ : Union[str, Any]=12 , a_ : List[str]=8 , a_ : int=False , a_ : Tuple=0.01 , a_ : Optional[int]="float32" , a_ : Tuple=False , a_ : Optional[int]=32 , a_ : List[str]=128 , a_ : List[Any]=0.1 , a_ : Union[str, Any]=1e-6 , a_ : str=0.001 , a_ : Dict=0.001 , a_ : Union[str, Any]=1.0 , a_ : Any="relu" , a_ : Any=True , a_ : Tuple=False , a_ : int=True , a_ : Optional[Any]=0 , a_ : List[str]=1 , **a_ : str , ): """simple docstring""" __snake_case = vocab_size __snake_case = d_model __snake_case = d_kv __snake_case = d_ff __snake_case = num_sparse_encoder_layers __snake_case = num_layers __snake_case = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __snake_case = self.num_layers // self.num_sparse_encoder_layers else: __snake_case = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __snake_case = self.num_decoder_layers // self.num_sparse_decoder_layers else: __snake_case = self.num_decoder_layers # HACK: this will create 0 sparse layers __snake_case = num_heads __snake_case = num_experts __snake_case = expert_capacity __snake_case = router_bias __snake_case = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __snake_case = router_dtype __snake_case = router_ignore_padding_tokens __snake_case = relative_attention_num_buckets __snake_case = relative_attention_max_distance __snake_case = dropout_rate __snake_case = layer_norm_epsilon __snake_case = initializer_factor __snake_case = feed_forward_proj __snake_case = use_cache __snake_case = add_router_probs __snake_case = router_z_loss_coef __snake_case = router_aux_loss_coef __snake_case = self.feed_forward_proj.split("-" ) __snake_case = act_info[-1] __snake_case = act_info[0] == "gated" if len(lowerCAmelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __snake_case = "gelu_new" super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , )
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
from collections.abc import Sequence from queue import Queue class SCREAMING_SNAKE_CASE__ : def __init__( self : int , a_ : List[str] , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Tuple=None , a_ : str=None ): """simple docstring""" __snake_case = start __snake_case = end __snake_case = val __snake_case = (start + end) // 2 __snake_case = left __snake_case = right def __repr__( self : List[Any] ): """simple docstring""" return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class SCREAMING_SNAKE_CASE__ : def __init__( self : int , a_ : Sequence , a_ : Optional[Any] ): """simple docstring""" __snake_case = collection __snake_case = function if self.collection: __snake_case = self._build_tree(0 , len(__a ) - 1 ) def A ( self : List[Any] , a_ : Tuple , a_ : Union[str, Any] ): """simple docstring""" self._update_tree(self.root , __a , __a ) def A ( self : Any , a_ : List[str] , a_ : Optional[int] ): """simple docstring""" return self._query_range(self.root , __a , __a ) def A ( self : List[Any] , a_ : str , a_ : Dict ): """simple docstring""" if start == end: return SegmentTreeNode(__a , __a , self.collection[start] ) __snake_case = (start + end) // 2 __snake_case = self._build_tree(__a , __a ) __snake_case = self._build_tree(mid + 1 , __a ) return SegmentTreeNode(__a , __a , self.fn(left.val , right.val ) , __a , __a ) def A ( self : Union[str, Any] , a_ : Dict , a_ : str , a_ : Optional[Any] ): """simple docstring""" if node.start == i and node.end == i: __snake_case = val return if i <= node.mid: self._update_tree(node.left , __a , __a ) else: self._update_tree(node.right , __a , __a ) __snake_case = self.fn(node.left.val , node.right.val ) def A ( self : Tuple , a_ : Dict , a_ : Optional[Any] , a_ : int ): """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , __a , __a ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , __a , node.mid ) , self._query_range(node.right , node.mid + 1 , __a ) , ) else: # range in right child tree return self._query_range(node.right , __a , __a ) def A ( self : List[Any] ): """simple docstring""" if self.root is not None: __snake_case = Queue() queue.put(self.root ) while not queue.empty(): __snake_case = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('''*''' * 50) a : int = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : str = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys a : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : List[str] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( __a ): __SCREAMING_SNAKE_CASE = """luke""" def __init__( self : Tuple , a_ : Optional[Any]=50_267 , a_ : Any=500_000 , a_ : List[str]=768 , a_ : str=256 , a_ : Optional[Any]=12 , a_ : Union[str, Any]=12 , a_ : Dict=3_072 , a_ : int="gelu" , a_ : Any=0.1 , a_ : Optional[Any]=0.1 , a_ : List[Any]=512 , a_ : Optional[int]=2 , a_ : Union[str, Any]=0.02 , a_ : int=1e-12 , a_ : Optional[int]=True , a_ : Optional[Any]=None , a_ : str=1 , a_ : Union[str, Any]=0 , a_ : Optional[int]=2 , **a_ : Any , ): """simple docstring""" super().__init__(pad_token_id=A__ , bos_token_id=A__ , eos_token_id=A__ , **A__ ) __snake_case = vocab_size __snake_case = entity_vocab_size __snake_case = hidden_size __snake_case = entity_emb_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = use_entity_aware_attention __snake_case = classifier_dropout
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 'ClapFeatureExtractor' __SCREAMING_SNAKE_CASE = ('RobertaTokenizer', 'RobertaTokenizerFast') def __init__( self : List[Any] , a_ : int , a_ : str ): """simple docstring""" super().__init__(a_ , a_ ) def __call__( self : Any , a_ : Tuple=None , a_ : Optional[int]=None , a_ : int=None , **a_ : Optional[int] ): """simple docstring""" __snake_case = kwargs.pop("sampling_rate" , a_ ) if text is None and audios is None: raise ValueError("You have to specify either text or audios. Both cannot be none." ) if text is not None: __snake_case = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if audios is not None: __snake_case = self.feature_extractor( a_ , sampling_rate=a_ , return_tensors=a_ , **a_ ) if text is not None and audios is not None: __snake_case = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def A ( self : str , *a_ : Dict , **a_ : int ): """simple docstring""" return self.tokenizer.batch_decode(*a_ , **a_ ) def A ( self : List[Any] , *a_ : int , **a_ : Dict ): """simple docstring""" return self.tokenizer.decode(*a_ , **a_ ) @property def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.tokenizer.model_input_names __snake_case = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[int] = { '''configuration_megatron_bert''': ['''MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegatronBertConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegatronBertForCausalLM''', '''MegatronBertForMaskedLM''', '''MegatronBertForMultipleChoice''', '''MegatronBertForNextSentencePrediction''', '''MegatronBertForPreTraining''', '''MegatronBertForQuestionAnswering''', '''MegatronBertForSequenceClassification''', '''MegatronBertForTokenClassification''', '''MegatronBertModel''', '''MegatronBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None __snake_case = get_aligned_output_features_output_indices(lowercase__ , lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , ["c"] ) self.assertEqual(lowercase__ , [2] ) # Out indices set to match out features __snake_case = get_aligned_output_features_output_indices(["a", "c"] , lowercase__ , lowercase__ ) self.assertEqual(lowercase__ , ["a", "c"] ) self.assertEqual(lowercase__ , [0, 2] ) # Out features set to match out indices __snake_case = get_aligned_output_features_output_indices(lowercase__ , [0, 2] , lowercase__ ) self.assertEqual(lowercase__ , ["a", "c"] ) self.assertEqual(lowercase__ , [0, 2] ) # Out features selected from negative indices __snake_case = get_aligned_output_features_output_indices(lowercase__ , [-3, -1] , lowercase__ ) self.assertEqual(lowercase__ , ["a", "c"] ) self.assertEqual(lowercase__ , [-3, -1] ) def A ( self : Optional[int] ): """simple docstring""" with self.assertRaises(lowercase__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , lowercase__ ) # Out features must be a list with self.assertRaises(lowercase__ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(lowercase__ ): verify_out_features_out_indices(lowercase__ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(lowercase__ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(lowercase__ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(lowercase__ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def A ( self : Dict ): """simple docstring""" __snake_case = BackboneMixin() __snake_case = ['''a''', '''b''', '''c'''] __snake_case = ['''a''', '''c'''] __snake_case = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly __snake_case = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) __snake_case = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : List[Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Union[str, Any] = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['''MaskFormerFeatureExtractor'''] a : List[str] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] a : int = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["torch", "transformers", "onnx"] def __init__( self : int , *a_ : Any , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : Dict , *a_ : Optional[int] , **a_ : Dict ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : Optional[int] , *a_ : Optional[int] , **a_ : int ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["torch", "transformers", "onnx"] def __init__( self : Dict , *a_ : Optional[Any] , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : List[str] , *a_ : Any , **a_ : str ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : Tuple , *a_ : str , **a_ : Optional[Any] ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["torch", "transformers", "onnx"] def __init__( self : int , *a_ : int , **a_ : Optional[int] ): """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : List[Any] , *a_ : Optional[int] , **a_ : str ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : Optional[Any] , *a_ : str , **a_ : int ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["torch", "transformers", "onnx"] def __init__( self : Optional[int] , *a_ : Optional[Any] , **a_ : List[Any] ): """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : Optional[Any] , *a_ : Optional[int] , **a_ : List[Any] ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : str , *a_ : List[str] , **a_ : Any ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["torch", "transformers", "onnx"] def __init__( self : Tuple , *a_ : List[Any] , **a_ : int ): """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : int , *a_ : Optional[int] , **a_ : List[Any] ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : int , *a_ : List[Any] , **a_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["torch", "transformers", "onnx"] def __init__( self : Any , *a_ : Any , **a_ : str ): """simple docstring""" requires_backends(self , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : List[Any] , *a_ : str , **a_ : Optional[int] ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] ) @classmethod def A ( cls : Any , *a_ : int , **a_ : Dict ): """simple docstring""" requires_backends(cls , ["torch", "transformers", "onnx"] )
