code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES a : Optional[Any] = logging.get_logger(__name__) a : Any = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) a : Optional[int] = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a : Union[str, Any] = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) a : Union[str, Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) a : List[str] = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) a : Optional[int] = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) a : str = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) a : Any = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) a : int = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) a : List[str] = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) a : Any = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) a : Optional[int] = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) a : List[Any] = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) a : List[Any] = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) a : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) a : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) a : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) a : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) a : List[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) a : Tuple = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) a : List[str] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) a : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) a : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) a : Optional[int] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) a : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) a : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) a : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) a : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_MAPPING a : Union[str, Any] = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_PRETRAINING_MAPPING a : Dict = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING a : List[str] = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MASKED_LM_MAPPING a : Union[str, Any] = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING a : Optional[int] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a : str = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING a : Optional[int] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING a : str = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING a : List[str] = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING a : Tuple = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING a : Dict = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING a : Optional[int] = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): __SCREAMING_SNAKE_CASE = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING a : Optional[Any] = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> Optional[int]: return EnvironmentCommand() def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> str: return EnvironmentCommand(args.accelerate_config_file ) class SCREAMING_SNAKE_CASE__ ( __lowercase ): @staticmethod def A ( a_ : ArgumentParser ): """simple docstring""" __snake_case = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) download_parser.add_argument( "--accelerate-config_file" , default=a_ , help="The accelerate config file to use for the default values in the launching script." , ) download_parser.set_defaults(func=a_ ) def __init__( self : int , a_ : List[str] , *a_ : Any ): """simple docstring""" __snake_case = accelerate_config_file def A ( self : Tuple ): """simple docstring""" __snake_case = "not installed" if is_safetensors_available(): import safetensors __snake_case = safetensors.__version__ elif importlib.util.find_spec("safetensors" ) is not None: import safetensors __snake_case = f'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __snake_case = "not installed" __snake_case = "not found" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __snake_case = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(a_ ): __snake_case = load_config_from_file(self._accelerate_config_file ).to_dict() __snake_case = ( "\n".join([f'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(a_ , a_ ) else f'''\t{accelerate_config}''' ) __snake_case = "not installed" __snake_case = "NA" if is_torch_available(): import torch __snake_case = torch.__version__ __snake_case = torch.cuda.is_available() __snake_case = "not installed" __snake_case = "NA" if is_tf_available(): import tensorflow as tf __snake_case = tf.__version__ try: # deprecated in v2.1 __snake_case = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __snake_case = bool(tf.config.list_physical_devices("GPU" ) ) __snake_case = "not installed" __snake_case = "not installed" __snake_case = "not installed" __snake_case = "NA" if is_flax_available(): import flax import jax import jaxlib __snake_case = flax.__version__ __snake_case = jax.__version__ __snake_case = jaxlib.__version__ __snake_case = jax.lib.xla_bridge.get_backend().platform __snake_case = { "`transformers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Huggingface_hub version": huggingface_hub.__version__, "Safetensors version": f'''{safetensors_version}''', "Accelerate version": f'''{accelerate_version}''', "Accelerate config": f'''{accelerate_config_str}''', "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Tensorflow version (GPU?)": f'''{tf_version} ({tf_cuda_available})''', "Flax version (CPU?/GPU?/TPU?)": f'''{flax_version} ({jax_backend})''', "Jax version": f'''{jax_version}''', "JaxLib version": f'''{jaxlib_version}''', "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def A ( a_ : Optional[int] ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) # TODO Update this a : Tuple = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """esm""" def __init__( self : Any , a_ : List[Any]=None , a_ : Dict=None , a_ : List[str]=None , a_ : str=768 , a_ : Tuple=12 , a_ : Tuple=12 , a_ : Optional[int]=3_072 , a_ : Tuple=0.1 , a_ : Tuple=0.1 , a_ : Optional[Any]=1_026 , a_ : List[str]=0.02 , a_ : str=1e-12 , a_ : List[Any]="absolute" , a_ : Optional[Any]=True , a_ : int=None , a_ : Any=False , a_ : Dict=False , a_ : Optional[Any]=None , a_ : int=None , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=__UpperCamelCase , mask_token_id=__UpperCamelCase , **__UpperCamelCase ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = emb_layer_norm_before __snake_case = token_dropout __snake_case = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) __snake_case = EsmFoldConfig() elif isinstance(__UpperCamelCase , __UpperCamelCase ): __snake_case = EsmFoldConfig(**__UpperCamelCase ) __snake_case = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) __snake_case = get_default_vocab_list() else: __snake_case = vocab_list else: __snake_case = None __snake_case = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __UpperCamelCase ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def A ( self : Tuple ): """simple docstring""" __snake_case = super().to_dict() if isinstance(self.esmfold_config , __UpperCamelCase ): __snake_case = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = None def A ( self : Union[str, Any] ): """simple docstring""" if self.trunk is None: __snake_case = TrunkConfig() elif isinstance(self.trunk , __UpperCamelCase ): __snake_case = TrunkConfig(**self.trunk ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = asdict(self ) __snake_case = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 48 __SCREAMING_SNAKE_CASE = 1024 __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 32 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = None def A ( self : str ): """simple docstring""" if self.structure_module is None: __snake_case = StructureModuleConfig() elif isinstance(self.structure_module , __UpperCamelCase ): __snake_case = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) __snake_case = self.sequence_state_dim // self.sequence_head_width __snake_case = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def A ( self : Any ): """simple docstring""" __snake_case = asdict(self ) __snake_case = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = 384 __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = 16 __SCREAMING_SNAKE_CASE = 128 __SCREAMING_SNAKE_CASE = 12 __SCREAMING_SNAKE_CASE = 4 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 0.1 __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 7 __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = 1E-8 __SCREAMING_SNAKE_CASE = 1E5 def A ( self : List[str] ): """simple docstring""" return asdict(self ) def __UpperCAmelCase ( ) -> Dict: return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a : Optional[int] = NewType('''DataClass''', Any) a : Tuple = NewType('''DataClassType''', Any) def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> Optional[Any]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F'''Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).''' ) def __UpperCAmelCase ( _UpperCAmelCase : list ) -> Callable[[str], Any]: __snake_case = {str(_UpperCAmelCase ): choice for choice in choices} return lambda _UpperCAmelCase : str_to_choice.get(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( *, _UpperCAmelCase : Union[str, List[str]] = None , _UpperCAmelCase : str = None , _UpperCAmelCase : Any = dataclasses.MISSING , _UpperCAmelCase : Callable[[], Any] = dataclasses.MISSING , _UpperCAmelCase : dict = None , **_UpperCAmelCase : Tuple , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case = {} if aliases is not None: __snake_case = aliases if help is not None: __snake_case = help return dataclasses.field(metadata=_UpperCAmelCase , default=_UpperCAmelCase , default_factory=_UpperCAmelCase , **_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( A_ ): __SCREAMING_SNAKE_CASE = 42 def __init__( self : Optional[Any] , a_ : int , **a_ : str ): """simple docstring""" if "formatter_class" not in kwargs: __snake_case = ArgumentDefaultsHelpFormatter super().__init__(**a_ ) if dataclasses.is_dataclass(a_ ): __snake_case = [dataclass_types] __snake_case = list(a_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(a_ ) @staticmethod def A ( a_ : Optional[int] , a_ : List[str] ): """simple docstring""" __snake_case = f'''--{field.name}''' __snake_case = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , a_ ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) __snake_case = kwargs.pop("aliases" , [] ) if isinstance(a_ , a_ ): __snake_case = [aliases] __snake_case = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(a_ , "UnionType" ) and isinstance(a_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(a_ ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f''' Problem encountered in field \'{field.name}\'.''' ) if type(a_ ) not in field.type.__args__: # filter `str` in Union __snake_case = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case = ( field.type.__args__[0] if isinstance(a_ , field.type.__args__[1] ) else field.type.__args__[1] ) __snake_case = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case = {} if origin_type is Literal or (isinstance(field.type , a_ ) and issubclass(field.type , a_ )): if origin_type is Literal: __snake_case = field.type.__args__ else: __snake_case = [x.value for x in field.type] __snake_case = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: __snake_case = field.default else: __snake_case = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case = copy(a_ ) # Hack because type=bool in argparse does not behave as we want. __snake_case = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case = """?""" # This is the value that will get picked if we do --field_name (without value) __snake_case = True elif isclass(a_ ) and issubclass(a_ , a_ ): __snake_case = field.type.__args__[0] __snake_case = """+""" if field.default_factory is not dataclasses.MISSING: __snake_case = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case = True else: __snake_case = field.type if field.default is not dataclasses.MISSING: __snake_case = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case = field.default_factory() else: __snake_case = True parser.add_argument(a_ , *a_ , **a_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case = False parser.add_argument(f'''--no_{field.name}''' , action="store_false" , dest=field.name , **a_ ) def A ( self : Optional[Any] , a_ : int ): """simple docstring""" if hasattr(a_ , "_argument_group_name" ): __snake_case = self.add_argument_group(dtype._argument_group_name ) else: __snake_case = self try: __snake_case = get_type_hints(a_ ) except NameError: raise RuntimeError( f'''Type resolution failed for {dtype}. Try declaring the class in global scope or ''' "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(a_ ): __snake_case = """.""".join(map(a_ , sys.version_info[:3] ) ) raise RuntimeError( f'''Type resolution failed for {dtype} on Python {python_version}. Try removing ''' "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(a_ ): if not field.init: continue __snake_case = type_hints[field.name] self._parse_dataclass_field(a_ , a_ ) def A ( self : Optional[int] , a_ : int=None , a_ : str=False , a_ : Any=True , a_ : List[Any]=None , a_ : int=None , ): """simple docstring""" if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __snake_case = [] if args_filename: args_files.append(Path(a_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case = ArgumentParser() args_file_parser.add_argument(a_ , type=a_ , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) __snake_case = args_file_parser.parse_known_args(args=a_ ) __snake_case = vars(a_ ).get(args_file_flag.lstrip("-" ) , a_ ) if cmd_args_file_paths: args_files.extend([Path(a_ ) for p in cmd_args_file_paths] ) __snake_case = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case = self.parse_known_args(args=a_ ) __snake_case = [] for dtype in self.dataclass_types: __snake_case = {f.name for f in dataclasses.fields(a_ ) if f.init} __snake_case = {k: v for k, v in vars(a_ ).items() if k in keys} for k in keys: delattr(a_ , a_ ) __snake_case = dtype(**a_ ) outputs.append(a_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(a_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f'''Some specified arguments are not used by the HfArgumentParser: {remaining_args}''' ) return (*outputs,) def A ( self : str , a_ : Dict , a_ : Optional[Any] = False ): """simple docstring""" __snake_case = set(args.keys() ) __snake_case = [] for dtype in self.dataclass_types: __snake_case = {f.name for f in dataclasses.fields(a_ ) if f.init} __snake_case = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __snake_case = dtype(**a_ ) outputs.append(a_ ) if not allow_extra_keys and unused_keys: raise ValueError(f'''Some keys are not used by the HfArgumentParser: {sorted(a_ )}''' ) return tuple(a_ ) def A ( self : Dict , a_ : Any , a_ : List[Any] = False ): """simple docstring""" with open(Path(a_ ) , encoding="utf-8" ) as open_json_file: __snake_case = json.loads(open_json_file.read() ) __snake_case = self.parse_dict(a_ , allow_extra_keys=a_ ) return tuple(a_ ) def A ( self : str , a_ : Dict , a_ : int = False ): """simple docstring""" __snake_case = self.parse_dict(yaml.safe_load(Path(a_ ).read_text() ) , allow_extra_keys=a_ ) return tuple(a_ )
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList a : Union[str, Any] = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class SCREAMING_SNAKE_CASE__ ( __A ): def __init__( self : Tuple , a_ : Any , a_ : str , a_ : Tuple=None , a_ : List[Any]=1 ): """simple docstring""" __snake_case = tokenizer __snake_case = dataset __snake_case = len(UpperCamelCase__ ) if n_tasks is None else n_tasks __snake_case = n_copies def __iter__( self : Optional[int] ): """simple docstring""" __snake_case = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]["prompt"].strip() ) __snake_case = self.tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors="pt" ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class SCREAMING_SNAKE_CASE__ ( __A ): def __init__( self : int , a_ : Any , a_ : List[str] , a_ : List[Any] ): """simple docstring""" __snake_case = start_length __snake_case = eof_strings __snake_case = tokenizer def __call__( self : Optional[Any] , a_ : Union[str, Any] , a_ : Dict , **a_ : Any ): """simple docstring""" __snake_case = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) __snake_case = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCamelCase__ ) def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> int: __snake_case = re.split("(%s)" % "|".join(lowerCAmelCase__ ) , lowerCAmelCase__ ) # last string should be "" return "".join(string_list[:-2] ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str=20 , **_UpperCAmelCase : int ) -> Optional[int]: __snake_case = defaultdict(lowerCAmelCase__ ) # dict of list of generated tokens for step, batch in tqdm(enumerate(lowerCAmelCase__ ) ): with torch.no_grad(): __snake_case = batch['ids'].shape[-1] __snake_case = accelerator.unwrap_model(lowerCAmelCase__ ).generate( input_ids=batch["ids"][:, : batch["input_len"]] , num_return_sequences=lowerCAmelCase__ , **lowerCAmelCase__ ) # each task is generated batch_size times __snake_case = batch['task_id'].repeat(lowerCAmelCase__ ) __snake_case = accelerator.pad_across_processes( lowerCAmelCase__ , dim=1 , pad_index=tokenizer.pad_token_id ) __snake_case = accelerator.gather((generated_tokens, generated_tasks) ) __snake_case = generated_tokens.cpu().numpy() __snake_case = generated_tasks.cpu().numpy() for task, generated_tokens in zip(lowerCAmelCase__ , lowerCAmelCase__ ): gen_token_dict[task].append(lowerCAmelCase__ ) __snake_case = [[] for _ in range(lowerCAmelCase__ )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: __snake_case = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) code_gens[task].append(remove_last_block(lowerCAmelCase__ ) ) return code_gens def __UpperCAmelCase ( ) -> int: __snake_case = HfArgumentParser(lowerCAmelCase__ ) __snake_case = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric __snake_case = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing __snake_case = 'false' if args.num_workers is None: __snake_case = multiprocessing.cpu_count() # Use dataset load to feed to accelerate __snake_case = Accelerator() set_seed(args.seed , device_specific=lowerCAmelCase__ ) # Load model and tokenizer __snake_case = AutoTokenizer.from_pretrained(args.model_ckpt ) __snake_case = tokenizer.eos_token __snake_case = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings __snake_case = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , lowerCAmelCase__ , lowerCAmelCase__ )] ), } # Load evaluation dataset and metric __snake_case = load_dataset("openai_humaneval" ) __snake_case = load_metric("code_eval" ) __snake_case = args.num_tasks if args.num_tasks is not None else len(human_eval["test"] ) __snake_case = args.n_samples // args.batch_size __snake_case = TokenizedDataset(lowerCAmelCase__ , human_eval["test"] , n_copies=lowerCAmelCase__ , n_tasks=lowerCAmelCase__ ) # do not confuse args.batch_size, which is actually the num_return_sequences __snake_case = DataLoader(lowerCAmelCase__ , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: __snake_case = code_eval_metric.compute(references=[""] , predictions=[[""]] ) except ValueError as exception: print( "Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL=\"1\"`" " flag to enable code evaluation." ) raise exception __snake_case = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ ) __snake_case = complete_code( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , n_tasks=lowerCAmelCase__ , batch_size=args.batch_size , **lowerCAmelCase__ , ) if accelerator.is_main_process: __snake_case = [] for task in tqdm(range(lowerCAmelCase__ ) ): __snake_case = human_eval['test'][task]['test'] __snake_case = F'''check({human_eval["test"][task]["entry_point"]})''' references.append("\n" + test_func + "\n" + entry_point ) # Evaluate completions with "code_eval" metric __snake_case = code_eval_metric.compute( references=lowerCAmelCase__ , predictions=lowerCAmelCase__ , num_workers=args.num_workers ) print(F'''Results: {pass_at_k}''' ) # Save results to json file with open(args.output_file , "w" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = logging.get_logger() # the current default level is logging.WARNING __snake_case = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(lowerCamelCase_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = logging.get_verbosity() __snake_case = logging.get_logger("transformers.models.bart.tokenization_bart" ) __snake_case = "Testing 1, 2, 3" # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , msg + "\n" ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , "" ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning(lowerCamelCase_ ) self.assertEqual(cl.out , msg + "\n" ) # restore to the original level logging.set_verbosity(lowerCamelCase_ ) @mockenv(TRANSFORMERS_VERBOSITY="error" ) def A ( self : Any ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case = logging.get_logger("transformers.models.bart.tokenization_bart" ) __snake_case = os.getenv("TRANSFORMERS_VERBOSITY" , lowerCamelCase_ ) __snake_case = logging.log_levels[env_level_str] __snake_case = logging.get_verbosity() self.assertEqual( lowerCamelCase_ , lowerCamelCase_ , f'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level __snake_case = "" transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY="super-error" ) def A ( self : List[str] ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.logging.getLogger() with CaptureLogger(lowerCamelCase_ ) as cl: # this action activates the env var logging.get_logger("transformers.models.bart.tokenization_bart" ) self.assertIn("Unknown option TRANSFORMERS_VERBOSITY=super-error" , cl.out ) # no need to restore as nothing was changed def A ( self : str ): """simple docstring""" transformers.utils.logging._reset_library_root_logger() __snake_case = logging.get_logger("transformers.models.bart.tokenization_bart" ) __snake_case = "Testing 1, 2, 3" with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="1" ): # nothing should be logged as env var disables this method with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning_advice(lowerCamelCase_ ) self.assertEqual(cl.out , "" ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="" ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(lowerCamelCase_ ) as cl: logger.warning_advice(lowerCamelCase_ ) self.assertEqual(cl.out , msg + "\n" ) def __UpperCAmelCase ( ) -> List[Any]: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE = LDMTextToImagePipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS - { '''negative_prompt''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', '''prompt_embeds''', } __SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE = False def A ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) __snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __snake_case = CLIPTextModel(UpperCamelCase__ ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case = { "unet": unet, "scheduler": scheduler, "vqvae": vae, "bert": text_encoder, "tokenizer": tokenizer, } return components def A ( self : Any , a_ : Optional[int] , a_ : Optional[Any]=0 ): """simple docstring""" if str(UpperCamelCase__ ).startswith("mps" ): __snake_case = torch.manual_seed(UpperCamelCase__ ) else: __snake_case = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : Tuple ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = LDMTextToImagePipeline(**UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __snake_case = self.get_dummy_inputs(UpperCamelCase__ ) __snake_case = pipe(**UpperCamelCase__ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) __snake_case = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : str , a_ : str , a_ : int=torch.floataa , a_ : Tuple=0 ): """simple docstring""" __snake_case = torch.manual_seed(UpperCamelCase__ ) __snake_case = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 32, 32) ) __snake_case = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : Optional[Any] ): """simple docstring""" __snake_case = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __snake_case = self.get_inputs(UpperCamelCase__ ) __snake_case = pipe(**UpperCamelCase__ ).images __snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) __snake_case = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] ) __snake_case = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] , a_ : List[Any] , a_ : Optional[Any]=torch.floataa , a_ : int=0 ): """simple docstring""" __snake_case = torch.manual_seed(UpperCamelCase__ ) __snake_case = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 32, 32) ) __snake_case = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "latents": latents, "generator": generator, "num_inference_steps": 50, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : Any ): """simple docstring""" __snake_case = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) __snake_case = self.get_inputs(UpperCamelCase__ ) __snake_case = pipe(**UpperCamelCase__ ).images[0] __snake_case = load_numpy( "https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" ) __snake_case = np.abs(expected_image - image ).max() assert max_diff < 1e-3
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging a : Any = logging.get_logger(__name__) a : Optional[int] = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """van""" def __init__( self : List[Any] , a_ : List[Any]=224 , a_ : Dict=3 , a_ : str=[7, 3, 3, 3] , a_ : Optional[int]=[4, 2, 2, 2] , a_ : Optional[int]=[64, 128, 320, 512] , a_ : Dict=[3, 3, 12, 3] , a_ : Optional[Any]=[8, 8, 4, 4] , a_ : Tuple="gelu" , a_ : Optional[Any]=0.02 , a_ : Union[str, Any]=1e-6 , a_ : List[Any]=1e-2 , a_ : Dict=0.0 , a_ : Any=0.0 , **a_ : Dict , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) __snake_case = image_size __snake_case = num_channels __snake_case = patch_sizes __snake_case = strides __snake_case = hidden_sizes __snake_case = depths __snake_case = mlp_ratios __snake_case = hidden_act __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = layer_scale_init_value __snake_case = drop_path_rate __snake_case = dropout_rate
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class SCREAMING_SNAKE_CASE__ ( _a ): def __init__( self : List[Any] , a_ : List[Any] , a_ : Dict , a_ : Optional[Any] = None , a_ : Any = None , a_ : List[Any] = False , **a_ : Union[str, Any] , ): """simple docstring""" super().__init__(features=_A , cache_dir=_A , keep_in_memory=_A , **_A ) __snake_case = Sql( cache_dir=_A , features=_A , sql=_A , con=_A , **_A , ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = None __snake_case = None __snake_case = None __snake_case = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , ) # Build dataset for splits __snake_case = self.builder.as_dataset( split="train" , verification_mode=_A , in_memory=self.keep_in_memory ) return dataset class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str] , a_ : Tuple , a_ : List[str] , a_ : int , a_ : List[str] = None , a_ : str = None , **a_ : Any , ): """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) __snake_case = dataset __snake_case = name __snake_case = con __snake_case = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case = num_proc __snake_case = to_sql_kwargs def A ( self : List[Any] ): """simple docstring""" __snake_case = self.to_sql_kwargs.pop("sql" , _A ) __snake_case = self.to_sql_kwargs.pop("con" , _A ) __snake_case = self.to_sql_kwargs.pop("index" , _A ) __snake_case = self._write(index=_A , **self.to_sql_kwargs ) return written def A ( self : str , a_ : Any ): """simple docstring""" __snake_case , __snake_case , __snake_case = args __snake_case = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs __snake_case = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case = batch.to_pandas() __snake_case = df.to_sql(self.name , self.con , index=_A , **_A ) return num_rows or len(_A ) def A ( self : Union[str, Any] , a_ : Optional[Any] , **a_ : Union[str, Any] ): """simple docstring""" __snake_case = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , _A , _A )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a : List[str] = 4 a : List[str] = 3 class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> Any: for shard in shards: for i in range(UpperCAmelCase__ ): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> List[str]: __snake_case = int(os.environ["RANK"] ) __snake_case = int(os.environ["WORLD_SIZE"] ) __snake_case = ArgumentParser() parser.add_argument("--streaming" , type=UpperCAmelCase__ ) parser.add_argument("--local_rank" , type=UpperCAmelCase__ ) parser.add_argument("--num_workers" , type=UpperCAmelCase__ , default=0 ) __snake_case = parser.parse_args() __snake_case = args.streaming __snake_case = args.num_workers __snake_case = {"shards": [F'''shard_{shard_idx}''' for shard_idx in range(UpperCAmelCase__ )]} __snake_case = IterableDataset.from_generator(UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__ ) if not streaming: __snake_case = Dataset.from_list(list(UpperCAmelCase__ ) ) __snake_case = split_dataset_by_node(UpperCAmelCase__ , rank=UpperCAmelCase__ , world_size=UpperCAmelCase__ ) __snake_case = torch.utils.data.DataLoader(UpperCAmelCase__ , num_workers=UpperCAmelCase__ ) __snake_case = NUM_SHARDS * NUM_ITEMS_PER_SHARD __snake_case = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __snake_case = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import math from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : int = { '''facebook/data2vec-base-960h''': '''https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json''', # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-audio""" def __init__( self : Optional[Any] , a_ : Any=32 , a_ : List[Any]=768 , a_ : Dict=12 , a_ : Any=12 , a_ : str=3_072 , a_ : Dict="gelu" , a_ : List[str]=0.1 , a_ : Dict=0.1 , a_ : Optional[int]=0.1 , a_ : Any=0.0 , a_ : List[str]=0.1 , a_ : Any=0.1 , a_ : List[Any]=0.02 , a_ : List[str]=1e-5 , a_ : Optional[Any]="gelu" , a_ : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , a_ : Any=(5, 2, 2, 2, 2, 2, 2) , a_ : Any=(10, 3, 3, 3, 3, 2, 2) , a_ : List[Any]=False , a_ : Optional[int]=16 , a_ : int=19 , a_ : Union[str, Any]=5 , a_ : List[Any]=0.05 , a_ : Optional[Any]=10 , a_ : str=2 , a_ : str=0.0 , a_ : Dict=10 , a_ : Optional[Any]=0 , a_ : Optional[int]="sum" , a_ : Dict=False , a_ : Optional[int]=False , a_ : List[Any]=256 , a_ : str=(512, 512, 512, 512, 1_500) , a_ : Dict=(5, 3, 3, 1, 1) , a_ : List[Any]=(1, 2, 3, 1, 1) , a_ : Optional[int]=512 , a_ : Optional[int]=0 , a_ : Optional[int]=1 , a_ : str=2 , a_ : Tuple=False , a_ : int=3 , a_ : Any=2 , a_ : Union[str, Any]=3 , a_ : List[Any]=None , **a_ : Tuple , ): """simple docstring""" super().__init__(**a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ ) __snake_case = hidden_size __snake_case = feat_extract_activation __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = conv_bias __snake_case = num_conv_pos_embeddings __snake_case = num_conv_pos_embedding_groups __snake_case = conv_pos_kernel_size __snake_case = len(self.conv_dim ) __snake_case = num_hidden_layers __snake_case = intermediate_size __snake_case = hidden_act __snake_case = num_attention_heads __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = feat_proj_dropout __snake_case = final_dropout __snake_case = layerdrop __snake_case = layer_norm_eps __snake_case = initializer_range __snake_case = vocab_size __snake_case = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __snake_case = mask_time_prob __snake_case = mask_time_length __snake_case = mask_time_min_masks __snake_case = mask_feature_prob __snake_case = mask_feature_length __snake_case = mask_feature_min_masks # ctc loss __snake_case = ctc_loss_reduction __snake_case = ctc_zero_infinity # adapter __snake_case = add_adapter __snake_case = adapter_kernel_size __snake_case = adapter_stride __snake_case = num_adapter_layers __snake_case = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __snake_case = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = list(a_ ) __snake_case = xvector_output_dim @property def A ( self : Any ): """simple docstring""" return math.prod(self.conv_stride )
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , a_ : Union[str, Any] = "" , a_ : Optional[int] = False ): """simple docstring""" __snake_case = {} # A node will be a leaf if the tree contains its word __snake_case = is_leaf __snake_case = prefix def A ( self : str , a_ : Dict ): """simple docstring""" __snake_case = 0 for q, w in zip(self.prefix , a_ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def A ( self : str , a_ : Dict ): """simple docstring""" for word in words: self.insert(a_ ) def A ( self : List[Any] , a_ : List[Any] ): """simple docstring""" if self.prefix == word: __snake_case = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __snake_case = RadixNode(prefix=a_ , is_leaf=a_ ) else: __snake_case = self.nodes[word[0]] __snake_case , __snake_case , __snake_case = incoming_node.match( a_ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(a_ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __snake_case = remaining_prefix __snake_case = self.nodes[matching_string[0]] __snake_case = RadixNode(a_ , a_ ) __snake_case = aux_node if remaining_word == "": __snake_case = True else: self.nodes[matching_string[0]].insert(a_ ) def A ( self : List[Any] , a_ : int ): """simple docstring""" __snake_case = self.nodes.get(word[0] , a_ ) if not incoming_node: return False else: __snake_case , __snake_case , __snake_case = incoming_node.match( a_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(a_ ) def A ( self : Optional[int] , a_ : int ): """simple docstring""" __snake_case = self.nodes.get(word[0] , a_ ) if not incoming_node: return False else: __snake_case , __snake_case , __snake_case = incoming_node.match( a_ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(a_ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: __snake_case = list(self.nodes.values() )[0] __snake_case = merging_node.is_leaf self.prefix += merging_node.prefix __snake_case = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: __snake_case = False # If there is 1 edge, we merge it with its child else: __snake_case = list(incoming_node.nodes.values() )[0] __snake_case = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __snake_case = merging_node.nodes return True def A ( self : List[Any] , a_ : Tuple = 0 ): """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __UpperCAmelCase ( ) -> List[str]: __snake_case = "banana bananas bandana band apple all beast".split() __snake_case = RadixNode() root.insert_many(_UpperCAmelCase ) assert all(root.find(_UpperCAmelCase ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __UpperCAmelCase ( ) -> Any: assert test_trie() def __UpperCAmelCase ( ) -> Any: __snake_case = RadixNode() __snake_case = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(_UpperCAmelCase ) print("Words:" , _UpperCAmelCase ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' from __future__ import annotations a : int = tuple[int, int, int] a : Union[str, Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase a : List[str] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" # -------------------------- default selection -------------------------- # rotors -------------------------- a : Optional[Any] = "EGZWVONAHDCLFQMSIPJBYUKXTR" a : int = "FOBHMDKEXQNRAULPGSJVTYICZW" a : List[str] = "ZJXESIUQLHAVRMDOYGTNFWPBKC" # reflector -------------------------- a : str = { "A": "N", "N": "A", "B": "O", "O": "B", "C": "P", "P": "C", "D": "Q", "Q": "D", "E": "R", "R": "E", "F": "S", "S": "F", "G": "T", "T": "G", "H": "U", "U": "H", "I": "V", "V": "I", "J": "W", "W": "J", "K": "X", "X": "K", "L": "Y", "Y": "L", "M": "Z", "Z": "M", } # -------------------------- extra rotors -------------------------- a : List[Any] = "RMDJXFUWGISLHVTCQNKYPBEZOA" a : Tuple = "SGLCPQWZHKXAREONTFBVIYJUDM" a : List[Any] = "HVSICLTYKQUBXDWAJZOMFGPREN" a : List[Any] = "RZWQHFMVDBKICJLNTUXAGYPSOE" a : str = "LFKIJODBEGAMQPXVUHYSTCZRWN" a : List[str] = "KOAEGVDHXPQZMLFTYWJNBRCIUS" def __UpperCAmelCase ( _UpperCAmelCase : RotorPositionT , _UpperCAmelCase : RotorSelectionT , _UpperCAmelCase : str ) -> int: if (unique_rotsel := len(set(_UpperCAmelCase ) )) < 3: __snake_case = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(_UpperCAmelCase ) # Checks if rotor positions are valid __snake_case = rotpos if not 0 < rotorposa <= len(_UpperCAmelCase ): __snake_case = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): __snake_case = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_UpperCAmelCase ) if not 0 < rotorposa <= len(_UpperCAmelCase ): __snake_case = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(_UpperCAmelCase ) # Validates string and returns dict __snake_case = _plugboard(_UpperCAmelCase ) return rotpos, rotsel, pbdict def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Any: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = F'''Plugboard setting isn\'t type string ({type(_UpperCAmelCase )})''' raise TypeError(_UpperCAmelCase ) elif len(_UpperCAmelCase ) % 2 != 0: __snake_case = F'''Odd number of symbols ({len(_UpperCAmelCase )})''' raise Exception(_UpperCAmelCase ) elif pbstring == "": return {} pbstring.replace(" " , "" ) # Checks if all characters are unique __snake_case = set() for i in pbstring: if i not in abc: __snake_case = F'''\'{i}\' not in list of symbols''' raise Exception(_UpperCAmelCase ) elif i in tmppbl: __snake_case = F'''Duplicate symbol ({i})''' raise Exception(_UpperCAmelCase ) else: tmppbl.add(_UpperCAmelCase ) del tmppbl # Created the dictionary __snake_case = {} for j in range(0 , len(_UpperCAmelCase ) - 1 , 2 ): __snake_case = pbstring[j + 1] __snake_case = pbstring[j] return pb def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : RotorPositionT , _UpperCAmelCase : RotorSelectionT = (rotora, rotora, rotora) , _UpperCAmelCase : str = "" , ) -> List[Any]: __snake_case = text.upper() __snake_case = _validator( _UpperCAmelCase , _UpperCAmelCase , plugb.upper() ) __snake_case = rotor_position __snake_case = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __snake_case = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __snake_case = plugboard[symbol] # rotor ra -------------------------- __snake_case = abc.index(_UpperCAmelCase ) + rotorposa __snake_case = rotora[index % len(_UpperCAmelCase )] # rotor rb -------------------------- __snake_case = abc.index(_UpperCAmelCase ) + rotorposa __snake_case = rotora[index % len(_UpperCAmelCase )] # rotor rc -------------------------- __snake_case = abc.index(_UpperCAmelCase ) + rotorposa __snake_case = rotora[index % len(_UpperCAmelCase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __snake_case = reflector[symbol] # 2nd rotors __snake_case = abc[rotora.index(_UpperCAmelCase ) - rotorposa] __snake_case = abc[rotora.index(_UpperCAmelCase ) - rotorposa] __snake_case = abc[rotora.index(_UpperCAmelCase ) - rotorposa] # 2nd plugboard if symbol in plugboard: __snake_case = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): __snake_case = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): __snake_case = 0 rotorposa += 1 if rotorposa >= len(_UpperCAmelCase ): __snake_case = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) if __name__ == "__main__": a : Dict = "This is my Python script that emulates the Enigma machine from WWII." a : Dict = (1, 1, 1) a : Any = "pictures" a : int = (rotora, rotora, rotora) a : Dict = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('''Googling.....''') a : Dict = 'https://www.google.com/search?q=' + ' '.join(sys.argv[1:]) a : Any = requests.get(url, headers={'''UserAgent''': UserAgent().random}) # res.raise_for_status() with open('''project1a.html''', '''wb''') as out_file: # only for knowing the class for data in res.iter_content(10_000): out_file.write(data) a : Dict = BeautifulSoup(res.text, '''html.parser''') a : Optional[Any] = list(soup.select('''.eZt8xd'''))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('''href''')) else: webbrowser.open(F'''https://google.com{link.get('href')}''')