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ) -> None: __snake_case = len(lowercase_ ) print("The following activities are selected:" ) # The first activity is always selected __snake_case = 0 print(lowercase_ , end="," ) # Consider rest of the activities for j in range(lowercase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowercase_ , end="," ) __snake_case = j if __name__ == "__main__": import doctest doctest.testmod() a : Any = [1, 3, 0, 5, 8, 5] a : Tuple = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : Dict = 10**12 ) -> int: __snake_case = 1 __snake_case = 0 __snake_case = 1 __snake_case = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> List[str]: print(F'''Vertex\tShortest Distance from vertex {src}''' ) for i, d in enumerate(_UpperCAmelCase ): print(F'''{i}\t\t{d}''' ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ) -> int: for j in range(_UpperCAmelCase ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: return True return False def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ) -> Any: __snake_case = [float("inf" )] * vertex_count __snake_case = 0.0 for _ in range(vertex_count - 1 ): for j in range(_UpperCAmelCase ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ["src", "dst", "weight"]) if distance[u] != float("inf" ) and distance[u] + w < distance[v]: __snake_case = distance[u] + w __snake_case = check_negative_cycle(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if negative_cycle_exists: raise Exception("Negative cycle found" ) return distance if __name__ == "__main__": import doctest doctest.testmod() a : Optional[Any] = int(input('''Enter number of vertices: ''').strip()) a : Tuple = int(input('''Enter number of edges: ''').strip()) a : list[dict[str, int]] = [{} for _ in range(E)] for i in range(E): print('''Edge ''', i + 1) a : Any = ( int(x) for x in input('''Enter source, destination, weight: ''').strip().split(''' ''') ) a : Tuple = {"""src""": src, """dst""": dest, """weight""": weight} a : Any = int(input('''\nEnter shortest path source:''').strip()) a : List[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''BridgeTower/bridgetower-base''': '''https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json''', '''BridgeTower/bridgetower-base-itm-mlm''': ( '''https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = """bridgetower_vision_model""" def __init__( self : Optional[Any] , a_ : Any=768 , a_ : List[str]=12 , a_ : List[str]=3 , a_ : Union[str, Any]=16 , a_ : int=288 , a_ : int=1 , a_ : Tuple=1e-05 , a_ : Tuple=False , a_ : str=True , a_ : int=False , **a_ : Optional[Any] , ): """simple docstring""" super().__init__(**_a ) __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_channels __snake_case = patch_size __snake_case = image_size __snake_case = initializer_factor __snake_case = layer_norm_eps __snake_case = stop_gradient __snake_case = share_layernorm __snake_case = remove_last_layer @classmethod def A ( cls : Dict , a_ : List[str] , **a_ : List[str] ): """simple docstring""" __snake_case = cls.get_config_dict(_a , **_a ) if config_dict.get("model_type" ) == "bridgetower": __snake_case = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = """bridgetower_text_model""" def __init__( self : int , a_ : Optional[int]=50_265 , a_ : List[Any]=768 , a_ : List[Any]=12 , a_ : Union[str, Any]=12 , a_ : List[Any]=1 , a_ : str=3_072 , a_ : Optional[int]="gelu" , a_ : Dict=0.1 , a_ : Dict=0.1 , a_ : Union[str, Any]=514 , a_ : Union[str, Any]=1 , a_ : Optional[Any]=1e-05 , a_ : Dict=1 , a_ : Optional[Any]=0 , a_ : Any=2 , a_ : int="absolute" , a_ : Optional[int]=True , **a_ : str , ): """simple docstring""" super().__init__(**_a ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = initializer_factor __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = pad_token_id __snake_case = bos_token_id __snake_case = eos_token_id @classmethod def A ( cls : List[str] , a_ : Union[str, Any] , **a_ : Optional[Any] ): """simple docstring""" __snake_case = cls.get_config_dict(_a , **_a ) if config_dict.get("model_type" ) == "bridgetower": __snake_case = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class SCREAMING_SNAKE_CASE__ ( UpperCamelCase__ ): __SCREAMING_SNAKE_CASE = """bridgetower""" def __init__( self : List[str] , a_ : List[str]=True , a_ : List[str]="gelu" , a_ : Union[str, Any]=768 , a_ : Optional[Any]=1 , a_ : Union[str, Any]=1e-05 , a_ : str=False , a_ : int="add" , a_ : Dict=12 , a_ : Tuple=6 , a_ : List[str]=False , a_ : Union[str, Any]=False , a_ : Tuple=None , a_ : List[str]=None , **a_ : str , ): """simple docstring""" __snake_case = kwargs.pop("text_config_dict" , _a ) __snake_case = kwargs.pop("vision_config_dict" , _a ) super().__init__(**_a ) __snake_case = share_cross_modal_transformer_layers __snake_case = hidden_act __snake_case = hidden_size __snake_case = initializer_factor __snake_case = layer_norm_eps __snake_case = share_link_tower_layers __snake_case = link_tower_type __snake_case = num_attention_heads __snake_case = num_hidden_layers __snake_case = tie_word_embeddings __snake_case = init_layernorm_from_vision_encoder if text_config is None: __snake_case = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: __snake_case = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) __snake_case = BridgeTowerTextConfig(**_a ) __snake_case = BridgeTowerVisionConfig(**_a ) @classmethod def A ( cls : int , a_ : List[Any] , a_ : List[str] , **a_ : Dict ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def A ( self : Dict ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.text_config.to_dict() __snake_case = self.vision_config.to_dict() __snake_case = self.__class__.model_type return output
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Union[str, Any] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys a : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = CpmAntTokenizer __SCREAMING_SNAKE_CASE = False def A ( self : int ): """simple docstring""" super().setUp() __snake_case = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def A ( self : List[str] ): """simple docstring""" __snake_case = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) __snake_case = "今天天气真好!" __snake_case = ["今天", "天气", "真", "好", "!"] __snake_case = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __snake_case = "今天天气真好!" __snake_case = [tokenizer.bos_token] + tokens __snake_case = [6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) __snake_case = tokenizer.decode(_lowerCamelCase ) self.assertEqual(_lowerCamelCase , _lowerCamelCase )
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() a : Dict = logging.get_logger(__name__) a : Optional[int] = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> Dict: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case = k.replace(__snake_case , __snake_case ) if k.startswith("encoder" ): __snake_case = k.replace(".attn" , ".self_attn" ) __snake_case = k.replace("norm1" , "self_attn_layer_norm" ) __snake_case = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): __snake_case = k.replace("norm1" , "self_attn_layer_norm" ) __snake_case = k.replace("norm2" , "encoder_attn_layer_norm" ) __snake_case = k.replace("norm3" , "final_layer_norm" ) return k def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> List[Any]: __snake_case = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: __snake_case = sd.pop(__snake_case ) __snake_case = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd __snake_case = v a : Tuple = ["START"] @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: __snake_case = torch.load(__snake_case , map_location="cpu" ) __snake_case = model["model"] __snake_case = BlenderbotConfig.from_json_file(__snake_case ) __snake_case = BlenderbotForConditionalGeneration(__snake_case ) __snake_case = m.model.state_dict().keys() __snake_case = [] __snake_case = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) a : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase ) -> List[Any]: return "".join([hex(a__ )[2:].zfill(2 ).upper() for byte in list(a__ )] ) def __UpperCAmelCase ( _UpperCAmelCase ) -> int: if (len(a__ ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(a__ ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(a__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore a : Dict = namedtuple('''covid_data''', '''cases deaths recovered''') def __UpperCAmelCase ( _UpperCAmelCase : str = "https://www.worldometers.info/coronavirus/" ) -> Optional[int]: __snake_case = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(UpperCamelCase__ ).content ).xpath(UpperCamelCase__ ) ) a : int = '''Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import heapq import sys import numpy as np a : List[Any] = tuple[int, int] class SCREAMING_SNAKE_CASE__ : def __init__( self : str ): """simple docstring""" __snake_case = [] __snake_case = set() def A ( self : int ): """simple docstring""" if not self.empty(): return self.elements[0][0] else: return float("inf" ) def A ( self : str ): """simple docstring""" return len(self.elements ) == 0 def A ( self : Dict , a_ : Tuple , a_ : Any ): """simple docstring""" if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(__SCREAMING_SNAKE_CASE ) else: # update # print("update", item) __snake_case = [] ((__snake_case) , (__snake_case)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__snake_case) , (__snake_case)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def A ( self : List[Any] , a_ : int ): """simple docstring""" if item in self.set: self.set.remove(__SCREAMING_SNAKE_CASE ) __snake_case = [] ((__snake_case) , (__snake_case)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__snake_case) , (__snake_case)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def A ( self : str ): """simple docstring""" return self.elements[0][1] def A ( self : Tuple ): """simple docstring""" ((__snake_case) , (__snake_case)) = heapq.heappop(self.elements ) self.set.remove(__SCREAMING_SNAKE_CASE ) return (priority, item) def A__ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> Union[str, Any]: # euclidean distance __snake_case = np.array(_UpperCAmelCase ) __snake_case = np.array(_UpperCAmelCase ) return np.linalg.norm(a - b ) def A__ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> Tuple: # integer division by time variable return consistent_heuristic(_UpperCAmelCase , _UpperCAmelCase ) // t def A__ ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Any: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def A__ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any ) -> List[Any]: __snake_case = g_function[start] + Wa * heuristics[i](_UpperCAmelCase , _UpperCAmelCase ) return ans def A__ ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Dict: __snake_case = np.chararray((n, n) ) for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): __snake_case = "*" for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (j, (n - 1) - i) in blocks: __snake_case = "#" __snake_case = "-" __snake_case = back_pointer[goal] while x != start: ((__snake_case) , (__snake_case)) = x # print(x) __snake_case = "-" __snake_case = back_pointer[x] __snake_case = "-" for i in range(_UpperCAmelCase ): for j in range(_UpperCAmelCase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) __snake_case = back_pointer[goal] while x != start: print(_UpperCAmelCase , end=" " ) __snake_case = back_pointer[x] print(_UpperCAmelCase ) sys.exit() def A__ ( _UpperCAmelCase : Dict ) -> str: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def A__ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , ) -> Any: for itera in range(_UpperCAmelCase ): open_list[itera].remove_element(_UpperCAmelCase ) # print("s", s) # print("j", j) ((__snake_case) , (__snake_case)) = s __snake_case = (x - 1, y) __snake_case = (x + 1, y) __snake_case = (x, y + 1) __snake_case = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_UpperCAmelCase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_UpperCAmelCase ) __snake_case = -1 __snake_case = float("inf" ) if valid(_UpperCAmelCase ) and g_function[neighbours] > g_function[s] + 1: __snake_case = g_function[s] + 1 __snake_case = s if neighbours not in close_list_anchor: open_list[0].put(_UpperCAmelCase , key(_UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ) ) if neighbours not in close_list_inad: for var in range(1 , _UpperCAmelCase ): if key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) <= Wa * key( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase ): open_list[j].put( _UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) def A__ ( ) -> str: __snake_case = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a : List[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a : str = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a : Union[str, Any] = make_common_ground() a : Any = blocks_blk # hyper parameters a : Union[str, Any] = 1 a : List[Any] = 1 a : List[Any] = 20 a : List[Any] = 3 # one consistent and two other inconsistent # start and end destination a : Union[str, Any] = (0, 0) a : Tuple = (n - 1, n - 1) a : Optional[int] = 1 def A__ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : int ) -> List[str]: __snake_case = {start: 0, goal: float("inf" )} __snake_case = {start: -1, goal: -1} __snake_case = [] __snake_case = set() for i in range(_UpperCAmelCase ): open_list.append(PriorityQueue() ) open_list[i].put(_UpperCAmelCase , key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) ) __snake_case = [] __snake_case = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , _UpperCAmelCase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __snake_case , __snake_case = open_list[i].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_inad.append(_UpperCAmelCase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __snake_case = open_list[0].top_show() visited.add(_UpperCAmelCase ) expand_state( _UpperCAmelCase , 0 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) close_list_anchor.append(_UpperCAmelCase ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_UpperCAmelCase ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: __snake_case = tmp_path / 'file.csv' __snake_case = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_UpperCAmelCase , "w" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> Dict: __snake_case = tmp_path / 'malformed_file.csv' __snake_case = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_UpperCAmelCase , "w" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: __snake_case = tmp_path / 'csv_with_image.csv' __snake_case = textwrap.dedent( F'''\ image {image_file} ''' ) with open(_UpperCAmelCase , "w" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: __snake_case = tmp_path / 'csv_with_label.csv' __snake_case = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_UpperCAmelCase , "w" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) @pytest.fixture def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Dict: __snake_case = tmp_path / 'csv_with_int_list.csv' __snake_case = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_UpperCAmelCase , "w" ) as f: f.write(_UpperCAmelCase ) return str(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Tuple ) -> Tuple: __snake_case = Csv() __snake_case = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_UpperCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_UpperCAmelCase ) in record.message for record in caplog.records ) @require_pil def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Optional[int]: with open(_UpperCAmelCase , encoding="utf-8" ) as f: __snake_case = f.read().splitlines()[1] __snake_case = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) __snake_case = csv._generate_tables([[csv_file_with_image]] ) __snake_case = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() __snake_case = pa_table.to_pydict()['image'] assert generated_content == [{"path": image_file, "bytes": None}] def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> List[Any]: with open(_UpperCAmelCase , encoding="utf-8" ) as f: __snake_case = f.read().splitlines()[1:] __snake_case = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) __snake_case = csv._generate_tables([[csv_file_with_label]] ) __snake_case = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() __snake_case = pa_table.to_pydict()['label'] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_UpperCAmelCase ) for label in labels] def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> int: __snake_case = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _UpperCAmelCase : [int(_UpperCAmelCase ) for i in x.split()]} ) __snake_case = csv._generate_tables([[csv_file_with_int_list]] ) __snake_case = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) __snake_case = pa_table.to_pydict()['int_list'] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = FunnelTokenizer __SCREAMING_SNAKE_CASE = FunnelTokenizerFast __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True def A ( self : Tuple ): """simple docstring""" super().setUp() __snake_case = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A ( self : List[str] , **a_ : Optional[Any] ): """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **__A ) def A ( self : List[Any] , **a_ : List[Any] ): """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__A ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" __snake_case = "UNwant\u00E9d,running" __snake_case = "unwanted, running" return input_text, output_text def A ( self : Dict ): """simple docstring""" __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__A , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [7, 4, 5, 10, 8, 9] ) def A ( self : str ): """simple docstring""" __snake_case = self.get_tokenizers(do_lower_case=__A ) for tokenizer in tokenizers: __snake_case = tokenizer("UNwant\u00E9d,running" ) __snake_case = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) __snake_case = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Optional[int] = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Dict ): """simple docstring""" return AutoConfig.from_pretrained(_lowercase ) def A ( self : int ): """simple docstring""" __snake_case = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : int ): """simple docstring""" __snake_case = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) def A ( self : List[str] ): """simple docstring""" __snake_case = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=_lowercase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : str ): """simple docstring""" __snake_case = create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(_lowercase ): create_student_by_copying_alternating_layers(_lowercase , tempfile.mkdtemp() , e=_lowercase , d=_lowercase )
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a : List[Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Union[str, Any] , *a_ : Dict , **a_ : Optional[int] ): """simple docstring""" warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , A__ , ) super().__init__(*A__ , **A__ )
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = JukeboxTokenizer __SCREAMING_SNAKE_CASE = { 'artist': 'Zac Brown Band', 'genres': 'Country', 'lyrics': 'I met a traveller from an antique land,\n Who said "Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ', } @require_torch def A ( self : Optional[Any] ): """simple docstring""" import torch __snake_case = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A ( self : Optional[Any] ): """simple docstring""" import torch __snake_case = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Dict = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' import numpy as np class SCREAMING_SNAKE_CASE__ : def __init__( self : Any ): """simple docstring""" __snake_case = (0, 0) __snake_case = None __snake_case = 0 __snake_case = 0 __snake_case = 0 def __eq__( self : Union[str, Any] , a_ : str ): """simple docstring""" return self.position == cell.position def A ( self : Any ): """simple docstring""" print(self.position ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , a_ : str=(5, 5) ): """simple docstring""" __snake_case = np.zeros(a_ ) __snake_case = world_size[0] __snake_case = world_size[1] def A ( self : List[str] ): """simple docstring""" print(self.w ) def A ( self : Optional[Any] , a_ : Any ): """simple docstring""" __snake_case = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __snake_case = cell.position[0] __snake_case = cell.position[1] __snake_case = [] for n in neughbour_cord: __snake_case = current_x + n[0] __snake_case = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __snake_case = Cell() __snake_case = (x, y) __snake_case = cell neighbours.append(a_ ) return neighbours def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str ) -> str: __snake_case = [] __snake_case = [] _open.append(_UpperCAmelCase ) while _open: __snake_case = np.argmin([n.f for n in _open] ) __snake_case = _open[min_f] _closed.append(_open.pop(_UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(_UpperCAmelCase ): for c in _closed: if c == n: continue __snake_case = current.g + 1 __snake_case , __snake_case = n.position __snake_case , __snake_case = goal.position __snake_case = (ya - ya) ** 2 + (xa - xa) ** 2 __snake_case = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(_UpperCAmelCase ) __snake_case = [] while current.parent is not None: path.append(current.position ) __snake_case = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": a : Any = Gridworld() # Start position and goal a : Tuple = Cell() a : Dict = (0, 0) a : Optional[int] = Cell() a : List[str] = (4, 4) print(F'''path from {start.position} to {goal.position}''') a : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: a : List[Any] = 1 print(world.w)