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Dict: if "model" in orig_key: __snake_case = orig_key.replace("model." , "" ) if "norm1" in orig_key: __snake_case = orig_key.replace("norm1" , "attention.output.LayerNorm" ) if "norm2" in orig_key: __snake_case = orig_key.replace("norm2" , "output.LayerNorm" ) if "norm" in orig_key: __snake_case = orig_key.replace("norm" , "LayerNorm" ) if "transformer" in orig_key: __snake_case = orig_key.split("." )[0].split("_" )[-1] __snake_case = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' ) if "mha.attn" in orig_key: __snake_case = orig_key.replace("mha.attn" , "attention.self" ) if "mha" in orig_key: __snake_case = orig_key.replace("mha" , "attention" ) if "W_q" in orig_key: __snake_case = orig_key.replace("W_q" , "self.query" ) if "W_k" in orig_key: __snake_case = orig_key.replace("W_k" , "self.key" ) if "W_v" in orig_key: __snake_case = orig_key.replace("W_v" , "self.value" ) if "ff1" in orig_key: __snake_case = orig_key.replace("ff1" , "intermediate.dense" ) if "ff2" in orig_key: __snake_case = orig_key.replace("ff2" , "output.dense" ) if "ff" in orig_key: __snake_case = orig_key.replace("ff" , "output.dense" ) if "mlm_class" in orig_key: __snake_case = orig_key.replace("mlm.mlm_class" , "cls.predictions.decoder" ) if "mlm" in orig_key: __snake_case = orig_key.replace("mlm" , "cls.predictions.transform" ) if "cls" not in orig_key: __snake_case = "yoso." + orig_key return orig_key def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): __snake_case = orig_state_dict.pop(UpperCamelCase__ ) if ("pooler" in key) or ("sen_class" in key): continue else: __snake_case = val __snake_case = orig_state_dict["cls.predictions.decoder.bias"] __snake_case = torch.arange(UpperCamelCase__ ).expand((1, -1) ) + 2 return orig_state_dict def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> Tuple: __snake_case = torch.load(UpperCamelCase__ , map_location="cpu" )["model_state_dict"] __snake_case = YosoConfig.from_json_file(UpperCamelCase__ ) __snake_case = YosoForMaskedLM(UpperCamelCase__ ) __snake_case = convert_checkpoint_helper(config.max_position_embeddings , UpperCamelCase__ ) print(model.load_state_dict(UpperCamelCase__ ) ) model.eval() model.save_pretrained(UpperCamelCase__ ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) if __name__ == "__main__": a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : str = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' import re def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> bool: __snake_case = re.compile( R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" ) return bool(re.search(lowerCamelCase__ , lowerCamelCase__ ) ) if __name__ == "__main__": a : Any = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' import functools from typing import Any def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] ) -> bool: # Validation if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or len(_UpperCAmelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not all( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie __snake_case = {} __snake_case = "WORD_KEEPER" for word in words: __snake_case = trie for c in word: if c not in trie_node: __snake_case = {} __snake_case = trie_node[c] __snake_case = True __snake_case = len(_UpperCAmelCase ) # Dynamic programming method @functools.cache def is_breakable(_UpperCAmelCase : int ) -> bool: if index == len_string: return True __snake_case = trie for i in range(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = trie_node.get(string[i] , _UpperCAmelCase ) if trie_node is None: return False if trie_node.get(_UpperCAmelCase , _UpperCAmelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Any = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """informer""" __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Optional[int] , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = None , a_ : Optional[Union[str, bool]] = "mean" , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 64 , a_ : int = 32 , a_ : int = 32 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : bool = True , a_ : str = "gelu" , a_ : float = 0.05 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 100 , a_ : float = 0.02 , a_ : str=True , a_ : str = "prob" , a_ : int = 5 , a_ : bool = True , **a_ : int , ): """simple docstring""" __snake_case = prediction_length __snake_case = context_length or prediction_length __snake_case = distribution_output __snake_case = loss __snake_case = input_size __snake_case = num_time_features __snake_case = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] __snake_case = scaling __snake_case = num_dynamic_real_features __snake_case = num_static_real_features __snake_case = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __snake_case = cardinality else: __snake_case = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __snake_case = embedding_dimension else: __snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case = num_parallel_samples # Transformer architecture configuration __snake_case = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case = d_model __snake_case = encoder_attention_heads __snake_case = decoder_attention_heads __snake_case = encoder_ffn_dim __snake_case = decoder_ffn_dim __snake_case = encoder_layers __snake_case = decoder_layers __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = activation_function __snake_case = init_std __snake_case = use_cache # Informer __snake_case = attention_type __snake_case = sampling_factor __snake_case = distil super().__init__(is_encoder_decoder=a_ , **a_ ) @property def A ( self : Union[str, Any] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() a : int = logging.get_logger(__name__) a : List[Any] = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Dict ) -> Optional[Any]: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(F'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: __snake_case = TOKENIZER_CLASSES else: __snake_case = {tokenizer_name: getattr(_UpperCAmelCase , tokenizer_name + "Fast" )} logger.info(F'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: __snake_case = TOKENIZER_CLASSES[tokenizer_name] __snake_case = True if checkpoint_name is None: __snake_case = list(tokenizer_class.max_model_input_sizes.keys() ) else: __snake_case = [checkpoint_name] logger.info(F'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(F'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer __snake_case = tokenizer_class.from_pretrained(_UpperCAmelCase , force_download=_UpperCAmelCase ) # Save fast tokenizer logger.info(F'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: __snake_case , __snake_case = checkpoint.split("/" ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) elif add_prefix: __snake_case = checkpoint __snake_case = dump_path else: __snake_case = None __snake_case = dump_path logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __snake_case = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __snake_case = file_path.split(_UpperCAmelCase )[-1][0] if next_char == "/": __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = None logger.info(F'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) __snake_case = tokenizer.save_pretrained( _UpperCAmelCase , legacy_format=_UpperCAmelCase , filename_prefix=_UpperCAmelCase ) logger.info(F'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_UpperCAmelCase ) logger.info(F'''=> removing {file_name}''' ) if __name__ == "__main__": a : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) a : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from collections import Counter from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : str = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def __UpperCAmelCase ( _UpperCAmelCase : str = "" ) -> bool: if len(_UpperCAmelCase ) == 0: return True __snake_case = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string __snake_case = {} for character in lower_case_input_str: __snake_case = character_freq_dict.get(_UpperCAmelCase , 0 ) + 1 __snake_case = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __UpperCAmelCase ( _UpperCAmelCase : str = "" ) -> None: print("\nFor string = " , _UpperCAmelCase , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(_UpperCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(_UpperCAmelCase ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": a : Dict = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) a : Tuple = can_string_be_rearranged_as_palindrome_counter(check_str) print(F'''{check_str} can {'' if status else 'not '}be rearranged as a palindrome''')
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = TextToVideoSDPipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __SCREAMING_SNAKE_CASE = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def A ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) __snake_case = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case = CLIPTextModel(a_ ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def A ( self : Union[str, Any] , a_ : str , a_ : Optional[int]=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def A ( self : Any ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = TextToVideoSDPipeline(**a_ ) __snake_case = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = "np" __snake_case = sd_pipe(**a_ ).frames __snake_case = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) __snake_case = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : str ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=a_ , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def A ( self : Tuple ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=a_ , expected_max_diff=1e-2 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A ( self : int ): """simple docstring""" pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def A ( self : int ): """simple docstring""" pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def A ( self : Optional[int] ): """simple docstring""" pass def A ( self : List[Any] ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy" ) __snake_case = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) __snake_case = pipe.to("cuda" ) __snake_case = "Spiderman is surfing" __snake_case = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case = pipe(a_ , generator=a_ , num_inference_steps=25 , output_type="pt" ).frames __snake_case = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def A ( self : List[Any] ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy" ) __snake_case = TextToVideoSDPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b" ) __snake_case = pipe.to("cuda" ) __snake_case = "Spiderman is surfing" __snake_case = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case = pipe(a_ , generator=a_ , num_inference_steps=2 , output_type="pt" ).frames __snake_case = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def __UpperCAmelCase ( _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : Optional[int]=10 , _UpperCAmelCase : List[str]=1_00 , _UpperCAmelCase : Optional[int]=10_26 , _UpperCAmelCase : str=True , _UpperCAmelCase : Dict="data/tokenized_stories_train_wikitext103.jbl" , _UpperCAmelCase : Optional[Any]="igf_context_pairs.jbl" , ) -> Any: set_seed(3 ) # generate train_data and objective_set __snake_case , __snake_case = generate_datasets( _UpperCAmelCase , _UpperCAmelCase , number=_UpperCAmelCase , min_len=10_26 , trim=_UpperCAmelCase ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # load pretrained model __snake_case = load_gpta("gpt2" ).to(_UpperCAmelCase ) print("computing perplexity on objective set" ) __snake_case = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).item() print("perplexity on objective set:" , _UpperCAmelCase ) # collect igf pairs and save to file demo.jbl collect_objective_set(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : Any=15 , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : List[str]=1_00 , _UpperCAmelCase : Optional[Any]="igf_model.pt" , ) -> Any: set_seed(42 ) # Load pre-trained model __snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) # Initialize secondary learner to use embedding weights of model __snake_case = SecondaryLearner(_UpperCAmelCase ) # Train secondary learner __snake_case = train_secondary_learner( _UpperCAmelCase , _UpperCAmelCase , max_epochs=_UpperCAmelCase , batch_size=_UpperCAmelCase , eval_freq=1_00 , igf_model_path=_UpperCAmelCase , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any]=32 , _UpperCAmelCase : List[str]=10_00 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Union[str, Any]=1.0 , _UpperCAmelCase : Optional[int]=recopy_gpta , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : int=10 , _UpperCAmelCase : str="gpt2_finetuned.pt" , ) -> int: __snake_case = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) __snake_case = RandomSampler(_UpperCAmelCase ) __snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase ) __snake_case = max_steps // (len(_UpperCAmelCase )) + 1 __snake_case = 0 __snake_case = torch.zeros((1, context_len) , dtype=torch.long , device=_UpperCAmelCase ) __snake_case , __snake_case , __snake_case = recopy_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) model.train() if secondary_learner is not None: secondary_learner.to(_UpperCAmelCase ) secondary_learner.eval() __snake_case = [] __snake_case = 0 __snake_case = [] __snake_case = [] # Compute the performance of the transformer model at the beginning __snake_case = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) test_perps.append(_UpperCAmelCase ) print("Test perplexity, step" , _UpperCAmelCase , ":" , _UpperCAmelCase ) for epoch in range(int(_UpperCAmelCase ) ): for step, example in enumerate(_UpperCAmelCase ): torch.cuda.empty_cache() __snake_case = random.randint(0 , example.size(2 ) - context_len - 1 ) __snake_case = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __snake_case = model(_UpperCAmelCase , labels=_UpperCAmelCase ) __snake_case = True if secondary_learner is not None: __snake_case = secondary_learner.forward( torch.tensor(_UpperCAmelCase , dtype=torch.long , device=_UpperCAmelCase ).unsqueeze(0 ) )[0].item() observed_qs.append(float(_UpperCAmelCase ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __snake_case = -1 if predicted_q < threshold: __snake_case = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __snake_case = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __snake_case = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __snake_case = compute_perplexity(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) test_perps.append(_UpperCAmelCase ) print("Test perplexity, step" , _UpperCAmelCase , ":" , _UpperCAmelCase ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , _UpperCAmelCase ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def __UpperCAmelCase ( ) -> int: __snake_case = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" ) # Required parameters parser.add_argument( "--data_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The input data dir. Should contain data files for WikiText." , ) parser.add_argument( "--model_name_or_path" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--data_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help=( "A jbl file containing tokenized data which can be split as objective dataset, " "train_dataset and test_dataset." ) , ) parser.add_argument( "--igf_data_file" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="A jbl file containing the context and information gain pairs to train secondary learner." , ) parser.add_argument( "--output_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The output directory where the final fine-tuned model is stored." , ) parser.add_argument( "--tokenizer_name" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name" , ) parser.add_argument("--seed" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="A seed for reproducible training." ) parser.add_argument( "--context_len" , default=32 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--size_objective_set" , default=1_00 , type=_UpperCAmelCase , help="number of articles that are long enough to be used as our objective set" , ) parser.add_argument( "--eval_freq" , default=1_00 , type=_UpperCAmelCase , help="secondary model evaluation is triggered at eval_freq" ) parser.add_argument("--max_steps" , default=10_00 , type=_UpperCAmelCase , help="To calculate training epochs" ) parser.add_argument( "--secondary_learner_batch_size" , default=1_28 , type=_UpperCAmelCase , help="batch size of training data for secondary learner" , ) parser.add_argument( "--batch_size" , default=16 , type=_UpperCAmelCase , help="batch size of training data of language model(gpt2) " ) parser.add_argument( "--eval_interval" , default=10 , type=_UpperCAmelCase , help=( "decay the selectivity of our secondary learner filter from" "1 standard deviation above average to 1 below average after 10 batches" ) , ) parser.add_argument( "--number" , default=1_00 , type=_UpperCAmelCase , help="The number of examples split to be used as objective_set/test_data" ) parser.add_argument( "--min_len" , default=10_26 , type=_UpperCAmelCase , help="The minimum length of the article to be used as objective set" ) parser.add_argument( "--secondary_learner_max_epochs" , default=15 , type=_UpperCAmelCase , help="number of epochs to train secondary learner" ) parser.add_argument("--trim" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="truncate the example if it exceeds context length" ) parser.add_argument( "--threshold" , default=1.0 , type=_UpperCAmelCase , help=( "The threshold value used by secondary learner to filter the train_data and allow only" " informative data as input to the model" ) , ) parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_UpperCAmelCase , help="finetuned_model_name" ) parser.add_argument( "--recopy_model" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=_UpperCAmelCase , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , ) # Load train data for secondary learner __snake_case = joblib.load("data/IGF_values.jbl" ) # Train secondary learner __snake_case = training_secondary_learner( _UpperCAmelCase , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path="igf_model.pt" , ) # load pretrained gpt2 model __snake_case = GPTaLMHeadModel.from_pretrained("gpt2" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __snake_case , __snake_case = generate_datasets( context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=1_00 , min_len=10_26 , trim=_UpperCAmelCase ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=_UpperCAmelCase , secondary_learner=_UpperCAmelCase , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , ) if __name__ == "__main__": main()