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' from __future__ import annotations a : List[str] = 8.988e9 # units = N * m^s * C^-2 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> dict[str, float]: __snake_case = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if distance < 0: raise ValueError("Distance cannot be negative" ) if force == 0: __snake_case = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __snake_case = abs(SCREAMING_SNAKE_CASE_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __snake_case = abs(SCREAMING_SNAKE_CASE_ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __snake_case = (COULOMBS_CONSTANT * charge_product / abs(SCREAMING_SNAKE_CASE_ )) ** 0.5 return {"distance": distance} raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' import math def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] = 0 , _UpperCAmelCase : int = 0 ) -> list: __snake_case = end or len(SCREAMING_SNAKE_CASE_ ) for i in range(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = i __snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case = array[temp_index - 1] temp_index -= 1 __snake_case = temp_index_value return array def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ) -> None: # Max Heap __snake_case = index __snake_case = 2 * index + 1 # Left Node __snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case = right_index if largest != index: __snake_case = array[largest], array[index] heapify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> list: __snake_case = len(SCREAMING_SNAKE_CASE_ ) for i in range(n // 2 , -1 , -1 ): heapify(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for i in range(n - 1 , 0 , -1 ): __snake_case = array[0], array[i] heapify(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ ) return array def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> int: __snake_case = low __snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case = array[j], array[i] i += 1 def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> list: if len(SCREAMING_SNAKE_CASE_ ) == 0: return array __snake_case = 2 * math.ceil(math.loga(len(SCREAMING_SNAKE_CASE_ ) ) ) __snake_case = 16 return intro_sort(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(SCREAMING_SNAKE_CASE_ ) max_depth -= 1 __snake_case = median_of_a(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case = partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) intro_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = p return insertion_sort(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() a : Optional[Any] = input('''Enter numbers separated by a comma : ''').strip() a : List[Any] = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE__ ( __A , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ProphetNetTokenizer __SCREAMING_SNAKE_CASE = False def A ( self : Union[str, Any] ): """simple docstring""" super().setUp() __snake_case = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def A ( self : Any , a_ : List[Any] ): """simple docstring""" __snake_case = 'UNwant\u00E9d,running' __snake_case = 'unwanted, running' return input_text, output_text def A ( self : str ): """simple docstring""" __snake_case = self.tokenizer_class(self.vocab_file ) __snake_case = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [9, 6, 7, 12, 10, 11] ) def A ( self : List[str] ): """simple docstring""" __snake_case = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def A ( self : Any ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : Dict ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : Dict ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Any ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def A ( self : Dict ): """simple docstring""" __snake_case = BasicTokenizer(do_lower_case=a_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __snake_case = {} for i, token in enumerate(a_ ): __snake_case = i __snake_case = WordpieceTokenizer(vocab=a_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def A ( self : Any ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) __snake_case = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __snake_case = [1_037, 2_146, 20_423, 2_005, 7_680, 7_849, 3_989, 1_012, 102] __snake_case = tokenizer(a_ , padding=a_ , return_tensors="pt" ) self.assertIsInstance(a_ , a_ ) __snake_case = list(batch.input_ids.numpy()[0] ) self.assertListEqual(a_ , a_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def A ( self : Dict ): """simple docstring""" self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def A ( self : Tuple ): """simple docstring""" self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def A ( self : Tuple ): """simple docstring""" self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) __snake_case = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) __snake_case = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a_ ) __snake_case = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == text + [102] assert encoded_pair == text + [102] + text_a + [102]
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins a : Tuple = ['''tests.fixtures.files''', '''tests.fixtures.hub''', '''tests.fixtures.fsspec'''] def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : int ) -> Optional[Any]: # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Optional[int]: config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=__snake_case ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __snake_case = tmp_path_factory.getbasetemp() / "cache" __snake_case = test_hf_cache_home / "datasets" __snake_case = test_hf_cache_home / "metrics" __snake_case = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(__snake_case ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(__snake_case ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(__snake_case ) ) __snake_case = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(__snake_case ) ) __snake_case = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(__snake_case ) ) @pytest.fixture(autouse=__snake_case , scope="session" ) def __UpperCAmelCase ( ) -> Tuple: datasets.disable_progress_bar() @pytest.fixture(autouse=__snake_case ) def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # don't take tests into account when counting downloads monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , __snake_case ) @pytest.fixture def __UpperCAmelCase ( _UpperCAmelCase : int ) -> List[str]: # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , __snake_case )
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> int: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple=True ) -> Union[str, Any]: model.train() __snake_case = model(lowerCAmelCase__ ) __snake_case = F.mse_loss(lowerCAmelCase__ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase__ ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=False ) -> Tuple: set_seed(42 ) __snake_case = RegressionModel() __snake_case = deepcopy(lowerCAmelCase__ ) __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(lowerCAmelCase__ , batch_size=16 ) model.to(accelerator.device ) if sched: __snake_case = AdamW(params=model.parameters() , lr=1E-3 ) __snake_case = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __snake_case = LambdaLR(lowerCAmelCase__ , lr_lambda=lambda _UpperCAmelCase : epoch**0.65 ) __snake_case = LambdaLR(lowerCAmelCase__ , lr_lambda=lambda _UpperCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: __snake_case , __snake_case = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> str: # Test when on a single CPU or GPU that the context manager does nothing __snake_case , __snake_case , __snake_case = get_training_setup(lowerCAmelCase__ ) # Use a single batch __snake_case , __snake_case = next(iter(lowerCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: # Sync grads step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __snake_case = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Dict: # Test on distributed setup that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(lowerCAmelCase__ ) # Use a single batch __snake_case , __snake_case = next(iter(lowerCAmelCase__ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) else: # Sync grads step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __snake_case = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] def __UpperCAmelCase ( _UpperCAmelCase : List[str]=False , _UpperCAmelCase : int=False ) -> int: __snake_case = Accelerator( split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(lowerCAmelCase__ ) for iteration, batch in enumerate(lowerCAmelCase__ ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase__ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __snake_case = ddp_input[torch.randperm(len(lowerCAmelCase__ ) )] GradientState._reset_state() def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Tuple=False ) -> Optional[Any]: __snake_case = Accelerator( split_batches=lowerCAmelCase__ , dispatch_batches=lowerCAmelCase__ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = get_training_setup(lowerCAmelCase__ , lowerCAmelCase__ ) for iteration, batch in enumerate(lowerCAmelCase__ ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase__ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase__ ): step_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' __snake_case = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase__ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def __UpperCAmelCase ( ) -> str: __snake_case = Accelerator() __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(lowerCAmelCase__ , batch_size=16 ) __snake_case = RegressionDataset(length=96 ) __snake_case = DataLoader(lowerCAmelCase__ , batch_size=16 ) __snake_case , __snake_case = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase__ ) if iteration < len(lowerCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase__ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase__ ) if batch_num < len(lowerCAmelCase__ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( ) -> Tuple: __snake_case = Accelerator() __snake_case = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase__ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase__ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(lowerCAmelCase__ , lowerCAmelCase__ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Optional[Any] = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase ): __SCREAMING_SNAKE_CASE = '''wav2vec2''' def __init__( self : Dict , a_ : Union[str, Any]=32 , a_ : Optional[int]=768 , a_ : Optional[int]=12 , a_ : Tuple=12 , a_ : int=3_072 , a_ : Optional[int]="gelu" , a_ : Any=0.1 , a_ : Dict=0.1 , a_ : Any=0.1 , a_ : Optional[int]=0.0 , a_ : Any=0.0 , a_ : Union[str, Any]=0.1 , a_ : int=0.1 , a_ : List[Any]=0.02 , a_ : Optional[Any]=1e-5 , a_ : List[str]="group" , a_ : Union[str, Any]="gelu" , a_ : Dict=(512, 512, 512, 512, 512, 512, 512) , a_ : Any=(5, 2, 2, 2, 2, 2, 2) , a_ : Optional[Any]=(10, 3, 3, 3, 3, 2, 2) , a_ : str=False , a_ : Optional[int]=128 , a_ : Tuple=16 , a_ : Dict=False , a_ : str=True , a_ : Optional[int]=0.05 , a_ : Any=10 , a_ : List[Any]=2 , a_ : List[str]=0.0 , a_ : Optional[int]=10 , a_ : Optional[int]=0 , a_ : Optional[Any]=320 , a_ : Optional[Any]=2 , a_ : Tuple=0.1 , a_ : List[Any]=100 , a_ : List[Any]=256 , a_ : List[str]=256 , a_ : Dict=0.1 , a_ : List[str]="sum" , a_ : List[Any]=False , a_ : Dict=False , a_ : str=256 , a_ : List[Any]=(512, 512, 512, 512, 1_500) , a_ : Dict=(5, 3, 3, 1, 1) , a_ : Union[str, Any]=(1, 2, 3, 1, 1) , a_ : Optional[int]=512 , a_ : Optional[Any]=0 , a_ : Optional[Any]=1 , a_ : Dict=2 , a_ : str=False , a_ : str=3 , a_ : Tuple=2 , a_ : Optional[int]=3 , a_ : Dict=None , a_ : Any=None , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) __snake_case = hidden_size __snake_case = feat_extract_norm __snake_case = feat_extract_activation __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layerdrop __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size __snake_case = do_stable_layer_norm __snake_case = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = apply_spec_augment __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __snake_case = num_codevectors_per_group __snake_case = num_codevector_groups __snake_case = contrastive_logits_temperature __snake_case = feat_quantizer_dropout __snake_case = num_negatives __snake_case = codevector_dim __snake_case = proj_codevector_dim __snake_case = diversity_loss_weight # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # adapter __snake_case = add_adapter __snake_case = adapter_kernel_size __snake_case = adapter_stride __snake_case = num_adapter_layers __snake_case = output_hidden_size or hidden_size __snake_case = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = xvector_output_dim @property def A ( self : List[str] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> List[str]: for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str=True ) -> Optional[int]: model.train() __snake_case = model(_snake_case ) __snake_case = F.mse_loss(_snake_case , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(_snake_case ) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Tuple=False ) -> List[Any]: set_seed(42 ) __snake_case = RegressionModel() __snake_case = deepcopy(_snake_case ) __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(_snake_case , batch_size=16 ) model.to(accelerator.device ) if sched: __snake_case = AdamW(params=model.parameters() , lr=1E-3 ) __snake_case = AdamW(params=ddp_model.parameters() , lr=1E-3 ) __snake_case = LambdaLR(_snake_case , lr_lambda=lambda _UpperCAmelCase : epoch**0.65 ) __snake_case = LambdaLR(_snake_case , lr_lambda=lambda _UpperCAmelCase : epoch**0.65 ) # Make a copy of `model` if sched: __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare(_snake_case , _snake_case , _snake_case , _snake_case ) else: __snake_case , __snake_case = accelerator.prepare(_snake_case , _snake_case ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> Optional[int]: __snake_case , __snake_case , __snake_case = get_training_setup(_snake_case ) # Use a single batch __snake_case , __snake_case = next(iter(_snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_snake_case , _snake_case , _snake_case , _snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_snake_case ): step_model(_snake_case , _snake_case , _snake_case , _snake_case ) else: # Sync grads step_model(_snake_case , _snake_case , _snake_case , _snake_case ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(_snake_case , _snake_case , _snake_case , _snake_case ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __snake_case = ddp_input[torch.randperm(len(_snake_case ) )] def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Optional[Any]: __snake_case , __snake_case , __snake_case = get_training_setup(_snake_case ) # Use a single batch __snake_case , __snake_case = next(iter(_snake_case ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_snake_case , _snake_case , _snake_case , _snake_case ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(_snake_case ): step_model(_snake_case , _snake_case , _snake_case , _snake_case ) else: # Sync grads step_model(_snake_case , _snake_case , _snake_case , _snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __snake_case = ddp_input[torch.randperm(len(_snake_case ) )] def __UpperCAmelCase ( _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : int=False ) -> Any: __snake_case = Accelerator( split_batches=_snake_case , dispatch_batches=_snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case = get_training_setup(_snake_case ) for iteration, batch in enumerate(_snake_case ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) # Do "gradient accumulation" (noop) with accelerator.accumulate(_snake_case ): step_model(_snake_case , _snake_case , _snake_case , _snake_case ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(_snake_case ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) __snake_case = ddp_input[torch.randperm(len(_snake_case ) )] GradientState._reset_state() def __UpperCAmelCase ( _UpperCAmelCase : Any=False , _UpperCAmelCase : Dict=False ) -> Tuple: __snake_case = Accelerator( split_batches=_snake_case , dispatch_batches=_snake_case , gradient_accumulation_steps=2 ) # Test that context manager behaves properly __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = get_training_setup(_snake_case , _snake_case ) for iteration, batch in enumerate(_snake_case ): __snake_case , __snake_case = batch.values() # Gather the distributed inputs and targs for the base model __snake_case , __snake_case = accelerator.gather((ddp_input, ddp_target) ) __snake_case , __snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(_snake_case )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(_snake_case ): step_model(_snake_case , _snake_case , _snake_case , _snake_case ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n''' __snake_case = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(_snake_case )) if accelerator.num_processes > 1: check_model_parameters(_snake_case , _snake_case , _snake_case , _snake_case ) # Shuffle ddp_input on each iteration torch.manual_seed(13_37 + iteration ) GradientState._reset_state() def __UpperCAmelCase ( ) -> str: __snake_case = Accelerator() __snake_case = RegressionDataset(length=80 ) __snake_case = DataLoader(_snake_case , batch_size=16 ) __snake_case = RegressionDataset(length=96 ) __snake_case = DataLoader(_snake_case , batch_size=16 ) __snake_case , __snake_case = accelerator.prepare(_snake_case , _snake_case ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(_snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(_snake_case ) if iteration < len(_snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(_snake_case ): assert id(accelerator.gradient_state.active_dataloader ) == id(_snake_case ) if batch_num < len(_snake_case ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( ) -> Optional[Any]: __snake_case = Accelerator() __snake_case = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(_snake_case ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(_snake_case ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(_snake_case , _snake_case ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(_snake_case , _snake_case ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> str: main() if __name__ == "__main__": main()
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Optional[int]: __snake_case = multiprocessing.Manager() __snake_case = manager.list() __snake_case = multiprocessing.Process(target=_A , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("timed out" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> List[Any]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __snake_case = shutil.rmtree __snake_case = os.rmdir __snake_case = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __snake_case = {} with swallow_io(): with time_limit(_A ): exec(_A , _A ) result.append("passed" ) except TimeoutException: result.append("timed out" ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. __snake_case = rmtree __snake_case = rmdir __snake_case = chdir @contextlib.contextmanager def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Dict: def signal_handler(_UpperCAmelCase : str , _UpperCAmelCase : Optional[int] ): raise TimeoutException("Timed out!" ) signal.setitimer(signal.ITIMER_REAL , _A ) signal.signal(signal.SIGALRM , _A ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __UpperCAmelCase ( ) -> Dict: __snake_case = WriteOnlyStringIO() with contextlib.redirect_stdout(_A ): with contextlib.redirect_stderr(_A ): with redirect_stdin(_A ): yield @contextlib.contextmanager def __UpperCAmelCase ( ) -> Optional[Any]: with tempfile.TemporaryDirectory() as dirname: with chdir(_A ): yield dirname class SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ): pass class SCREAMING_SNAKE_CASE__ ( io.StringIO ): def A ( self : Optional[Any] , *a_ : Dict , **a_ : str ): """simple docstring""" raise OSError def A ( self : int , *a_ : str , **a_ : Tuple ): """simple docstring""" raise OSError def A ( self : Any , *a_ : Optional[int] , **a_ : int ): """simple docstring""" raise OSError def A ( self : Union[str, Any] , *a_ : Dict , **a_ : Union[str, Any] ): """simple docstring""" return False class SCREAMING_SNAKE_CASE__ ( contextlib._RedirectStream ): # type: ignore __SCREAMING_SNAKE_CASE = "stdin" @contextlib.contextmanager def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> Any: if root == ".": yield return __snake_case = os.getcwd() os.chdir(_A ) try: yield except BaseException as exc: raise exc finally: os.chdir(_A ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any]=None ) -> List[Any]: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __snake_case = None __snake_case = None import os __snake_case = "1" __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None import shutil __snake_case = None __snake_case = None __snake_case = None import subprocess __snake_case = None # type: ignore __snake_case = None import sys __snake_case = None __snake_case = None __snake_case = None __snake_case = None __snake_case = None
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class SCREAMING_SNAKE_CASE__ ( _A ): __SCREAMING_SNAKE_CASE = """sew-d""" def __init__( self : List[str] , a_ : Tuple=32 , a_ : Optional[int]=768 , a_ : Tuple=12 , a_ : Optional[Any]=12 , a_ : int=3_072 , a_ : Tuple=2 , a_ : List[Any]=512 , a_ : Any=256 , a_ : Optional[int]=True , a_ : Dict=True , a_ : str=("p2c", "c2p") , a_ : List[Any]="layer_norm" , a_ : int="gelu_python" , a_ : Optional[int]=0.1 , a_ : Tuple=0.1 , a_ : List[Any]=0.1 , a_ : int=0.0 , a_ : Dict=0.1 , a_ : List[Any]=0.02 , a_ : Optional[int]=1e-7 , a_ : List[Any]=1e-5 , a_ : List[str]="group" , a_ : Optional[int]="gelu" , a_ : Tuple=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , a_ : str=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , a_ : Optional[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , a_ : Optional[Any]=False , a_ : Optional[int]=128 , a_ : Tuple=16 , a_ : Optional[int]=True , a_ : Dict=0.05 , a_ : str=10 , a_ : Tuple=2 , a_ : Dict=0.0 , a_ : Dict=10 , a_ : Union[str, Any]=0 , a_ : List[Any]="mean" , a_ : int=False , a_ : Optional[int]=False , a_ : Optional[int]=256 , a_ : List[str]=0 , a_ : Union[str, Any]=1 , a_ : List[Any]=2 , **a_ : str , ): """simple docstring""" super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) __snake_case = hidden_size __snake_case = feat_extract_norm __snake_case = feat_extract_activation __snake_case = list(UpperCamelCase__ ) __snake_case = list(UpperCamelCase__ ) __snake_case = list(UpperCamelCase__ ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = squeeze_factor __snake_case = max_position_embeddings __snake_case = position_buckets __snake_case = share_att_key __snake_case = relative_attention __snake_case = norm_rel_ebd __snake_case = list(UpperCamelCase__ ) __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layer_norm_eps __snake_case = feature_layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' f'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = apply_spec_augment __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # sequence classification __snake_case = use_weighted_layer_sum __snake_case = classifier_proj_size @property def A ( self : Union[str, Any] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : Tuple = logging.get_logger(__name__) a : Tuple = {'''vocab_file''': '''spiece.model'''} a : int = { '''vocab_file''': { '''AI-Sweden/gpt-sw3-126m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-350m''': '''https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-1.6b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-6.7b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model''', '''AI-Sweden/gpt-sw3-20b''': '''https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model''', } } a : str = { '''AI-Sweden/gpt-sw3-126m''': 2_048, '''AI-Sweden/gpt-sw3-350m''': 2_048, '''AI-Sweden/gpt-sw3-1.6b''': 2_048, '''AI-Sweden/gpt-sw3-6.7b''': 2_048, '''AI-Sweden/gpt-sw3-20b''': 2_048, } class SCREAMING_SNAKE_CASE__ ( snake_case__ ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self : int , a_ : Optional[int] , a_ : List[str]=False , a_ : str=False , a_ : Any=False , a_ : List[str]=None , a_ : str=None , a_ : Optional[Any]=None , a_ : Optional[int]=None , a_ : List[str] = None , **a_ : Optional[int] , ): """simple docstring""" __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs __snake_case = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) __snake_case = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing __snake_case = '<|endoftext|>' if eos_token is None else eos_token __snake_case = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: __snake_case = unk_token if pad_token is None else pad_token __snake_case = eos_token if bos_token is None else bos_token else: __snake_case = '<pad>' if pad_token is None else pad_token __snake_case = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , pad_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case = do_lower_case __snake_case = remove_space __snake_case = keep_accents __snake_case = vocab_file __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_A ) # Used for whitespace normalization in input texts # fmt : off __snake_case = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing __snake_case = re.compile( f'''[{"".join(map(_A , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8_203] ) )}]''' ) def __getstate__( self : Any ): """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : str , a_ : Any ): """simple docstring""" __snake_case = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def A ( self : Union[str, Any] ): """simple docstring""" return len(self.sp_model ) def A ( self : List[Any] , a_ : str ): """simple docstring""" __snake_case = self.non_printing_characters_re.sub("" , _A ) # Normalize whitespaces __snake_case = ''.join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization __snake_case = unicodedata.normalize("NFC" , _A ) return text def A ( self : Optional[int] , a_ : List[Any] , **a_ : List[Any] ): """simple docstring""" __snake_case = self.preprocess_text(_A ) return self.sp_model.encode(_A , out_type=_A ) def A ( self : Dict , a_ : Any ): """simple docstring""" return self.sp_model.PieceToId(_A ) def A ( self : str , a_ : Dict ): """simple docstring""" return self.sp_model.IdToPiece(_A ) @staticmethod def A ( a_ : List[Any] ): """simple docstring""" return out_string def A ( self : Optional[int] , a_ : Any ): """simple docstring""" __snake_case = [] __snake_case = '' __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(_A ) __snake_case = False out_string += self.sp_model.decode(_A ) return out_string def A ( self : str ): """simple docstring""" __snake_case = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : List[str] , a_ : Tuple , a_ : Optional[int] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( _A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , "wb" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def A ( self : Optional[Any] , a_ : Any , a_ : Tuple = False ): """simple docstring""" if isinstance(_A , _A ): __snake_case = self.preprocess_text(_A ) __snake_case = self.sp_model.encode(_A ) else: __snake_case = [self.preprocess_text(_A ) for t in text] __snake_case = self.sp_model.encode(_A ) if return_tensors is True or return_tensors == "pt": __snake_case = torch.tensor(_A ) return token_ids def A ( self : Any , a_ : List[Any] ): """simple docstring""" return self.sp_model.decode(_A ) def A ( self : Optional[int] , a_ : List[str] ): """simple docstring""" __snake_case = [f'''User: {text}''' if is_user else f'''Bot: {text}''' for is_user, text in conversation.iter_texts()] __snake_case = ( f'''{self.eos_token}{self.bos_token}''' + f'''{self.bos_token}'''.join(_A ) + f'''{self.bos_token}Bot:''' ) return self.encode(text=_A )
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int=2_81_23 ) -> Optional[int]: __snake_case = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __snake_case = set() __snake_case = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(__snake_case ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a : Dict = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] a : Optional[int] = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() a : Union[str, Any] = logging.get_logger(__name__) a : Optional[Any] = ''' Hello world! cécé herlolip''' a : int = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def __UpperCAmelCase ( _UpperCAmelCase ) -> Optional[int]: __snake_case = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: __snake_case = dct.pop(A__ ) __snake_case = val def __UpperCAmelCase ( _UpperCAmelCase ) -> Optional[Any]: __snake_case = torch.load(A__ , map_location="cpu" ) __snake_case = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def __UpperCAmelCase ( _UpperCAmelCase ) -> List[Any]: __snake_case , __snake_case = emb.weight.shape __snake_case = nn.Linear(A__ , A__ , bias=A__ ) __snake_case = emb.weight.data return lin_layer @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ) -> Dict: if not os.path.exists(A__ ): __snake_case = torch.hub.load("pytorch/fairseq" , A__ ).eval() else: __snake_case = load_xsum_checkpoint(A__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __snake_case = checkpoint_path.replace("." , "-" ) __snake_case = BartConfig.from_pretrained(A__ ) __snake_case = bart.encode(A__ ).unsqueeze(0 ) __snake_case = BartTokenizer.from_pretrained(A__ ).encode(A__ , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(A__ , A__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": __snake_case = bart.state_dict() remove_ignore_keys_(A__ ) __snake_case = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(A__ , A__ , A__ ) __snake_case = BartForSequenceClassification(A__ ).eval() model.load_state_dict(A__ ) __snake_case = bart.predict("mnli" , A__ , return_logits=A__ ) __snake_case = model(A__ )[0] # logits else: # no classification heads to worry about __snake_case = bart.model.state_dict() remove_ignore_keys_(A__ ) __snake_case = state_dict["decoder.embed_tokens.weight"] __snake_case = bart.extract_features(A__ ) if hf_checkpoint_name == "facebook/bart-large": __snake_case = BartModel(A__ ).eval() model.load_state_dict(A__ ) __snake_case = model(A__ ).model[0] else: __snake_case = BartForConditionalGeneration(A__ ).eval() # an existing summarization ckpt model.model.load_state_dict(A__ ) if hasattr(A__ , "lm_head" ): __snake_case = make_linear_from_emb(model.model.shared ) __snake_case = model.model(A__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) a : Optional[int] = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = (CMStochasticIterativeScheduler,) __SCREAMING_SNAKE_CASE = 10 def A ( self : Tuple , **a_ : Any ): """simple docstring""" __snake_case = { "num_train_timesteps": 201, "sigma_min": 0.002, "sigma_max": 80.0, } config.update(**a_ ) return config def A ( self : Optional[int] ): """simple docstring""" __snake_case = 10 __snake_case = self.get_scheduler_config() __snake_case = self.scheduler_classes[0](**a_ ) scheduler.set_timesteps(a_ ) __snake_case = scheduler.timesteps[0] __snake_case = scheduler.timesteps[1] __snake_case = self.dummy_sample __snake_case = 0.1 * sample __snake_case = scheduler.step(a_ , a_ , a_ ).prev_sample __snake_case = scheduler.step(a_ , a_ , a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def A ( self : Dict ): """simple docstring""" for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=a_ ) def A ( self : str ): """simple docstring""" for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a_ ) __snake_case = 1 scheduler.set_timesteps(a_ ) __snake_case = scheduler.timesteps __snake_case = torch.manual_seed(0 ) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a_ ): # 1. scale model input __snake_case = scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual __snake_case = model(a_ , a_ ) # 3. predict previous sample x_t-1 __snake_case = scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample __snake_case = pred_prev_sample __snake_case = torch.sum(torch.abs(a_ ) ) __snake_case = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a_ ) __snake_case = [106, 0] scheduler.set_timesteps(timesteps=a_ ) __snake_case = scheduler.timesteps __snake_case = torch.manual_seed(0 ) __snake_case = self.dummy_model() __snake_case = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __snake_case = scheduler.scale_model_input(a_ , a_ ) # 2. predict noise residual __snake_case = model(a_ , a_ ) # 3. predict previous sample x_t-1 __snake_case = scheduler.step(a_ , a_ , a_ , generator=a_ ).prev_sample __snake_case = pred_prev_sample __snake_case = torch.sum(torch.abs(a_ ) ) __snake_case = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a_ ) __snake_case = [39, 30, 12, 15, 0] with self.assertRaises(a_ , msg="`timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a_ ) __snake_case = [39, 30, 12, 1, 0] __snake_case = len(a_ ) with self.assertRaises(a_ , msg="Can only pass one of `num_inference_steps` or `timesteps`." ): scheduler.set_timesteps(num_inference_steps=a_ , timesteps=a_ ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.scheduler_classes[0] __snake_case = self.get_scheduler_config() __snake_case = scheduler_class(**a_ ) __snake_case = [scheduler.config.num_train_timesteps] with self.assertRaises( a_ , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=a_ )
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import functools def A__ ( _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> int: if not isinstance(a__ , a__ ) or not all(isinstance(a__ , a__ ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(a__ ) != 3 or not all(isinstance(a__ , a__ ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(a__ ) == 0: return 0 if min(a__ ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(a__ ) >= 3_66: raise ValueError("All days elements should be less than 366" ) __snake_case = set(a__ ) @functools.cache def dynamic_programming(_UpperCAmelCase : Tuple ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging a : int = logging.get_logger(__name__) a : Any = r'''\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n''' class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): @add_start_docstrings(lowerCAmelCase_ ) def __call__( self : Optional[int] , a_ : Tuple , a_ : Tuple , **a_ : Optional[Any] ): """simple docstring""" raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): def __init__( self : str , a_ : int , a_ : List[Any] = None ): """simple docstring""" __snake_case = max_length __snake_case = max_position_embeddings @add_start_docstrings(lowerCAmelCase_ ) def __call__( self : Any , a_ : List[str] , a_ : Optional[int] , **a_ : List[str] ): """simple docstring""" __snake_case = input_ids.shape[-1] __snake_case = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): def __init__( self : Optional[Any] , a_ : Tuple , a_ : str ): """simple docstring""" warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowerCAmelCase_ , ) __snake_case = start_length __snake_case = max_new_tokens __snake_case = start_length + max_new_tokens @add_start_docstrings(lowerCAmelCase_ ) def __call__( self : Any , a_ : Optional[Any] , a_ : int , **a_ : List[str] ): """simple docstring""" return input_ids.shape[-1] >= self.max_length class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): def __init__( self : List[Any] , a_ : Optional[int] , a_ : int = None ): """simple docstring""" __snake_case = max_time __snake_case = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowerCAmelCase_ ) def __call__( self : List[str] , a_ : Optional[Any] , a_ : List[Any] , **a_ : Dict ): """simple docstring""" return time.time() - self.initial_timestamp > self.max_time class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): @add_start_docstrings(lowerCAmelCase_ ) def __call__( self : Tuple , a_ : int , a_ : Optional[Any] , **a_ : Optional[Any] ): """simple docstring""" return any(criteria(lowerCAmelCase_ , lowerCAmelCase_ ) for criteria in self ) @property def A ( self : Tuple ): """simple docstring""" for stopping_criterium in self: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return stopping_criterium.max_length elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): return stopping_criterium.max_length return None def __UpperCAmelCase ( _UpperCAmelCase : StoppingCriteriaList , _UpperCAmelCase : int ) -> StoppingCriteriaList: __snake_case = stopping_criteria.max_length __snake_case = deepcopy(snake_case__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , snake_case__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=snake_case__ ) ) return new_stopping_criteria