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters a : List[str] = False a : Optional[int] = False def __UpperCAmelCase ( _UpperCAmelCase : Namespace ) -> Union[str, Any]: return TrainCommand(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @staticmethod def A ( a_ : ArgumentParser ): """simple docstring""" __snake_case = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=a_ , required=a_ , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=a_ , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=a_ , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=a_ , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=a_ , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=a_ , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=a_ , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=a_ , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=a_ , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=a_ , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=a_ , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=a_ , default=3e-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=a_ , default=1e-08 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=a_ ) def __init__( self : Union[str, Any] , a_ : Namespace ): """simple docstring""" __snake_case = logging.get_logger("transformers-cli/training" ) __snake_case = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=a_ ) __snake_case = args.output __snake_case = args.column_label __snake_case = args.column_text __snake_case = args.column_id self.logger.info(f'''Loading {args.task} pipeline for {args.model}''' ) if args.task == "text_classification": __snake_case = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f'''Loading dataset from {args.train_data}''' ) __snake_case = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = None if args.validation_data: self.logger.info(f'''Loading validation dataset from {args.validation_data}''' ) __snake_case = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case = args.validation_split __snake_case = args.train_batch_size __snake_case = args.valid_batch_size __snake_case = args.learning_rate __snake_case = args.adam_epsilon def A ( self : int ): """simple docstring""" if self.framework == "tf": return self.run_tf() return self.run_torch() def A ( self : Dict ): """simple docstring""" raise NotImplementedError def A ( self : Optional[int] ): """simple docstring""" self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging a : Dict = logging.get_logger(__name__) a : str = '''▁''' a : Dict = {'''vocab_file''': '''sentencepiece.bpe.model'''} a : Optional[Any] = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } a : List[str] = { '''facebook/mbart-large-50-one-to-many-mmt''': 1_024, } # fmt: off a : List[str] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = ["""input_ids""", """attention_mask"""] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] def __init__( self : Optional[int] , a_ : Any , a_ : int=None , a_ : List[str]=None , a_ : str="</s>" , a_ : Dict="</s>" , a_ : Optional[Any]="<s>" , a_ : Union[str, Any]="<unk>" , a_ : Tuple="<pad>" , a_ : str="<mask>" , a_ : Optional[Dict[str, Any]] = None , **a_ : Optional[int] , ): """simple docstring""" __snake_case = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token __snake_case = {} if sp_model_kwargs is None else sp_model_kwargs __snake_case = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=a_ , tgt_lang=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) __snake_case = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __snake_case = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __snake_case = 1 __snake_case = len(self.sp_model ) __snake_case = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(a_ ) } __snake_case = {v: k for k, v in self.lang_code_to_id.items()} __snake_case = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __snake_case = src_lang if src_lang is not None else "en_XX" __snake_case = self.lang_code_to_id[self._src_lang] __snake_case = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A ( self : Dict ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A ( self : Dict ): """simple docstring""" return self._src_lang @src_lang.setter def A ( self : List[Any] , a_ : str ): """simple docstring""" __snake_case = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): """simple docstring""" __snake_case = self.__dict__.copy() __snake_case = None return state def __setstate__( self : Optional[int] , a_ : Dict ): """simple docstring""" __snake_case = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): __snake_case = {} __snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self : Any ): """simple docstring""" __snake_case = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A ( self : int , a_ : str ): """simple docstring""" return self.sp_model.encode(a_ , out_type=a_ ) def A ( self : List[str] , a_ : str ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __snake_case = self.sp_model.PieceToId(a_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A ( self : Dict , a_ : int ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A ( self : str , a_ : Any ): """simple docstring""" __snake_case = [] __snake_case = "" __snake_case = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(a_ ) + token __snake_case = True __snake_case = [] else: current_sub_tokens.append(a_ ) __snake_case = False out_string += self.sp_model.decode(a_ ) return out_string.strip() def A ( self : Dict , a_ : str , a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , "wb" ) as fi: __snake_case = self.sp_model.serialized_model_proto() fi.write(a_ ) return (out_vocab_file,) def A ( self : Dict , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) __snake_case = [1] * len(self.prefix_tokens ) __snake_case = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(a_ )) + suffix_ones return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A ( self : Union[str, Any] , a_ : Tuple , a_ : str , a_ : Optional[str] , a_ : Optional[str] , **a_ : str ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) __snake_case = src_lang __snake_case = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case = self.convert_tokens_to_ids(a_ ) __snake_case = tgt_lang_id return inputs def A ( self : Optional[Any] , a_ : List[str] , a_ : str = "en_XX" , a_ : Optional[List[str]] = None , a_ : str = "ro_RO" , **a_ : List[Any] , ): """simple docstring""" __snake_case = src_lang __snake_case = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def A ( self : Optional[Any] ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def A ( self : List[Any] ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A ( self : Optional[Any] , a_ : str ): """simple docstring""" __snake_case = self.lang_code_to_id[src_lang] __snake_case = [self.cur_lang_code_id] __snake_case = [self.eos_token_id] def A ( self : int , a_ : str ): """simple docstring""" __snake_case = self.lang_code_to_id[tgt_lang] __snake_case = [self.cur_lang_code_id] __snake_case = [self.eos_token_id]
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def A ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def A ( self : int ): """simple docstring""" __snake_case = self.dummy_uncond_unet __snake_case = PNDMScheduler() __snake_case = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case = torch.manual_seed(0 ) __snake_case = pndm(generator=a_ , num_inference_steps=20 , output_type="numpy" ).images __snake_case = torch.manual_seed(0 ) __snake_case = pndm(generator=a_ , num_inference_steps=20 , output_type="numpy" , return_dict=a_ )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = "google/ddpm-cifar10-32" __snake_case = UNetaDModel.from_pretrained(a_ ) __snake_case = PNDMScheduler() __snake_case = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case = torch.manual_seed(0 ) __snake_case = pndm(generator=a_ , output_type="numpy" ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = JukeboxTokenizer __SCREAMING_SNAKE_CASE = { """artist""": """Zac Brown Band""", """genres""": """Country""", """lyrics""": """I met a traveller from an antique land, Who said \"Two vast and trunkless legs of stone Stand in the desert. . . . Near them, on the sand, Half sunk a shattered visage lies, whose frown, And wrinkled lip, and sneer of cold command, Tell that its sculptor well those passions read Which yet survive, stamped on these lifeless things, The hand that mocked them, and the heart that fed; And on the pedestal, these words appear: My name is Ozymandias, King of Kings; Look on my Works, ye Mighty, and despair! Nothing beside remains. Round the decay Of that colossal Wreck, boundless and bare The lone and level sands stretch far away """, } @require_torch def A ( self : List[Any] ): """simple docstring""" import torch __snake_case = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def A ( self : Any ): """simple docstring""" import torch __snake_case = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva a : Any = '''''' a : List[str] = '''''' a : List[Any] = '''''' a : List[Any] = 1 # (0 is vertical, 1 is horizontal) def __UpperCAmelCase ( ) -> None: __snake_case , __snake_case = get_dataset(_UpperCAmelCase , _UpperCAmelCase ) print("Processing..." ) __snake_case , __snake_case , __snake_case = update_image_and_anno(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for index, image in enumerate(_UpperCAmelCase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __snake_case = random_chars(32 ) __snake_case = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] __snake_case = F'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(F'''/{file_root}.jpg''' , _UpperCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'''Success {index+1}/{len(_UpperCAmelCase )} with {file_name}''' ) __snake_case = [] for anno in new_annos[index]: __snake_case = F'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_UpperCAmelCase ) with open(F'''/{file_root}.txt''' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> tuple[list, list]: __snake_case = [] __snake_case = [] for label_file in glob.glob(os.path.join(_UpperCAmelCase , "*.txt" ) ): __snake_case = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_UpperCAmelCase ) as in_file: __snake_case = in_file.readlines() __snake_case = os.path.join(_UpperCAmelCase , F'''{label_name}.jpg''' ) __snake_case = [] for obj_list in obj_lists: __snake_case = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_UpperCAmelCase ) labels.append(_UpperCAmelCase ) return img_paths, labels def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int = 1 ) -> tuple[list, list, list]: __snake_case = [] __snake_case = [] __snake_case = [] for idx in range(len(_UpperCAmelCase ) ): __snake_case = [] __snake_case = img_list[idx] path_list.append(_UpperCAmelCase ) __snake_case = anno_list[idx] __snake_case = cva.imread(_UpperCAmelCase ) if flip_type == 1: __snake_case = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __snake_case = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __snake_case = cva.flip(_UpperCAmelCase , _UpperCAmelCase ) for bbox in img_annos: __snake_case = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_UpperCAmelCase ) new_imgs_list.append(_UpperCAmelCase ) return new_imgs_list, new_annos_lists, path_list def __UpperCAmelCase ( _UpperCAmelCase : int = 32 ) -> str: assert number_char > 1, "The number of character should greater than 1" __snake_case = ascii_lowercase + digits return "".join(random.choice(_UpperCAmelCase ) for _ in range(_UpperCAmelCase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Union[str, Any]: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = np.full((len(_UpperCAmelCase ), sequence_length, 2) , _UpperCAmelCase ) else: __snake_case = np.full((len(_UpperCAmelCase ), sequence_length) , _UpperCAmelCase ) for i, tensor in enumerate(_UpperCAmelCase ): if padding_side == "right": if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = tensor[:sequence_length] else: __snake_case = tensor[:sequence_length] else: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = tensor[:sequence_length] else: __snake_case = tensor[:sequence_length] return out_tensor.tolist() def __UpperCAmelCase ( _UpperCAmelCase : int ) -> Union[str, Any]: __snake_case = ord(_UpperCAmelCase ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True __snake_case = unicodedata.category(_UpperCAmelCase ) if cat.startswith("P" ): return True return False @dataclass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = -100 __SCREAMING_SNAKE_CASE = """pt""" def A ( self : List[Any] , a_ : str ): """simple docstring""" import torch __snake_case = "label" if "label" in features[0].keys() else "labels" __snake_case = [feature[label_name] for feature in features] if label_name in features[0].keys() else None __snake_case = self.tokenizer.pad( a_ , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , ) if labels is None: return batch __snake_case = torch.tensor(batch["entity_ids"] ).shape[1] __snake_case = self.tokenizer.padding_side if padding_side == "right": __snake_case = [ list(a_ ) + [self.label_pad_token_id] * (sequence_length - len(a_ )) for label in labels ] else: __snake_case = [ [self.label_pad_token_id] * (sequence_length - len(a_ )) + list(a_ ) for label in labels ] __snake_case = [feature["ner_tags"] for feature in features] __snake_case = padding_tensor(a_ , -1 , a_ , a_ ) __snake_case = [feature["original_entity_spans"] for feature in features] __snake_case = padding_tensor(a_ , (-1, -1) , a_ , a_ ) __snake_case = {k: torch.tensor(a_ , dtype=torch.intaa ) for k, v in batch.items()} return batch
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' from collections.abc import Callable import numpy as np def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> np.ndarray: __snake_case = int(np.ceil((x_end - xa) / step_size ) ) __snake_case = np.zeros((n + 1,) ) __snake_case = ya __snake_case = xa for k in range(_UpperCAmelCase ): __snake_case = y[k] + step_size * ode_func(_UpperCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("repo_id" , ["canonical_dataset_name", "org-name/dataset-name"] ) @pytest.mark.parametrize("path" , ["filename.csv", "filename with blanks.csv"] ) @pytest.mark.parametrize("revision" , [None, "v2"] ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> int: __snake_case = hf_hub_url(repo_id=_UpperCAmelCase , path=_UpperCAmelCase , revision=_UpperCAmelCase ) assert url == F'''https://huggingface.co/datasets/{repo_id}/resolve/{revision or "main"}/{quote(_UpperCAmelCase )}'''
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = None def A__ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict=0.999 , _UpperCAmelCase : List[str]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_UpperCAmelCase : List[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_UpperCAmelCase : Dict ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __snake_case = [] for i in range(_UpperCAmelCase ): __snake_case = i / num_diffusion_timesteps __snake_case = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_UpperCAmelCase ) / alpha_bar_fn(_UpperCAmelCase ) , _UpperCAmelCase ) ) return torch.tensor(_UpperCAmelCase , dtype=torch.floataa ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ): __SCREAMING_SNAKE_CASE = 1 @register_to_config def __init__( self : int , a_ : int = 1_000 , a_ : float = 0.0001 , a_ : float = 0.02 , a_ : str = "linear" , a_ : Optional[Union[np.ndarray, List[float]]] = None , a_ : bool = True , a_ : bool = True , a_ : int = 0 , a_ : str = "epsilon" , a_ : float = 1.0 , **a_ : Any , ): """simple docstring""" if kwargs.get("set_alpha_to_one" , a_ ) is not None: __snake_case = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate("set_alpha_to_one" , "1.0.0" , a_ , standard_warn=a_ ) __snake_case = kwargs["set_alpha_to_one"] if trained_betas is not None: __snake_case = torch.tensor(a_ , dtype=torch.floataa ) elif beta_schedule == "linear": __snake_case = torch.linspace(a_ , a_ , a_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __snake_case = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , a_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __snake_case = betas_for_alpha_bar(a_ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __snake_case = 1.0 - self.betas __snake_case = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __snake_case = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __snake_case = 1.0 # setable values __snake_case = None __snake_case = torch.from_numpy(np.arange(0 , a_ ).copy().astype(np.intaa ) ) def A ( self : str , a_ : torch.FloatTensor , a_ : Optional[int] = None ): """simple docstring""" return sample def A ( self : Optional[Any] , a_ : int , a_ : Union[str, torch.device] = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __snake_case = num_inference_steps __snake_case = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __snake_case = (np.arange(0 , a_ ) * step_ratio).round().copy().astype(np.intaa ) __snake_case = torch.from_numpy(a_ ).to(a_ ) self.timesteps += self.config.steps_offset def A ( self : str , a_ : torch.FloatTensor , a_ : int , a_ : torch.FloatTensor , a_ : float = 0.0 , a_ : bool = False , a_ : Optional[torch.FloatTensor] = None , a_ : bool = True , ): """simple docstring""" __snake_case = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __snake_case = self.alphas_cumprod[timestep] __snake_case = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __snake_case = model_output elif self.config.prediction_type == "sample": __snake_case = model_output __snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __snake_case = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __snake_case = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' " `v_prediction`" ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __snake_case = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=a_ , pred_original_sample=a_ ) def __len__( self : Optional[Any] ): """simple docstring""" return self.config.num_train_timesteps
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu a : List[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def A ( self : Optional[int] ): """simple docstring""" return 12 @property def A ( self : List[Any] ): """simple docstring""" return 12 @property def A ( self : Tuple ): """simple docstring""" return 32 @property def A ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def A ( self : str ): """simple docstring""" torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(a_ ) @property def A ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) __snake_case = 12 __snake_case = 12 __snake_case = { "attention_bias": True, "cross_attention_dim": 32, "attention_head_dim": height * width, "num_attention_heads": 1, "num_vector_embeds": self.num_embed, "num_embeds_ada_norm": self.num_embeds_ada_norm, "norm_num_groups": 32, "sample_size": width, "activation_fn": "geglu-approximate", } __snake_case = TransformeraDModel(**a_ ) return model def A ( self : Tuple ): """simple docstring""" __snake_case = "cpu" __snake_case = self.dummy_vqvae __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_transformer __snake_case = VQDiffusionScheduler(self.num_embed ) __snake_case = LearnedClassifierFreeSamplingEmbeddings(learnable=a_ ) __snake_case = VQDiffusionPipeline( vqvae=a_ , text_encoder=a_ , tokenizer=a_ , transformer=a_ , scheduler=a_ , learned_classifier_free_sampling_embeddings=a_ , ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "teddy bear playing in the pool" __snake_case = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case = pipe([prompt] , generator=a_ , num_inference_steps=2 , output_type="np" ) __snake_case = output.images __snake_case = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case = pipe( [prompt] , generator=a_ , output_type="np" , return_dict=a_ , num_inference_steps=2 )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : Tuple ): """simple docstring""" __snake_case = "cpu" __snake_case = self.dummy_vqvae __snake_case = self.dummy_text_encoder __snake_case = self.dummy_tokenizer __snake_case = self.dummy_transformer __snake_case = VQDiffusionScheduler(self.num_embed ) __snake_case = LearnedClassifierFreeSamplingEmbeddings( learnable=a_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) __snake_case = VQDiffusionPipeline( vqvae=a_ , text_encoder=a_ , tokenizer=a_ , transformer=a_ , scheduler=a_ , learned_classifier_free_sampling_embeddings=a_ , ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "teddy bear playing in the pool" __snake_case = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case = pipe([prompt] , generator=a_ , num_inference_steps=2 , output_type="np" ) __snake_case = output.images __snake_case = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case = pipe( [prompt] , generator=a_ , output_type="np" , return_dict=a_ , num_inference_steps=2 )[0] __snake_case = image[0, -3:, -3:, -1] __snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) __snake_case = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : str ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" ) __snake_case = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq" ) __snake_case = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though __snake_case = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case = pipeline( "teddy bear playing in the pool" , num_images_per_prompt=1 , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' from math import factorial def __UpperCAmelCase ( _UpperCAmelCase : int = 1_00 ) -> int: return sum(int(_UpperCAmelCase ) for x in str(factorial(_UpperCAmelCase ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """dandelin/vilt-b32-finetuned-vqa""" __SCREAMING_SNAKE_CASE = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) __SCREAMING_SNAKE_CASE = """image_qa""" __SCREAMING_SNAKE_CASE = AutoProcessor __SCREAMING_SNAKE_CASE = AutoModelForVisualQuestionAnswering __SCREAMING_SNAKE_CASE = ["""image""", """text"""] __SCREAMING_SNAKE_CASE = ["""text"""] def __init__( self : str , *a_ : Dict , **a_ : Dict ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def A ( self : Tuple , a_ : "Image" , a_ : str ): """simple docstring""" return self.pre_processor(a_ , a_ , return_tensors="pt" ) def A ( self : Dict , a_ : Union[str, Any] ): """simple docstring""" with torch.no_grad(): return self.model(**a_ ).logits def A ( self : List[Any] , a_ : List[str] ): """simple docstring""" __snake_case = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput a : Optional[Any] = 8 def __UpperCAmelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any]=BITS ) -> str: __snake_case = x.device __snake_case = (x * 2_55).int().clamp(0 , 2_55 ) __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_UpperCAmelCase ) __snake_case = rearrange(_UpperCAmelCase , "d -> d 1 1" ) __snake_case = rearrange(_UpperCAmelCase , "b c h w -> b c 1 h w" ) __snake_case = ((x & mask) != 0).float() __snake_case = rearrange(_UpperCAmelCase , "b c d h w -> b (c d) h w" ) __snake_case = bits * 2 - 1 return bits def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=BITS ) -> Optional[Any]: __snake_case = x.device __snake_case = (x > 0).int() __snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_UpperCAmelCase , dtype=torch.intaa ) __snake_case = rearrange(_UpperCAmelCase , "d -> d 1 1" ) __snake_case = rearrange(_UpperCAmelCase , "b (c d) h w -> b c d h w" , d=8 ) __snake_case = reduce(x * mask , "b c d h w -> b c h w" , "sum" ) return (dec / 2_55).clamp(0.0 , 1.0 ) def __UpperCAmelCase ( self : Union[str, Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) __snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas __snake_case = self.alphas_cumprod[timestep] __snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod __snake_case = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(_UpperCAmelCase , -scale , _UpperCAmelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) __snake_case = self._get_variance(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide __snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 __snake_case = model_output.device if torch.is_tensor(_UpperCAmelCase ) else "cpu" __snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_UpperCAmelCase ).to(_UpperCAmelCase ) __snake_case = self._get_variance(_UpperCAmelCase , _UpperCAmelCase ) ** 0.5 * eta * noise __snake_case = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) def __UpperCAmelCase ( self : Union[str, Any] , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : int , _UpperCAmelCase : torch.FloatTensor , _UpperCAmelCase : Dict="epsilon" , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: __snake_case = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: __snake_case , __snake_case = torch.split(_UpperCAmelCase , sample.shape[1] , dim=1 ) else: __snake_case = None # 1. compute alphas, betas __snake_case = self.alphas_cumprod[t] __snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one __snake_case = 1 - alpha_prod_t __snake_case = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": __snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": __snake_case = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" __snake_case = self.bit_scale if self.config.clip_sample: __snake_case = torch.clamp(_UpperCAmelCase , -scale , _UpperCAmelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t __snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise __snake_case = 0 if t > 0: __snake_case = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_UpperCAmelCase ).to(model_output.device ) __snake_case = (self._get_variance(_UpperCAmelCase , predicted_variance=_UpperCAmelCase ) ** 0.5) * noise __snake_case = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_UpperCAmelCase , pred_original_sample=_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Optional[Any] , a_ : UNetaDConditionModel , a_ : Union[DDIMScheduler, DDPMScheduler] , a_ : Optional[float] = 1.0 , ): """simple docstring""" super().__init__() __snake_case = bit_scale __snake_case = ( ddim_bit_scheduler_step if isinstance(a_ , a_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : Dict , a_ : Optional[int] = 256 , a_ : Optional[int] = 256 , a_ : Optional[int] = 50 , a_ : Optional[torch.Generator] = None , a_ : Optional[int] = 1 , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : int , ): """simple docstring""" __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=a_ , ) __snake_case = decimal_to_bits(a_ ) * self.bit_scale __snake_case = latents.to(self.device ) self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual __snake_case = self.unet(a_ , a_ ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case = self.scheduler.step(a_ , a_ , a_ ).prev_sample __snake_case = bits_to_decimal(a_ ) if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None , _UpperCAmelCase : dict[str, float] | None = None , _UpperCAmelCase : bool = False , ) -> tuple[int, float, str]: __snake_case = cipher_alphabet or [chr(_UpperCAmelCase ) for i in range(97 , 1_23 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) __snake_case = { "a": 0.0_8497, "b": 0.0_1492, "c": 0.0_2202, "d": 0.0_4253, "e": 0.1_1162, "f": 0.0_2228, "g": 0.0_2015, "h": 0.0_6094, "i": 0.0_7546, "j": 0.0_0153, "k": 0.0_1292, "l": 0.0_4025, "m": 0.0_2406, "n": 0.0_6749, "o": 0.0_7507, "p": 0.0_1929, "q": 0.0_0095, "r": 0.0_7587, "s": 0.0_6327, "t": 0.0_9356, "u": 0.0_2758, "v": 0.0_0978, "w": 0.0_2560, "x": 0.0_0150, "y": 0.0_1994, "z": 0.0_0077, } else: # Custom frequencies dictionary __snake_case = frequencies_dict if not case_sensitive: __snake_case = ciphertext.lower() # Chi squared statistic values __snake_case = {} # cycle through all of the shifts for shift in range(len(_UpperCAmelCase ) ): __snake_case = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet __snake_case = (alphabet_letters.index(letter.lower() ) - shift) % len( _UpperCAmelCase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter __snake_case = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: __snake_case = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message __snake_case = decrypted_with_shift.lower().count(_UpperCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula __snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message __snake_case = decrypted_with_shift.count(_UpperCAmelCase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies __snake_case = frequencies[letter] * occurrences # Complete the chi squared statistic formula __snake_case = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary __snake_case = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_UpperCAmelCase : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] __snake_case = min( _UpperCAmelCase , key=_UpperCAmelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( __snake_case ) , ( __snake_case ) , ) = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[int] ) -> Dict: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : List[Any] , a_ : nn.Module , a_ : int ): """simple docstring""" super().__init__() __snake_case = module __snake_case = nn.Sequential( nn.Linear(module.in_features , a_ , bias=a_ ) , nn.Linear(a_ , module.out_features , bias=a_ ) , ) __snake_case = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=a_ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def A ( self : Optional[int] , a_ : Optional[Any] , *a_ : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.module(a_ , *a_ , **a_ ) + self.adapter(a_ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): # We keep the constants inside the init function and model loading inside setUp function # We need to test on relatively large models (aka >1b parameters otherwise the quantiztion may not work as expected) # Therefore here we use only bloom-1b3 to test our module __SCREAMING_SNAKE_CASE = """bigscience/bloom-1b7""" # Constant values __SCREAMING_SNAKE_CASE = 2.109_6595_5269_2574 __SCREAMING_SNAKE_CASE = """Hello my name is""" __SCREAMING_SNAKE_CASE = set() EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" ) EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" ) EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" ) __SCREAMING_SNAKE_CASE = 10 def A ( self : Optional[Any] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(self.model_name ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : str ): """simple docstring""" super().setUp() # Models and tokenizer __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a_ , device_map="auto" ) def A ( self : str ): """simple docstring""" del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def A ( self : Dict ): """simple docstring""" __snake_case = self.model_abit.config self.assertTrue(hasattr(a_ , "quantization_config" ) ) __snake_case = config.to_dict() __snake_case = config.to_diff_dict() __snake_case = config.to_json_string() def A ( self : Tuple ): """simple docstring""" from bitsandbytes.nn import Paramsabit __snake_case = self.model_fpaa.get_memory_footprint() __snake_case = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) __snake_case = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def A ( self : Optional[int] ): """simple docstring""" from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(a_ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ) __snake_case = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a_ ) , self.EXPECTED_OUTPUTS ) def A ( self : Tuple ): """simple docstring""" __snake_case = BitsAndBytesConfig() __snake_case = True __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a_ , device_map="auto" ) __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ) __snake_case = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=a_ ) , self.EXPECTED_OUTPUTS ) def A ( self : str ): """simple docstring""" with self.assertRaises(a_ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = BitsAndBytesConfig() with self.assertRaises(a_ ): __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=a_ , load_in_abit=a_ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(a_ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(a_ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(a_ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(a_ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ) __snake_case = self.model_fpaa.to(torch.floataa ) __snake_case = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error __snake_case = self.model_fpaa.to("cpu" ) # Check this does not throw an error __snake_case = self.model_fpaa.half() # Check this does not throw an error __snake_case = self.model_fpaa.float() def A ( self : str ): """simple docstring""" __snake_case = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=a_ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @classmethod def A ( cls : Union[str, Any] ): """simple docstring""" __snake_case = "t5-small" __snake_case = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense __snake_case = AutoTokenizer.from_pretrained(cls.model_name ) __snake_case = "Translate in German: Hello, my dog is cute" def A ( self : Optional[Any] ): """simple docstring""" gc.collect() torch.cuda.empty_cache() def A ( self : Optional[Any] ): """simple docstring""" from transformers import TaForConditionalGeneration __snake_case = TaForConditionalGeneration._keep_in_fpaa_modules __snake_case = None # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a_ , device_map="auto" ) __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case = model.generate(**a_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a_ , device_map="auto" ) __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case = model.generate(**a_ ) __snake_case = modules def A ( self : str ): """simple docstring""" import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` __snake_case = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=a_ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case = model.generate(**a_ ) # test with `flan-t5-small` __snake_case = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=a_ , device_map="auto" ) __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) __snake_case = model.generate(**a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : str ): """simple docstring""" super().setUp() # model_name __snake_case = "bigscience/bloom-560m" __snake_case = "t5-small" # Different types of model __snake_case = AutoModel.from_pretrained(self.model_name , load_in_abit=a_ , device_map="auto" ) # Sequence classification model __snake_case = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=a_ , device_map="auto" ) # CausalLM model __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a_ , device_map="auto" ) # Seq2seq model __snake_case = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=a_ , device_map="auto" ) def A ( self : List[str] ): """simple docstring""" del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def A ( self : int ): """simple docstring""" from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : str ): """simple docstring""" super().setUp() def A ( self : Dict ): """simple docstring""" del self.pipe gc.collect() torch.cuda.empty_cache() def A ( self : str ): """simple docstring""" __snake_case = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass __snake_case = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] ): """simple docstring""" super().setUp() def A ( self : Dict ): """simple docstring""" __snake_case = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=a_ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model __snake_case = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch __snake_case = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=a_ ) , self.EXPECTED_OUTPUTS ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = "facebook/opt-350m" super().setUp() def A ( self : str ): """simple docstring""" if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters __snake_case = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=a_ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): __snake_case = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability __snake_case = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(a_ ) ): __snake_case = LoRALayer(module.q_proj , rank=16 ) __snake_case = LoRALayer(module.k_proj , rank=16 ) __snake_case = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch __snake_case = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): __snake_case = model.forward(**a_ ) out.logits.norm().backward() for module in model.modules(): if isinstance(a_ , a_ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(a_ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """gpt2-xl""" __SCREAMING_SNAKE_CASE = 3.3191_8548_5415_2187
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] ) -> str: __snake_case = int(_UpperCAmelCase ) assert noofclusters < len(_UpperCAmelCase ) # Find out the dimensionality __snake_case = len(vectors[0] ) # Will help select random centroids from among the available vectors __snake_case = list(range(len(_UpperCAmelCase ) ) ) shuffle(_UpperCAmelCase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __snake_case = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __snake_case = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __snake_case = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_UpperCAmelCase ) ] ##These nodes will assign the centroid Variables the appropriate ##values __snake_case = tf.placeholder("float64" , [dim] ) __snake_case = [] for centroid in centroids: cent_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __snake_case = [tf.Variable(0 ) for i in range(len(_UpperCAmelCase ) )] ##These nodes will assign an assignment Variable the appropriate ##value __snake_case = tf.placeholder("int32" ) __snake_case = [] for assignment in assignments: cluster_assigns.append(tf.assign(_UpperCAmelCase , _UpperCAmelCase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __snake_case = tf.placeholder("float" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __snake_case = tf.reduce_mean(_UpperCAmelCase , 0 ) ##Node for computing Euclidean distances # Placeholders for input __snake_case = tf.placeholder("float" , [dim] ) __snake_case = tf.placeholder("float" , [dim] ) __snake_case = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_UpperCAmelCase , _UpperCAmelCase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __snake_case = tf.placeholder("float" , [noofclusters] ) __snake_case = tf.argmin(_UpperCAmelCase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __snake_case = tf.initialize_all_variables() # Initialize all variables sess.run(_UpperCAmelCase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __snake_case = 1_00 for _ in range(_UpperCAmelCase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_UpperCAmelCase ) ): __snake_case = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __snake_case = [ sess.run(_UpperCAmelCase , feed_dict={va: vect, va: sess.run(_UpperCAmelCase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __snake_case = sess.run( _UpperCAmelCase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_UpperCAmelCase ): # Collect all the vectors assigned to this cluster __snake_case = [ vectors[i] for i in range(len(_UpperCAmelCase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __snake_case = sess.run( _UpperCAmelCase , feed_dict={mean_input: array(_UpperCAmelCase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __snake_case = sess.run(_UpperCAmelCase ) __snake_case = sess.run(_UpperCAmelCase ) return centroids, assignments
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 a : str = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , a_ : int = 14 ): """simple docstring""" if group not in primes: raise ValueError("Unsupported Group" ) __snake_case = primes[group]["prime"] __snake_case = primes[group]["generator"] __snake_case = int(hexlify(urandom(32 ) ) , base=16 ) def A ( self : Dict ): """simple docstring""" return hex(self.__private_key )[2:] def A ( self : List[Any] ): """simple docstring""" __snake_case = pow(self.generator , self.__private_key , self.prime ) return hex(a_ )[2:] def A ( self : Tuple , a_ : int ): """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(a_ , (self.prime - 1) // 2 , self.prime ) == 1 ) def A ( self : Tuple , a_ : str ): """simple docstring""" __snake_case = int(a_ , base=16 ) if not self.is_valid_public_key(a_ ): raise ValueError("Invalid public key" ) __snake_case = pow(a_ , self.__private_key , self.prime ) return shaaaa(str(a_ ).encode() ).hexdigest() @staticmethod def A ( a_ : int , a_ : int ): """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(a_ , (prime - 1) // 2 , a_ ) == 1 ) @staticmethod def A ( a_ : str , a_ : str , a_ : int = 14 ): """simple docstring""" __snake_case = int(a_ , base=16 ) __snake_case = int(a_ , base=16 ) __snake_case = primes[group]["prime"] if not DiffieHellman.is_valid_public_key_static(a_ , a_ ): raise ValueError("Invalid public key" ) __snake_case = pow(a_ , a_ , a_ ) return shaaaa(str(a_ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int = 10**12 ) -> int: __snake_case = 1 __snake_case = 0 __snake_case = 1 __snake_case = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(F'''{solution() = }''')