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging a : Any = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ['input_features', 'attention_mask'] def __init__( self : List[str] , a_ : List[str]=80 , a_ : str=16_000 , a_ : int=0.0 , a_ : Union[str, Any]=10 , a_ : str=25 , a_ : List[str]="hamming_window" , a_ : Union[str, Any]=32_768.0 , a_ : List[str]=0.97 , a_ : Optional[Any]=1.0 , a_ : Tuple=True , a_ : Dict=True , a_ : Optional[Any]=False , **a_ : Optional[int] , ): """simple docstring""" super().__init__(feature_size=UpperCAmelCase__ , sampling_rate=UpperCAmelCase__ , padding_value=UpperCAmelCase__ , **UpperCAmelCase__ ) __snake_case = feature_size __snake_case = sampling_rate __snake_case = padding_value __snake_case = hop_length __snake_case = win_length __snake_case = frame_signal_scale __snake_case = preemphasis_coeff __snake_case = mel_floor __snake_case = normalize_means __snake_case = normalize_vars __snake_case = win_function __snake_case = return_attention_mask __snake_case = win_length * sampling_rate // 1_000 __snake_case = hop_length * sampling_rate // 1_000 __snake_case = optimal_fft_length(self.sample_size ) __snake_case = (self.n_fft // 2) + 1 def A ( self : Tuple , a_ : np.array ): """simple docstring""" if self.win_function == "hamming_window": __snake_case = window_function(window_length=self.sample_size , name=self.win_function , periodic=UpperCAmelCase__ ) else: __snake_case = window_function(window_length=self.sample_size , name=self.win_function ) __snake_case = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __snake_case = spectrogram( one_waveform * self.frame_signal_scale , window=UpperCAmelCase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=UpperCAmelCase__ , preemphasis=self.preemphasis_coeff , mel_filters=UpperCAmelCase__ , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def A ( self : str , a_ : str , a_ : Dict , a_ : Tuple ): """simple docstring""" if self.normalize_means: __snake_case = x[:input_length].mean(axis=0 ) __snake_case = np.subtract(UpperCAmelCase__ , UpperCAmelCase__ ) if self.normalize_vars: __snake_case = x[:input_length].std(axis=0 ) __snake_case = np.divide(UpperCAmelCase__ , UpperCAmelCase__ ) if input_length < x.shape[0]: __snake_case = padding_value # make sure array is in float32 __snake_case = x.astype(np.floataa ) return x def A ( self : Dict , a_ : List[np.ndarray] , a_ : Optional[np.ndarray] = None ): """simple docstring""" __snake_case = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(UpperCAmelCase__ , UpperCAmelCase__ , self.padding_value ) for x, n in zip(UpperCAmelCase__ , UpperCAmelCase__ )] def __call__( self : Optional[Any] , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : Union[bool, str, PaddingStrategy] = False , a_ : Optional[int] = None , a_ : bool = False , a_ : Optional[int] = None , a_ : Optional[bool] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[int] = None , **a_ : Optional[Any] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) __snake_case = isinstance(UpperCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __snake_case = is_batched_numpy or ( isinstance(UpperCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __snake_case = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase__ , np.ndarray ): __snake_case = np.asarray(UpperCAmelCase__ , dtype=np.floataa ) elif isinstance(UpperCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __snake_case = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __snake_case = [raw_speech] # extract fbank features __snake_case = [self._extract_mfsc_features(UpperCAmelCase__ ) for one_waveform in raw_speech] # convert into correct format for padding __snake_case = BatchFeature({"input_features": features} ) __snake_case = self.pad( UpperCAmelCase__ , padding=UpperCAmelCase__ , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , pad_to_multiple_of=UpperCAmelCase__ , return_attention_mask=UpperCAmelCase__ , **UpperCAmelCase__ , ) # make sure list is in array format __snake_case = padded_inputs.get("input_features" ) if isinstance(input_features[0] , UpperCAmelCase__ ): __snake_case = [np.asarray(UpperCAmelCase__ , dtype=np.floataa ) for feature in input_features] __snake_case = padded_inputs.get("attention_mask" ) if attention_mask is not None: __snake_case = [np.asarray(UpperCAmelCase__ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __snake_case = ( np.array(UpperCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __snake_case = self.normalize( padded_inputs["input_features"] , attention_mask=UpperCAmelCase__ ) if return_tensors is not None: __snake_case = padded_inputs.convert_to_tensors(UpperCAmelCase__ ) return padded_inputs
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) a : str = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = ["""LayoutLMv2FeatureExtractor"""] a : str = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker a : Union[str, Any] = '''CompVis/stable-diffusion-v1-1''' a : List[Any] = '''CompVis/stable-diffusion-v1-2''' a : List[str] = '''CompVis/stable-diffusion-v1-3''' a : Tuple = '''CompVis/stable-diffusion-v1-4''' class SCREAMING_SNAKE_CASE__ ( __lowerCamelCase ): def __init__( self : List[str] , a_ : Union[str, Any] , a_ : Optional[int] , a_ : List[str] , a_ : Tuple , a_ : str , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : int = True , ): """simple docstring""" super()._init_() __snake_case = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = StableDiffusionPipeline( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , requires_safety_checker=SCREAMING_SNAKE_CASE_ , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def A ( self : List[Any] ): """simple docstring""" return {k: getattr(self , SCREAMING_SNAKE_CASE_ ) for k in self.config.keys() if not k.startswith("_" )} def A ( self : str , a_ : List[str] = "auto" ): """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory __snake_case = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def A ( self : int ): """simple docstring""" self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def A ( self : Tuple , a_ : Dict , a_ : Optional[Any] = 512 , a_ : Union[str, Any] = 512 , a_ : int = 50 , a_ : Any = 7.5 , a_ : List[Any] = None , a_ : int = 1 , a_ : Optional[Any] = 0.0 , a_ : Tuple = None , a_ : Union[str, Any] = None , a_ : Any = "pil" , a_ : str = True , a_ : Union[str, Any] = None , a_ : List[str] = 1 , **a_ : Union[str, Any] , ): """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def A ( self : List[str] , a_ : Optional[Any] , a_ : Optional[int] = 512 , a_ : Tuple = 512 , a_ : Union[str, Any] = 50 , a_ : Tuple = 7.5 , a_ : Optional[int] = None , a_ : Optional[Any] = 1 , a_ : List[Any] = 0.0 , a_ : Any = None , a_ : List[Any] = None , a_ : Union[str, Any] = "pil" , a_ : Dict = True , a_ : Any = None , a_ : List[Any] = 1 , **a_ : int , ): """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def A ( self : Union[str, Any] , a_ : Any , a_ : int = 512 , a_ : Tuple = 512 , a_ : Optional[int] = 50 , a_ : Dict = 7.5 , a_ : Optional[Any] = None , a_ : int = 1 , a_ : Any = 0.0 , a_ : Optional[int] = None , a_ : str = None , a_ : Tuple = "pil" , a_ : int = True , a_ : Tuple = None , a_ : Dict = 1 , **a_ : List[Any] , ): """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def A ( self : List[Any] , a_ : str , a_ : Union[str, Any] = 512 , a_ : str = 512 , a_ : Dict = 50 , a_ : str = 7.5 , a_ : Optional[Any] = None , a_ : List[str] = 1 , a_ : Union[str, Any] = 0.0 , a_ : List[Any] = None , a_ : Dict = None , a_ : List[str] = "pil" , a_ : str = True , a_ : Dict = None , a_ : str = 1 , **a_ : Optional[Any] , ): """simple docstring""" return self.pipea( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) @torch.no_grad() def A ( self : Any , a_ : Union[str, Any] , a_ : str = 512 , a_ : Dict = 512 , a_ : Union[str, Any] = 50 , a_ : Tuple = 7.5 , a_ : Optional[int] = None , a_ : Union[str, Any] = 1 , a_ : List[str] = 0.0 , a_ : Tuple = None , a_ : Optional[Any] = None , a_ : List[str] = "pil" , a_ : List[Any] = True , a_ : Union[str, Any] = None , a_ : Union[str, Any] = 1 , **a_ : Dict , ): """simple docstring""" __snake_case = "cuda" if torch.cuda.is_available() else "cpu" self.to(SCREAMING_SNAKE_CASE_ ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 __snake_case = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.2 __snake_case = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.3 __snake_case = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get first result from Stable Diffusion Checkpoint v1.4 __snake_case = self.textaimg_sda_a( prompt=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a : Optional[int] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() a : Optional[Any] = logging.get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[str]: # initialize config if "resnet-50" in model_name: __snake_case = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: __snake_case = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) __snake_case = DetrConfig(use_timm_backbone=_UpperCAmelCase , backbone_config=_UpperCAmelCase ) # set label attributes __snake_case = '''panoptic''' in model_name if is_panoptic: __snake_case = 2_50 else: __snake_case = 91 __snake_case = '''huggingface/label-files''' __snake_case = '''coco-detection-id2label.json''' __snake_case = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) , "r" ) ) __snake_case = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __snake_case = idalabel __snake_case = {v: k for k, v in idalabel.items()} return config, is_panoptic def __UpperCAmelCase ( _UpperCAmelCase : Tuple ) -> str: # here we list all keys to be renamed (original name on the left, our name on the right) __snake_case = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> List[str]: __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=False ) -> Optional[Any]: __snake_case = '''''' if is_panoptic: __snake_case = '''detr.''