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> List[str]: __snake_case = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) __snake_case = flatten_dict(_UpperCAmelCase ) return flax_params def __UpperCAmelCase ( _UpperCAmelCase : int ) -> List[Any]: __snake_case = {} __snake_case = { "token_embedder": "embeddings", "encoder_norm": "layernorm", "kernel": "weight", ".out": ".output", "scale": "weight", "embedders_0.pos_embedding": "row_embedder.weight", "embedders_1.pos_embedding": "column_embedder.weight", } __snake_case = { "query": "attention.query", "key": "attention.key", "value": "attention.value", "output.dense": "output", "encoder_decoder_attention.o": "encoder_decoder_attention.attention.o", "pre_self_attention_layer_norm": "self_attention.layer_norm", "pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm", "mlp.": "mlp.DenseReluDense.", "pre_mlp_layer_norm": "mlp.layer_norm", "self_attention.o": "self_attention.attention.o", "decoder.embeddings.embedding": "decoder.embed_tokens.weight", "decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight", "decoder.decoder_norm.weight": "decoder.final_layer_norm.weight", "decoder.logits_dense.weight": "decoder.lm_head.weight", } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __snake_case = ".".join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __snake_case = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __snake_case = new_key.replace(_UpperCAmelCase , _UpperCAmelCase ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __snake_case = re.sub(R"layers_(\d+)" , R"layer.\1" , _UpperCAmelCase ) __snake_case = new_key.replace("encoder" , "encoder.encoder" ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __snake_case = re.sub(R"layers_(\d+)" , R"layer.\1" , _UpperCAmelCase ) __snake_case = flax_dict[key] __snake_case = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __snake_case = torch.from_numpy(converted_dict[key].T ) else: __snake_case = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=False ) -> Dict: __snake_case = get_flax_param(_UpperCAmelCase ) if not use_large: __snake_case = PixaStructVisionConfig() __snake_case = PixaStructTextConfig() else: __snake_case = PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __snake_case = PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __snake_case = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_UpperCAmelCase ) __snake_case = PixaStructForConditionalGeneration(_UpperCAmelCase ) __snake_case = rename_and_convert_flax_params(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) __snake_case = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" ) __snake_case = PixaStructImageProcessor() __snake_case = PixaStructProcessor(image_processor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) if use_large: __snake_case = 40_96 __snake_case = True # mkdir if needed os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) print("Model saved in {}".format(_UpperCAmelCase ) ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--t5x_checkpoint_path''', default=None, type=str, help='''Path to the original T5x checkpoint.''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--use_large''', action='''store_true''', help='''Use large model.''') parser.add_argument('''--is_vqa''', action='''store_true''', help='''Use large model.''') a : List[str] = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ) -> Dict: # load base model __snake_case = StableDiffusionPipeline.from_pretrained(_UpperCAmelCase , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors __snake_case = load_file(_UpperCAmelCase ) __snake_case = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: __snake_case = key.split("." )[0].split(LORA_PREFIX_TEXT_ENCODER + "_" )[-1].split("_" ) __snake_case = pipeline.text_encoder else: __snake_case = key.split("." )[0].split(LORA_PREFIX_UNET + "_" )[-1].split("_" ) __snake_case = pipeline.unet # find the target layer __snake_case = layer_infos.pop(0 ) while len(_UpperCAmelCase ) > -1: try: __snake_case = curr_layer.__getattr__(_UpperCAmelCase ) if len(_UpperCAmelCase ) > 0: __snake_case = layer_infos.pop(0 ) elif len(_UpperCAmelCase ) == 0: break except Exception: if len(_UpperCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: __snake_case = layer_infos.pop(0 ) __snake_case = [] if "lora_down" in key: pair_keys.append(key.replace("lora_down" , "lora_up" ) ) pair_keys.append(_UpperCAmelCase ) else: pair_keys.append(_UpperCAmelCase ) pair_keys.append(key.replace("lora_up" , "lora_down" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: __snake_case = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) __snake_case = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCAmelCase , _UpperCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: __snake_case = state_dict[pair_keys[0]].to(torch.floataa ) __snake_case = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_UpperCAmelCase , _UpperCAmelCase ) # update visited list for item in pair_keys: visited.append(_UpperCAmelCase ) return pipeline if __name__ == "__main__": a : int = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') a : Any = parser.parse_args() a : Optional[Any] = args.base_model_path a : List[str] = args.checkpoint_path a : Optional[Any] = args.dump_path a : List[str] = args.lora_prefix_unet a : int = args.lora_prefix_text_encoder a : str = args.alpha a : Optional[Any] = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) a : int = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration a : Optional[Any] = pytest.mark.integration a : List[str] = {'''comet'''} a : Union[str, Any] = importlib.util.find_spec('''fairseq''') is not None a : List[Any] = {'''code_eval'''} a : str = os.name == '''nt''' a : Union[str, Any] = {'''bertscore''', '''frugalscore''', '''perplexity'''} a : Dict = importlib.util.find_spec('''transformers''') is not None def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> Dict: @wraps(_UpperCAmelCase ) def wrapper(self : Optional[int] , _UpperCAmelCase : Optional[int] ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self , _UpperCAmelCase ) return wrapper def __UpperCAmelCase ( _UpperCAmelCase : int ) -> Dict: @wraps(_UpperCAmelCase ) def wrapper(self : List[str] , _UpperCAmelCase : str ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self , _UpperCAmelCase ) return wrapper def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> str: @wraps(_UpperCAmelCase ) def wrapper(self : Any , _UpperCAmelCase : List[Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self , _UpperCAmelCase ) return wrapper def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @local class SCREAMING_SNAKE_CASE__ ( parameterized.TestCase ): __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def A ( self : List[str] , a_ : str ): """simple docstring""" __snake_case = "[...]" __snake_case = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , a_ ) ).module_path ) __snake_case = datasets.load.import_main_class(metric_module.__name__ , dataset=a_ ) # check parameters __snake_case = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(a_ , metric_module.__name__ ): with self.use_local_metrics(): try: __snake_case = doctest.testmod(a_ , verbose=a_ , raise_on_error=a_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def A ( self : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = "[...]" __snake_case = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , a_ ) ).module_path ) # run doctest with self.use_local_metrics(): __snake_case = doctest.testmod(a_ , verbose=a_ , raise_on_error=a_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def A ( self : Any , a_ : Optional[Any] , a_ : List[Any] ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](a_ ): yield else: yield @contextmanager def A ( self : Union[str, Any] ): """simple docstring""" def load_local_metric(a_ : Dict , *a_ : List[Any] , **a_ : List[Any] ): return load_metric(os.path.join("metrics" , a_ ) , *a_ , **a_ ) with patch("datasets.load_metric" ) as mock_load_metric: __snake_case = load_local_metric yield @classmethod def A ( cls : List[str] , a_ : Optional[int] ): """simple docstring""" def wrapper(a_ : Optional[Any] ): __snake_case = contextmanager(a_ ) __snake_case = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] ) -> str: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" , "" , "" ) # handle pytest cli flags class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Optional[Any] , a_ : Any ): """simple docstring""" assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: __snake_case = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> str: import torch def bert_cos_score_idf(_UpperCAmelCase : Any , _UpperCAmelCase : Any , *_UpperCAmelCase : str , **_UpperCAmelCase : Dict ): return torch.tensor([[1.0, 1.0, 1.0]] * len(_UpperCAmelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: __snake_case = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Any: def load_from_checkpoint(_UpperCAmelCase : Tuple ): class SCREAMING_SNAKE_CASE__ : def A ( self : Dict , a_ : Any , *a_ : Dict , **a_ : List[str] ): """simple docstring""" assert len(a_ ) == 2 __snake_case = [0.19, 0.92] return scores, sum(a_ ) / len(a_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: __snake_case = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: __snake_case = load_from_checkpoint yield def __UpperCAmelCase ( ) -> Any: __snake_case = load_metric(os.path.join("metrics" , "seqeval" ) ) __snake_case = "ERROR" __snake_case = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(_UpperCAmelCase , match=re.escape(_UpperCAmelCase ) ): metric.compute(predictions=[] , references=[] , scheme=_UpperCAmelCase )
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a : Union[str, Any] = datasets.utils.logging.get_logger(__name__) a : Tuple = ['''names''', '''prefix'''] a : Union[str, Any] = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] a : Dict = ['''encoding_errors''', '''on_bad_lines'''] a : List[str] = ['''date_format'''] @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): __SCREAMING_SNAKE_CASE = """,""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """infer""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """.""" __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """\"""" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 10000 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = """strict""" __SCREAMING_SNAKE_CASE = """error""" __SCREAMING_SNAKE_CASE = None def A ( self : List[Any] ): """simple docstring""" if self.delimiter is not None: __snake_case = self.delimiter if self.column_names is not None: __snake_case = self.column_names @property def A ( self : int ): """simple docstring""" __snake_case = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , a_ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): __SCREAMING_SNAKE_CASE = CsvConfig def A ( self : Dict ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def A ( self : Optional[Any] , a_ : Dict ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __snake_case = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case = data_files if isinstance(a_ , a_ ): __snake_case = [files] __snake_case = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] __snake_case = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case = [files] __snake_case = [dl_manager.iter_files(a_ ) for file in files] splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={"files": files} ) ) return splits def A ( self : Any , a_ : pa.Table ): """simple docstring""" if self.config.features is not None: __snake_case = self.config.features.arrow_schema if all(not require_storage_cast(a_ ) for feature in self.config.features.values() ): # cheaper cast __snake_case = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=a_ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example __snake_case = table_cast(a_ , a_ ) return pa_table def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" __snake_case = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str __snake_case = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(a_ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): __snake_case = pd.read_csv(a_ , iterator=a_ , dtype=a_ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(a_ ): __snake_case = pa.Table.from_pandas(a_ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(a_ ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(a_ )}: {e}''' ) raise
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): # to overwrite at feature extractactor specific tests __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None @property def A ( self : List[str] ): """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(a_ , "feature_size" ) ) self.assertTrue(hasattr(a_ , "sampling_rate" ) ) self.assertTrue(hasattr(a_ , "padding_value" ) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ ) __snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) __snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: __snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def A ( self : List[Any] ): """simple docstring""" __snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ ) __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) __snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: __snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def A ( self : int ): """simple docstring""" __snake_case = self.feat_extract_tester.prepare_inputs_for_common(equal_length=a_ ) __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} , tensor_type="tf" ) __snake_case = processed_features[input_name] if len(batch_features_input.shape ) < 3: __snake_case = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def A ( self : Optional[int] , a_ : Union[str, Any]=False ): """simple docstring""" def _inputs_have_equal_length(a_ : List[Any] ): __snake_case = len(input[0] ) for input_slice in input[1:]: if len(a_ ) != length: return False return True def _inputs_are_equal(a_ : Optional[int] , a_ : str ): if len(a_ ) != len(a_ ): return False for input_slice_a, input_slice_a in zip(a_ , a_ ): if not np.allclose(np.asarray(a_ ) , np.asarray(a_ ) , atol=1e-3 ): return False return True __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=a_ ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = self.feat_extract_tester.seq_length_diff __snake_case = self.feat_extract_tester.max_seq_length + pad_diff __snake_case = self.feat_extract_tester.min_seq_length __snake_case = self.feat_extract_tester.batch_size __snake_case = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __snake_case = feat_extract.pad(a_ , padding=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="max_length" , max_length=len(speech_inputs[-1] ) ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" ) __snake_case = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="max_length" )[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=a_ , return_tensors="np" ) __snake_case = input_a[input_name] self.assertFalse(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_are_equal(a_ , a_ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy __snake_case = feat_extract.pad(a_ , pad_to_multiple_of=10 ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , pad_to_multiple_of=10 ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , pad_to_multiple_of=10 , max_length=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , pad_to_multiple_of=10 , max_length=a_ , return_tensors="np" , ) __snake_case = input_a[input_name] self.assertTrue(all(len(a_ ) % 10 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(a_ , a_ ) ) __snake_case = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(a_ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct __snake_case = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def A ( self : List[str] , a_ : str=False ): """simple docstring""" def _inputs_have_equal_length(a_ : Union[str, Any] ): __snake_case = len(input[0] ) for input_slice in input[1:]: if len(a_ ) != length: return False return True def _inputs_are_equal(a_ : str , a_ : Tuple ): if len(a_ ) != len(a_ ): return False for input_slice_a, input_slice_a in zip(a_ , a_ ): if not np.allclose(np.asarray(a_ ) , np.asarray(a_ ) , atol=1e-3 ): return False return True __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common(numpify=a_ ) __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) # truncate to smallest __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , truncation=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad(a_ , padding="max_length" , max_length=len(speech_inputs[0] ) ) __snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertFalse(_inputs_have_equal_length(a_ ) ) # truncate to smallest with np __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" , truncation=a_ , ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , return_tensors="np" ) __snake_case = input_a[input_name] self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(a_ ) ) # truncate to middle __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=a_ , return_tensors="np" , ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[1] ) , truncation=a_ ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[1] ) , return_tensors="np" ) __snake_case = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertTrue(_inputs_are_equal(a_ , a_ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(a_ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(a_ ): feat_extract.pad(a_ , truncation=a_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="longest" , truncation=a_ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="longest" , truncation=a_ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(a_ ): feat_extract.pad(a_ , padding="max_length" , truncation=a_ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __snake_case = 12 __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=a_ , truncation=a_ , ) __snake_case = input_a[input_name] __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=a_ , ) __snake_case = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __snake_case = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: __snake_case = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(a_ ) ) self.assertFalse(_inputs_have_equal_length(a_ ) ) def A ( self : List[str] ): """simple docstring""" self._check_padding(numpify=a_ ) def A ( self : str ): """simple docstring""" self._check_padding(numpify=a_ ) def A ( self : Any ): """simple docstring""" self._check_truncation(numpify=a_ ) def A ( self : Union[str, Any] ): """simple docstring""" self._check_truncation(numpify=a_ ) @require_torch def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" )[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.feature_extraction_class(**self.feat_extract_dict ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" )[input_name] __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="tf" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.feat_extract_dict __snake_case = True __snake_case = self.feature_extraction_class(**a_ ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = [len(a_ ) for x in speech_inputs] __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = feat_extract.pad(a_ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.feat_extract_dict __snake_case = True __snake_case = self.feature_extraction_class(**a_ ) __snake_case = self.feat_extract_tester.prepare_inputs_for_common() __snake_case = [len(a_ ) for x in speech_inputs] __snake_case = feat_extract.model_input_names[0] __snake_case = BatchFeature({input_name: speech_inputs} ) __snake_case = min(a_ ) __snake_case = feat_extract.pad( a_ , padding="max_length" , max_length=a_ , truncation=a_ , return_tensors="np" ) self.assertIn("attention_mask" , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : Tuple = { '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType a : List[Any] = logging.get_logger(__name__) a : Optional[int] = { '''microsoft/layoutlmv3-base''': '''https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """layoutlmv3""" def __init__( self : List[Any] , a_ : Optional[int]=50_265 , a_ : Union[str, Any]=768 , a_ : List[str]=12 , a_ : Optional[int]=12 , a_ : Any=3_072 , a_ : Tuple="gelu" , a_ : Tuple=0.1 , a_ : str=0.1 , a_ : Union[str, Any]=512 , a_ : Optional[int]=2 , a_ : str=0.02 , a_ : List[Any]=1e-5 , a_ : str=1 , a_ : str=0 , a_ : Tuple=2 , a_ : Dict=1_024 , a_ : Any=128 , a_ : Optional[Any]=128 , a_ : Optional[int]=True , a_ : List[Any]=32 , a_ : List[Any]=128 , a_ : Dict=64 , a_ : Tuple=256 , a_ : List[str]=True , a_ : List[str]=True , a_ : Optional[Any]=True , a_ : Dict=224 , a_ : Dict=3 , a_ : List[Any]=16 , a_ : Any=None , **a_ : Optional[Any] , ): """simple docstring""" super().__init__( vocab_size=a_ , hidden_size=a_ , num_hidden_layers=a_ , num_attention_heads=a_ , intermediate_size=a_ , hidden_act=a_ , hidden_dropout_prob=a_ , attention_probs_dropout_prob=a_ , max_position_embeddings=a_ , type_vocab_size=a_ , initializer_range=a_ , layer_norm_eps=a_ , pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ , ) __snake_case = max_ad_position_embeddings __snake_case = coordinate_size __snake_case = shape_size __snake_case = has_relative_attention_bias __snake_case = rel_pos_bins __snake_case = max_rel_pos __snake_case = has_spatial_attention_bias __snake_case = rel_ad_pos_bins __snake_case = max_rel_ad_pos __snake_case = text_embed __snake_case = visual_embed __snake_case = input_size __snake_case = num_channels __snake_case = patch_size __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.12""" ) @property def A ( self : List[Any] ): """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def A ( self : int ): """simple docstring""" return 1e-5 @property def A ( self : Tuple ): """simple docstring""" return 12 def A ( self : List[str] , a_ : "ProcessorMixin" , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , a_ : int = 3 , a_ : int = 40 , a_ : int = 40 , ): """simple docstring""" setattr(processor.image_processor , "apply_ocr" , a_ ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __snake_case = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = processor.tokenizer.num_special_tokens_to_add(a_ ) __snake_case = compute_effective_axis_dimension( a_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a_ ) # Generate dummy inputs according to compute batch and sequence __snake_case = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __snake_case = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __snake_case = self._generate_dummy_images(a_ , a_ , a_ , a_ ) __snake_case = dict( processor( a_ , text=a_ , boxes=a_ , return_tensors=a_ , ) ) return inputs