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __snake_case = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:2_56, :] __snake_case = in_proj_bias[:2_56] __snake_case = in_proj_weight[2_56:5_12, :] __snake_case = in_proj_bias[2_56:5_12] __snake_case = in_proj_weight[-2_56:, :] __snake_case = in_proj_bias[-2_56:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __snake_case = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) __snake_case = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __snake_case = in_proj_weight[:2_56, :] __snake_case = in_proj_bias[:2_56] __snake_case = in_proj_weight[2_56:5_12, :] __snake_case = in_proj_bias[2_56:5_12] __snake_case = in_proj_weight[-2_56:, :] __snake_case = in_proj_bias[-2_56:] # read in weights + bias of input projection layer of cross-attention __snake_case = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) __snake_case = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict __snake_case = in_proj_weight_cross_attn[:2_56, :] __snake_case = in_proj_bias_cross_attn[:2_56] __snake_case = in_proj_weight_cross_attn[2_56:5_12, :] __snake_case = in_proj_bias_cross_attn[2_56:5_12] __snake_case = in_proj_weight_cross_attn[-2_56:, :] __snake_case = in_proj_bias_cross_attn[-2_56:] def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=False ) -> Dict: __snake_case = get_detr_config(_UpperCAmelCase ) # load original model from torch hub __snake_case = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F'''Converting model {model_name}...''' ) __snake_case = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=_UpperCAmelCase ).eval() __snake_case = detr.state_dict() # rename keys for src, dest in create_rename_keys(_UpperCAmelCase ): if is_panoptic: __snake_case = '''detr.''' + src rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_UpperCAmelCase , is_panoptic=_UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __snake_case = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __snake_case = state_dict.pop(_UpperCAmelCase ) __snake_case = val # finally, create HuggingFace model and load state dict __snake_case = DetrForSegmentation(_UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # verify our conversion on an image __snake_case = '''coco_panoptic''' if is_panoptic else '''coco_detection''' __snake_case = DetrImageProcessor(format=_UpperCAmelCase ) __snake_case = processor(images=prepare_img() , return_tensors="pt" ) __snake_case = encoding['''pixel_values'''] __snake_case = detr(_UpperCAmelCase ) __snake_case = model(_UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') a : Dict = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename a : Optional[Any] = '''http://www.mocksite.com/file1.txt''' a : int = '''\"text\": [\"foo\", \"foo\"]''' a : str = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 200 __SCREAMING_SNAKE_CASE = {"Content-Length": "100"} __SCREAMING_SNAKE_CASE = {} def A ( self : List[str] , **a_ : Optional[int] ): """simple docstring""" return [bytes(_lowerCamelCase , "utf-8" )] def __UpperCAmelCase ( *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Tuple ) -> Dict: return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str] ) -> List[str]: import requests monkeypatch.setattr(_lowerCAmelCase , "request" , _lowerCAmelCase ) __snake_case = URL if issubclass(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = url elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = [url] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = {"train": url} __snake_case = "dummy" __snake_case = "downloads" __snake_case = tmp_path __snake_case = DownloadConfig( cache_dir=os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , use_etag=_lowerCAmelCase , ) __snake_case = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) __snake_case = dl_manager.download(_lowerCAmelCase ) __snake_case = urls for downloaded_paths in [downloaded_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = [downloaded_paths] __snake_case = [urls] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in downloaded_paths.keys() __snake_case = downloaded_paths.values() __snake_case = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_lowerCAmelCase , _lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __snake_case = Path(_lowerCAmelCase ) __snake_case = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __snake_case = downloaded_path.read_text() assert content == CONTENT __snake_case = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() __snake_case = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> Optional[Any]: __snake_case = str(_lowerCAmelCase ) if issubclass(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = filename elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = [filename] elif issubclass(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = {"train": filename} __snake_case = "dummy" __snake_case = xz_file.parent __snake_case = "extracted" __snake_case = DownloadConfig( cache_dir=_lowerCAmelCase , use_etag=_lowerCAmelCase , ) __snake_case = DownloadManager(dataset_name=_lowerCAmelCase , download_config=_lowerCAmelCase ) __snake_case = dl_manager.extract(_lowerCAmelCase ) __snake_case = paths for extracted_paths in [extracted_paths]: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case = [extracted_paths] __snake_case = [paths] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): assert "train" in extracted_paths.keys() __snake_case = extracted_paths.values() __snake_case = paths.values() assert extracted_paths for extracted_path, input_path in zip(_lowerCAmelCase , _lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] __snake_case = Path(_lowerCAmelCase ) __snake_case = extracted_path.parts assert parts[-1] == hash_url_to_filename(_lowerCAmelCase , etag=_lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __snake_case = extracted_path.read_text() __snake_case = text_file.read_text() assert extracted_file_content == expected_file_content def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: assert path.endswith(".jsonl" ) for num_items, line in enumerate(_lowerCAmelCase , start=1 ): __snake_case = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : str ) -> Any: __snake_case = request.getfixturevalue(_lowerCAmelCase ) __snake_case = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> Optional[Any]: __snake_case = request.getfixturevalue(_lowerCAmelCase ) __snake_case = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_lowerCAmelCase ) , start=1 ): _test_jsonl(_lowerCAmelCase , _lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Dict: __snake_case = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_lowerCAmelCase ) , start=1 ): assert os.path.basename(_lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel a : Any = False a : Tuple = True a : Optional[int] = False if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') a : Tuple = parser.parse_args() a : List[str] = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } a : int = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } a : str = '' if has_file(args.repo_path, '''config.json''') else 'unet' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: a : Tuple = reader.read() a : Dict = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): a : Optional[Any] = UNetaDModel(**config) else: a : Union[str, Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel a : Any = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) a : List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: a : int = config[key] del config[key] a : int = [k.replace('''UNetRes''', '''''') for k in config['down_block_types']] a : Tuple = [k.replace('''UNetRes''', '''''') for k in config['up_block_types']] if do_only_weights: a : Tuple = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) a : int = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue a : Any = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: a : Tuple = param_value a : str = True if not has_changed: a : int = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : Optional[Any] = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Tuple = ["ConvNextFeatureExtractor"] a : List[str] = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys a : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. a : List[Any] = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. a : str = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. a : List[Any] = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> List[Any]: __snake_case = len([g for position, g in enumerate(__SCREAMING_SNAKE_CASE ) if g == main_target[position]] ) return (item, float(__SCREAMING_SNAKE_CASE )) def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> List[Any]: __snake_case = random.randint(0 , len(__SCREAMING_SNAKE_CASE ) - 1 ) __snake_case = parent_a[:random_slice] + parent_a[random_slice:] __snake_case = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = list(__SCREAMING_SNAKE_CASE ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __snake_case = random.choice(__SCREAMING_SNAKE_CASE ) return "".join(__SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , ) -> List[str]: __snake_case = [] # Generate more children proportionally to the fitness score. __snake_case = int(parent_a[1] * 1_00 ) + 1 __snake_case = 10 if child_n >= 10 else child_n for _ in range(__SCREAMING_SNAKE_CASE ): __snake_case = population_score[random.randint(0 , __SCREAMING_SNAKE_CASE )][0] __snake_case = crossover(parent_a[0] , __SCREAMING_SNAKE_CASE ) # Append new string to the population list. pop.append(mutate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) pop.append(mutate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) return pop def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] = True ) -> Any: if N_POPULATION < N_SELECTED: __snake_case = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(__SCREAMING_SNAKE_CASE ) # Verify that the target contains no genes besides the ones inside genes variable. __snake_case = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __snake_case = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(__SCREAMING_SNAKE_CASE ) # Generate random starting population. __snake_case = [] for _ in range(__SCREAMING_SNAKE_CASE ): population.append("".join([random.choice(__SCREAMING_SNAKE_CASE ) for i in range(len(__SCREAMING_SNAKE_CASE ) )] ) ) # Just some logs to know what the algorithms is doing. __snake_case = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__SCREAMING_SNAKE_CASE ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __snake_case = [evaluate(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for item in population] # Check if there is a matching evolution. __snake_case = sorted(__SCREAMING_SNAKE_CASE , key=lambda _UpperCAmelCase : x[1] , reverse=__SCREAMING_SNAKE_CASE ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __snake_case = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__SCREAMING_SNAKE_CASE ) # Normalize population score to be between 0 and 1. __snake_case = [ (item, score / len(__SCREAMING_SNAKE_CASE )) for item, score in population_score ] # This is selection for i in range(__SCREAMING_SNAKE_CASE ): population.extend(select(population_score[int(__SCREAMING_SNAKE_CASE )] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__SCREAMING_SNAKE_CASE ) > N_POPULATION: break if __name__ == "__main__": a : Union[str, Any] = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) a : Union[str, Any] = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) a , a , a : int = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0