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , a_ : int , a_ : int=None , a_ : Optional[Any]=None ): """simple docstring""" __snake_case = data __snake_case = previous __snake_case = next_node def __str__( self : int ): """simple docstring""" return f'''{self.data}''' def A ( self : Optional[Any] ): """simple docstring""" return self.data def A ( self : List[Any] ): """simple docstring""" return self.next def A ( self : int ): """simple docstring""" return self.previous class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : int ): """simple docstring""" __snake_case = head def __iter__( self : int ): """simple docstring""" return self def A ( self : Tuple ): """simple docstring""" if not self.current: raise StopIteration else: __snake_case = self.current.get_data() __snake_case = self.current.get_next() return value class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] ): """simple docstring""" __snake_case = None # First node in list __snake_case = None # Last node in list def __str__( self : Optional[int] ): """simple docstring""" __snake_case = self.head __snake_case = [] while current is not None: nodes.append(current.get_data() ) __snake_case = current.get_next() return " ".join(str(a_ ) for node in nodes ) def __contains__( self : int , a_ : int ): """simple docstring""" __snake_case = self.head while current: if current.get_data() == value: return True __snake_case = current.get_next() return False def __iter__( self : int ): """simple docstring""" return LinkedListIterator(self.head ) def A ( self : List[Any] ): """simple docstring""" if self.head: return self.head.get_data() return None def A ( self : Tuple ): """simple docstring""" if self.tail: return self.tail.get_data() return None def A ( self : int , a_ : Node ): """simple docstring""" if self.head is None: __snake_case = node __snake_case = node else: self.insert_before_node(self.head , a_ ) def A ( self : List[Any] , a_ : Node ): """simple docstring""" if self.head is None: self.set_head(a_ ) else: self.insert_after_node(self.tail , a_ ) def A ( self : int , a_ : int ): """simple docstring""" __snake_case = Node(a_ ) if self.head is None: self.set_head(a_ ) else: self.set_tail(a_ ) def A ( self : Dict , a_ : Node , a_ : Node ): """simple docstring""" __snake_case = node __snake_case = node.previous if node.get_previous() is None: __snake_case = node_to_insert else: __snake_case = node_to_insert __snake_case = node_to_insert def A ( self : int , a_ : Node , a_ : Node ): """simple docstring""" __snake_case = node __snake_case = node.next if node.get_next() is None: __snake_case = node_to_insert else: __snake_case = node_to_insert __snake_case = node_to_insert def A ( self : List[Any] , a_ : int , a_ : int ): """simple docstring""" __snake_case = 1 __snake_case = Node(a_ ) __snake_case = self.head while node: if current_position == position: self.insert_before_node(a_ , a_ ) return current_position += 1 __snake_case = node.next self.insert_after_node(self.tail , a_ ) def A ( self : Any , a_ : int ): """simple docstring""" __snake_case = self.head while node: if node.get_data() == item: return node __snake_case = node.get_next() raise Exception("Node not found" ) def A ( self : List[Any] , a_ : Union[str, Any] ): """simple docstring""" if (node := self.get_node(a_ )) is not None: if node == self.head: __snake_case = self.head.get_next() if node == self.tail: __snake_case = self.tail.get_previous() self.remove_node_pointers(a_ ) @staticmethod def A ( a_ : Node ): """simple docstring""" if node.get_next(): __snake_case = node.previous if node.get_previous(): __snake_case = node.next __snake_case = None __snake_case = None def A ( self : List[Any] ): """simple docstring""" return self.head is None def __UpperCAmelCase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import re def A__ ( _UpperCAmelCase : str ) -> str: if len(re.findall("[ATCG]" , _UpperCAmelCase ) ) != len(_UpperCAmelCase ): raise ValueError("Invalid Strand" ) return dna.translate(dna.maketrans("ATCG" , "TAGC" ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' import pprint import requests a : int = '''https://zenquotes.io/api''' def __UpperCAmelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + "/today" ).json() def __UpperCAmelCase ( ) -> list: return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": a : str = random_quotes() pprint.pprint(response)
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a : Optional[int] = logging.get_logger(__name__) a : Any = { '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """resnet""" __SCREAMING_SNAKE_CASE = ["""basic""", """bottleneck"""] def __init__( self : Optional[int] , a_ : int=3 , a_ : List[str]=64 , a_ : Any=[256, 512, 1_024, 2_048] , a_ : Any=[3, 4, 6, 3] , a_ : str="bottleneck" , a_ : List[Any]="relu" , a_ : Dict=False , a_ : List[Any]=None , a_ : Tuple=None , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if layer_type not in self.layer_types: raise ValueError(f'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) __snake_case = num_channels __snake_case = embedding_size __snake_case = hidden_sizes __snake_case = depths __snake_case = layer_type __snake_case = hidden_act __snake_case = downsample_in_first_stage __snake_case = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(a_ ) + 1 )] __snake_case , __snake_case = get_aligned_output_features_output_indices( out_features=a_ , out_indices=a_ , stage_names=self.stage_names ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def A ( self : str ): """simple docstring""" return 1e-3
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ) -> List[Any]: __snake_case = k_size // 2 __snake_case , __snake_case = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __snake_case = 1 / (2 * pi * sigma) * exp(-(square(_UpperCAmelCase ) + square(_UpperCAmelCase )) / (2 * square(_UpperCAmelCase )) ) return g def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ) -> Optional[int]: __snake_case , __snake_case = image.shape[0], image.shape[1] # dst image height and width __snake_case = height - k_size + 1 __snake_case = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __snake_case = zeros((dst_height * dst_width, k_size * k_size) ) __snake_case = 0 for i, j in product(range(_UpperCAmelCase ) , range(_UpperCAmelCase ) ): __snake_case = ravel(image[i : i + k_size, j : j + k_size] ) __snake_case = window row += 1 # turn the kernel into shape(k*k, 1) __snake_case = gen_gaussian_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = ravel(_UpperCAmelCase ) # reshape and get the dst image __snake_case = dot(_UpperCAmelCase , _UpperCAmelCase ).reshape(_UpperCAmelCase , _UpperCAmelCase ).astype(_UpperCAmelCase ) return dst if __name__ == "__main__": # read original image a : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value a : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size a : Optional[int] = gaussian_filter(gray, 3, sigma=1) a : str = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def __UpperCAmelCase ( _UpperCAmelCase : str ) -> List[Any]: return EnvironmentCommand() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @staticmethod def A ( a_ : ArgumentParser ): """simple docstring""" __snake_case = parser.add_parser("env" ) download_parser.set_defaults(func=a_ ) def A ( self : int ): """simple docstring""" __snake_case = huggingface_hub.__version__ __snake_case = "not installed" __snake_case = "NA" if is_torch_available(): import torch __snake_case = torch.__version__ __snake_case = torch.cuda.is_available() __snake_case = "not installed" if is_transformers_available(): import transformers __snake_case = transformers.__version__ __snake_case = "not installed" if is_accelerate_available(): import accelerate __snake_case = accelerate.__version__ __snake_case = "not installed" if is_xformers_available(): import xformers __snake_case = xformers.__version__ __snake_case = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f'''{pt_version} ({pt_cuda_available})''', "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(a_ ) ) return info @staticmethod def A ( a_ : List[str] ): """simple docstring""" return "\n".join([f'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict ) -> List[str]: # Initialise PyTorch model __snake_case = BertConfig.from_json_file(_UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) __snake_case = BertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_bert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": a : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' from statistics import mean import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ) -> list: __snake_case = 0 # Number of processes finished __snake_case = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __snake_case = [0] * no_of_process # List to include calculation results __snake_case = [0] * no_of_process # Sort by arrival time. __snake_case = [burst_time[i] for i in np.argsort(_UpperCAmelCase )] __snake_case = [process_name[i] for i in np.argsort(_UpperCAmelCase )] arrival_time.sort() while no_of_process > finished_process_count: __snake_case = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __snake_case = arrival_time[i] __snake_case = 0 # Index showing the location of the process being performed __snake_case = 0 # Saves the current response ratio. __snake_case = 0 for i in range(0 , _UpperCAmelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: __snake_case = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __snake_case = temp __snake_case = i # Calculate the turn around time __snake_case = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __snake_case = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : list , _UpperCAmelCase : int ) -> list: __snake_case = [0] * no_of_process for i in range(0 , _UpperCAmelCase ): __snake_case = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": a : Dict = 5 a : List[Any] = ['''A''', '''B''', '''C''', '''D''', '''E'''] a : List[str] = [1, 2, 3, 4, 5] a : str = [1, 2, 3, 4, 5] a : List[Any] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) a : Optional[Any] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Dict , a_ : str , a_ : Tuple ): """simple docstring""" super().__init__() self.register_modules(unet=a_ , scheduler=a_ ) @torch.no_grad() def __call__( self : Tuple , a_ : int = 1 , a_ : Optional[torch.Generator] = None , a_ : int = 50 , a_ : Optional[str] = "pil" , a_ : bool = True , **a_ : Dict , ): """simple docstring""" __snake_case = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=a_ , ) __snake_case = image.to(self.device ) # set step values self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __snake_case = self.unet(a_ , a_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __snake_case = self.scheduler.step(a_ , a_ , a_ ).prev_sample __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(a_ ) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=a_ ), "This is a local test"
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Optional[Any] , a_ : Optional[int]=13 , a_ : Optional[Any]=7 , a_ : Any=True , a_ : str=True , a_ : int=True , a_ : List[str]=True , a_ : Dict=True , a_ : Any=False , a_ : Any=False , a_ : Optional[Any]=False , a_ : Optional[int]=2 , a_ : List[str]=99 , a_ : List[Any]=0 , a_ : Tuple=32 , a_ : str=5 , a_ : Dict=4 , a_ : Tuple=0.1 , a_ : Any=0.1 , a_ : Dict=512 , a_ : Optional[Any]=12 , a_ : Dict=2 , a_ : Tuple=0.02 , a_ : Tuple=3 , a_ : List[str]=4 , a_ : Tuple="last" , a_ : Optional[int]=None , a_ : Optional[Any]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_lengths __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = gelu_activation __snake_case = sinusoidal_embeddings __snake_case = causal __snake_case = asm __snake_case = n_langs __snake_case = vocab_size __snake_case = n_special __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = summary_type __snake_case = use_proj __snake_case = scope def A ( self : List[Any] ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None if self.use_input_lengths: __snake_case = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __snake_case = None if self.use_token_type_ids: __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , 2 ).float() __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A ( self : Optional[int] ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def A ( self : Union[str, Any] , a_ : Union[str, Any] , a_ : Dict , a_ : str , a_ : str , a_ : Optional[int] , a_ : Dict , a_ : str , a_ : Optional[int] , a_ : Dict , ): """simple docstring""" __snake_case = FlaubertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , lengths=a_ , langs=a_ ) __snake_case = model(a_ , langs=a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , a_ : int , a_ : str , a_ : str , a_ : Tuple , a_ : str , a_ : Optional[Any] , a_ : str , a_ : Dict , a_ : Optional[int] , ): """simple docstring""" __snake_case = FlaubertWithLMHeadModel(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Union[str, Any] , a_ : int , a_ : int , a_ : str , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : Any , a_ : Tuple , a_ : Any , a_ : Tuple , ): """simple docstring""" __snake_case = FlaubertForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) __snake_case = model(a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Tuple , a_ : Any , a_ : Union[str, Any] , a_ : int , a_ : Any , a_ : Union[str, Any] , a_ : str , a_ : List[Any] , a_ : Optional[int] , a_ : Union[str, Any] , ): """simple docstring""" __snake_case = FlaubertForQuestionAnswering(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) __snake_case = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , p_mask=a_ , ) __snake_case = model( a_ , start_positions=a_ , end_positions=a_ , cls_index=a_ , is_impossible=a_ , ) ((__snake_case ) , ) = result_with_labels.to_tuple() __snake_case = model(a_ , start_positions=a_ , end_positions=a_ ) ((__snake_case ) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A ( self : int , a_ : Any , a_ : Union[str, Any] , a_ : Any , a_ : int , a_ : List[str] , a_ : Optional[Any] , a_ : Dict , a_ : Any , a_ : List[str] , ): """simple docstring""" __snake_case = FlaubertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : List[Any] , a_ : Optional[int] , a_ : int , a_ : int , a_ : List[str] , a_ : Dict , a_ : Union[str, Any] , a_ : Union[str, Any] , a_ : Optional[int] , a_ : Optional[Any] , ): """simple docstring""" __snake_case = self.num_labels __snake_case = FlaubertForTokenClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Optional[Any] , a_ : List[Any] , a_ : Dict , a_ : int , a_ : Dict , a_ : List[Any] , a_ : Optional[int] , a_ : Optional[int] , a_ : Dict , a_ : List[Any] , ): """simple docstring""" __snake_case = self.num_choices __snake_case = FlaubertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case = model( a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def A ( self : List[Any] , a_ : Tuple , a_ : Optional[int] , a_ : str , a_ : int , a_ : Any ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A ( self : List[str] , a_ : List[str] , a_ : List[Any] , a_ : Any=False ): """simple docstring""" __snake_case = super()._prepare_for_class(a_ , a_ , return_labels=a_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) __snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) return inputs_dict def A ( self : List[str] ): """simple docstring""" __snake_case = FlaubertModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , emb_dim=37 ) def A ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*a_ ) @slow def A ( self : Optional[Any] ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = FlaubertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def A ( self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __snake_case = True __snake_case = model_class(config=a_ ) __snake_case = self._prepare_for_class(a_ , a_ ) __snake_case = torch.jit.trace( a_ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , "traced_model.pt" ) ) __snake_case = torch.jit.load(os.path.join(a_ , "traced_model.pt" ) , map_location=a_ ) loaded(inputs_dict["input_ids"].to(a_ ) , inputs_dict["attention_mask"].to(a_ ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Any ): """simple docstring""" __snake_case = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) __snake_case = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) with torch.no_grad(): __snake_case = model(a_ )[0] __snake_case = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , a_ ) __snake_case = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a_ , atol=1e-4 ) )
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE = frozenset([] ) def A ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) __snake_case = PNDMScheduler(skip_prk_steps=a_ ) torch.manual_seed(0 ) __snake_case = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __snake_case = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) __snake_case = CLIPTextModel(a_ ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) __snake_case = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def A ( self : Tuple , a_ : int , a_ : Optional[int]=0 ): """simple docstring""" __snake_case = floats_tensor((1, 3, 32, 32) , rng=random.Random(a_ ) ).to(a_ ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 )[0] __snake_case = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((64, 64) ) __snake_case = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def A ( self : List[Any] ): """simple docstring""" __snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator __snake_case = self.get_dummy_components() __snake_case = StableDiffusionInpaintPipeline(**a_ ) __snake_case = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) __snake_case = self.get_dummy_inputs(a_ ) __snake_case = sd_pipe(**a_ ).images __snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A ( self : List[Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Dict ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = StableDiffusionInpaintPipeline.from_pretrained(a_ , safety_checker=a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A ( self : Any ): """simple docstring""" __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = StableDiffusionInpaintPipeline.from_pretrained( a_ , torch_dtype=torch.floataa , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , output_type="np" , ) __snake_case = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A ( self : List[Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) __snake_case = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) __snake_case = "stabilityai/stable-diffusion-2-inpainting" __snake_case = PNDMScheduler.from_pretrained(a_ , subfolder="scheduler" ) __snake_case = StableDiffusionInpaintPipeline.from_pretrained( a_ , safety_checker=a_ , scheduler=a_ , torch_dtype=torch.floataa , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __snake_case = "Face of a yellow cat, high resolution, sitting on a park bench" __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , image=a_ , mask_image=a_ , generator=a_ , num_inference_steps=2 , output_type="np" , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : list ) -> int: if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] __snake_case = grid[0] for row_n in range(1 , len(_UpperCAmelCase ) ): __snake_case = grid[row_n] __snake_case = fill_row(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = grid[row_n] return grid[-1][-1] def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : list ) -> list: current_row[0] += row_above[0] for cell_n in range(1 , len(_UpperCAmelCase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def __UpperCAmelCase ( _UpperCAmelCase : dict ) -> tuple: return (data["data"], data["target"]) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray ) -> XGBClassifier: __snake_case = XGBClassifier() classifier.fit(_UpperCAmelCase , _UpperCAmelCase ) return classifier def __UpperCAmelCase ( ) -> None: __snake_case = load_iris() __snake_case , __snake_case = data_handling(_UpperCAmelCase ) __snake_case , __snake_case , __snake_case , __snake_case = train_test_split( _UpperCAmelCase , _UpperCAmelCase , test_size=0.25 ) __snake_case = iris["target_names"] # Create an XGBoost Classifier from the training data __snake_case = xgboost(_UpperCAmelCase , _UpperCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , display_labels=_UpperCAmelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger a : Optional[int] = get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): __SCREAMING_SNAKE_CASE = """all_checks""" __SCREAMING_SNAKE_CASE = """basic_checks""" __SCREAMING_SNAKE_CASE = """no_checks""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass def __UpperCAmelCase ( _UpperCAmelCase : Optional[dict] , _UpperCAmelCase : dict , _UpperCAmelCase : int=None ) -> Union[str, Any]: if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) __snake_case = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] __snake_case = " for " + verification_name if verification_name is not None else "" if len(_UpperCAmelCase ) > 0: raise NonMatchingChecksumError( F'''Checksums didn\'t match{for_verification_name}:\n''' F'''{bad_urls}\n''' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): pass def __UpperCAmelCase ( _UpperCAmelCase : Optional[dict] , _UpperCAmelCase : dict ) -> List[str]: if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) if len(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(_UpperCAmelCase ) - set(_UpperCAmelCase ) ) ) __snake_case = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(_UpperCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(_UpperCAmelCase ) ) logger.info("All the splits matched successfully." ) def __UpperCAmelCase ( _UpperCAmelCase : str , _UpperCAmelCase : bool = True ) -> dict: if record_checksum: __snake_case = shaaaa() with open(_UpperCAmelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B"" ): m.update(_UpperCAmelCase ) __snake_case = m.hexdigest() else: __snake_case = None return {"num_bytes": os.path.getsize(_UpperCAmelCase ), "checksum": checksum} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Dict: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = StableUnCLIPPipeline __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS __SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __SCREAMING_SNAKE_CASE = False def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = 32 __snake_case = embedder_hidden_size # prior components torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a_ , projection_dim=a_ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __snake_case = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=a_ , num_layers=1 , ) torch.manual_seed(0 ) __snake_case = DDPMScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=a_ , clip_sample_range=5.0 , beta_schedule="squaredcos_cap_v2" , ) # regular denoising components torch.manual_seed(0 ) __snake_case = StableUnCLIPImageNormalizer(embedding_dim=a_ ) __snake_case = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=a_ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) __snake_case = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=a_ , layers_per_block=1 , upcast_attention=a_ , use_linear_projection=a_ , ) torch.manual_seed(0 ) __snake_case = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=a_ , steps_offset=1 , ) torch.manual_seed(0 ) __snake_case = AutoencoderKL() __snake_case = { # prior components "prior_tokenizer": prior_tokenizer, "prior_text_encoder": prior_text_encoder, "prior": prior, "prior_scheduler": prior_scheduler, # image noising components "image_normalizer": image_normalizer, "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder, "unet": unet, "scheduler": scheduler, "vae": vae, } return components def A ( self : Tuple , a_ : Dict , a_ : str=0 ): """simple docstring""" if str(a_ ).startswith("mps" ): __snake_case = torch.manual_seed(a_ ) else: __snake_case = torch.Generator(device=a_ ).manual_seed(a_ ) __snake_case = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "prior_num_inference_steps": 2, "output_type": "numpy", } return inputs def A ( self : Tuple ): """simple docstring""" __snake_case = torch_device == "cpu" self._test_attention_slicing_forward_pass(test_max_difference=a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=a_ ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Optional[int] ): """simple docstring""" __snake_case = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy" ) __snake_case = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case = pipe("anime turle" , generator=a_ , output_type="np" ) __snake_case = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a_ , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case = StableUnCLIPPipeline.from_pretrained("fusing/stable-unclip-2-1-l" , torch_dtype=torch.floataa ) __snake_case = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case = pipe( "anime turtle" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="np" , ) __snake_case = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING a : str = logging.get_logger(__name__) @add_end_docstrings(_UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Tuple , *a_ : List[str] , **a_ : Any ): """simple docstring""" super().__init__(*a_ , **a_ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def A ( self : int , a_ : Tuple=None , a_ : List[str]=None , a_ : Dict=None ): """simple docstring""" __snake_case = {} __snake_case = {} if prompt is not None: __snake_case = prompt if generate_kwargs is not None: __snake_case = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __snake_case = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( "'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter," " please use only one" ) __snake_case = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , a_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **a_ : Optional[int] ): """simple docstring""" return super().__call__(a_ , **a_ ) def A ( self : Tuple , a_ : Optional[int] , a_ : Tuple=None ): """simple docstring""" __snake_case = load_image(a_ ) if prompt is not None: if not isinstance(a_ , a_ ): raise ValueError( f'''Received an invalid text input, got - {type(a_ )} - but expected a single string. ''' "Note also that one single text can be provided for conditional image to text generation." ) __snake_case = self.model.config.model_type if model_type == "git": __snake_case = self.image_processor(images=a_ , return_tensors=self.framework ) __snake_case = self.tokenizer(text=a_ , add_special_tokens=a_ ).input_ids __snake_case = [self.tokenizer.cls_token_id] + input_ids __snake_case = torch.tensor(a_ ).unsqueeze(0 ) model_inputs.update({"input_ids": input_ids} ) elif model_type == "pix2struct": __snake_case = self.image_processor(images=a_ , header_text=a_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __snake_case = self.image_processor(images=a_ , return_tensors=self.framework ) __snake_case = self.tokenizer(a_ , return_tensors=self.framework ) model_inputs.update(a_ ) else: raise ValueError(f'''Model type {model_type} does not support conditional text generation''' ) else: __snake_case = self.image_processor(images=a_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __snake_case = None return model_inputs def A ( self : List[str] , a_ : List[str] , a_ : Optional[int]=None ): """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["input_ids"] , a_ ) and all(x is None for x in model_inputs["input_ids"] ) ): __snake_case = None if generate_kwargs is None: __snake_case = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __snake_case = model_inputs.pop(self.model.main_input_name ) __snake_case = self.model.generate(a_ , **a_ , **a_ ) return model_outputs def A ( self : List[str] , a_ : Any ): """simple docstring""" __snake_case = [] for output_ids in model_outputs: __snake_case = { "generated_text": self.tokenizer.decode( a_ , skip_special_tokens=a_ , ) } records.append(a_ ) return records
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) a : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''NllbTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = ['''NllbTokenizerFast'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """deta""" __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : str , a_ : str=None , a_ : List[Any]=900 , a_ : Optional[Any]=2_048 , a_ : Optional[int]=6 , a_ : Dict=2_048 , a_ : Optional[Any]=8 , a_ : List[str]=6 , a_ : Optional[Any]=1_024 , a_ : List[Any]=8 , a_ : List[Any]=0.0 , a_ : int=True , a_ : Union[str, Any]="relu" , a_ : Optional[int]=256 , a_ : Union[str, Any]=0.1 , a_ : Tuple=0.0 , a_ : Optional[Any]=0.0 , a_ : Optional[int]=0.02 , a_ : str=1.0 , a_ : Dict=True , a_ : Dict=False , a_ : int="sine" , a_ : str=5 , a_ : Any=4 , a_ : Union[str, Any]=4 , a_ : Tuple=True , a_ : str=300 , a_ : List[Any]=True , a_ : Dict=True , a_ : Dict=1 , a_ : Optional[Any]=5 , a_ : Union[str, Any]=2 , a_ : Union[str, Any]=1 , a_ : Dict=1 , a_ : str=5 , a_ : List[Any]=2 , a_ : Dict=0.1 , a_ : Any=0.25 , **a_ : int , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __snake_case = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] ) else: if isinstance(a_ , a_ ): __snake_case = backbone_config.pop("model_type" ) __snake_case = CONFIG_MAPPING[backbone_model_type] __snake_case = config_class.from_dict(a_ ) __snake_case = backbone_config __snake_case = num_queries __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = init_xavier_std __snake_case = encoder_layerdrop __snake_case = auxiliary_loss __snake_case = position_embedding_type # deformable attributes __snake_case = num_feature_levels __snake_case = encoder_n_points __snake_case = decoder_n_points __snake_case = two_stage __snake_case = two_stage_num_proposals __snake_case = with_box_refine __snake_case = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True." ) # Hungarian matcher __snake_case = class_cost __snake_case = bbox_cost __snake_case = giou_cost # Loss coefficients __snake_case = mask_loss_coefficient __snake_case = dice_loss_coefficient __snake_case = bbox_loss_coefficient __snake_case = giou_loss_coefficient __snake_case = eos_coefficient __snake_case = focal_alpha super().__init__(is_encoder_decoder=a_ , **a_ ) @property def A ( self : Tuple ): """simple docstring""" return self.encoder_attention_heads @property def A ( self : str ): """simple docstring""" return self.d_model def A ( self : List[str] ): """simple docstring""" __snake_case = copy.deepcopy(self.__dict__ ) __snake_case = self.backbone_config.to_dict() __snake_case = self.__class__.model_type return output
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor a : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : Dict , *a_ : Dict , **a_ : Any ): """simple docstring""" warnings.warn( "The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use DeformableDetrImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a : Union[str, Any] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , *a_ : str , **a_ : Optional[int] ): """simple docstring""" warnings.warn( "The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use YolosImageProcessor instead." , a_ , ) super().__init__(*a_ , **a_ )
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a : List[str] = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Union[str, Any] = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : str = { '''naver-clova-ix/donut-base''': '''https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json''', # See all Donut models at https://huggingface.co/models?filter=donut-swin } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """donut-swin""" __SCREAMING_SNAKE_CASE = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Optional[Any] , a_ : List[Any]=224 , a_ : List[Any]=4 , a_ : int=3 , a_ : Dict=96 , a_ : Union[str, Any]=[2, 2, 6, 2] , a_ : List[str]=[3, 6, 12, 24] , a_ : Optional[Any]=7 , a_ : List[Any]=4.0 , a_ : Optional[Any]=True , a_ : Any=0.0 , a_ : Union[str, Any]=0.0 , a_ : Dict=0.1 , a_ : int="gelu" , a_ : Dict=False , a_ : int=0.02 , a_ : str=1e-5 , **a_ : str , ): """simple docstring""" super().__init__(**a_ ) __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = embed_dim __snake_case = depths __snake_case = len(a_ ) __snake_case = num_heads __snake_case = window_size __snake_case = mlp_ratio __snake_case = qkv_bias __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = drop_path_rate __snake_case = hidden_act __snake_case = use_absolute_embeddings __snake_case = layer_norm_eps __snake_case = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case = int(embed_dim * 2 ** (len(a_ ) - 1) )
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' import math def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : int = 0 , _UpperCAmelCase : int = 0 ) -> list: __snake_case = end or len(_UpperCAmelCase ) for i in range(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = i __snake_case = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __snake_case = array[temp_index - 1] temp_index -= 1 __snake_case = temp_index_value return array def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> None: # Max Heap __snake_case = index __snake_case = 2 * index + 1 # Left Node __snake_case = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __snake_case = left_index if right_index < heap_size and array[largest] < array[right_index]: __snake_case = right_index if largest != index: __snake_case , __snake_case = array[largest], array[index] heapify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : list ) -> list: __snake_case = len(_UpperCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) for i in range(n - 1 , 0 , -1 ): __snake_case , __snake_case = array[0], array[i] heapify(_UpperCAmelCase , 0 , _UpperCAmelCase ) return array def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: __snake_case = low __snake_case = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __snake_case , __snake_case = array[j], array[i] i += 1 def __UpperCAmelCase ( _UpperCAmelCase : list ) -> list: if len(_UpperCAmelCase ) == 0: return array __snake_case = 2 * math.ceil(math.loga(len(_UpperCAmelCase ) ) ) __snake_case = 16 return intro_sort(_UpperCAmelCase , 0 , len(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : list , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(_UpperCAmelCase ) max_depth -= 1 __snake_case = median_of_a(_UpperCAmelCase , _UpperCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) __snake_case = partition(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) intro_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = p return insertion_sort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() a : Union[str, Any] = input('''Enter numbers separated by a comma : ''').strip() a : Dict = [float(item) for item in user_input.split(''',''')] print(sort(unsorted))
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' def A__ ( ) -> Tuple: __snake_case = 0 for i in range(1 , 10_01 ): total += i**i return str(_UpperCAmelCase )[-10:] if __name__ == "__main__": print(solution())
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int = 10 ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or n < 0: raise ValueError("Invalid input" ) __snake_case = 10**n __snake_case = 2_84_33 * (pow(2 , 7_83_04_57 , _UpperCAmelCase )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(10) = }''')
717
'''simple docstring''' import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def __UpperCAmelCase ( _UpperCAmelCase : Dict ) -> int: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def __UpperCAmelCase ( ) -> Dict: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case = [1, 2, 3] with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=2 ) with pytest.raises(_UpperCAmelCase ): with parallel_backend("unsupported backend" ): map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] ) -> Optional[int]: __snake_case = [1, 2] __snake_case = {"a": 1, "b": 2} __snake_case = {"a": [1, 2], "b": [3, 4]} __snake_case = {"a": {"1": 1}, "b": 2} __snake_case = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case = [2, 3] __snake_case = {"a": 2, "b": 3} __snake_case = {"a": [2, 3], "b": [4, 5]} __snake_case = {"a": {"1": 2}, "b": 3} __snake_case = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa assert map_nested(_UpperCAmelCase , _UpperCAmelCase , num_proc=_UpperCAmelCase ) == expected_map_nested_sa
680
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging a : Optional[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Tuple , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : bool = True , a_ : Dict[str, int] = None , a_ : bool = True , a_ : Union[int, float] = 1 / 255 , a_ : bool = True , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = True , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"shortest_edge": 224} __snake_case = get_size_dict(a_ , default_to_square=a_ ) __snake_case = crop_size if crop_size is not None else {"height": 224, "width": 224} __snake_case = get_size_dict(a_ , default_to_square=a_ , param_name="crop_size" ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_rescale __snake_case = rescale_factor __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __snake_case = image_std if image_std is not None else OPENAI_CLIP_STD __snake_case = do_convert_rgb def A ( self : str , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BICUBIC , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[Any] , ): """simple docstring""" __snake_case = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __snake_case = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def A ( self : int , a_ : np.ndarray , a_ : Dict[str, int] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Any , ): """simple docstring""" __snake_case = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def A ( self : str , a_ : np.ndarray , a_ : Union[int, float] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : Tuple , ): """simple docstring""" return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def A ( self : Optional[Any] , a_ : np.ndarray , a_ : Union[float, List[float]] , a_ : Union[float, List[float]] , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : List[Any] , ): """simple docstring""" return normalize(a_ , mean=a_ , std=a_ , data_format=a_ , **a_ ) def A ( self : Dict , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : int = None , a_ : bool = None , a_ : float = None , a_ : bool = None , a_ : Optional[Union[float, List[float]]] = None , a_ : Optional[Union[float, List[float]]] = None , a_ : bool = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **a_ : Any , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ , param_name="size" , default_to_square=a_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case = crop_size if crop_size is not None else self.crop_size __snake_case = get_size_dict(a_ , param_name="crop_size" , default_to_square=a_ ) __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __snake_case = [convert_to_rgb(a_ ) for image in images] # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: __snake_case = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: __snake_case = [self.rescale(image=a_ , scale=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ , mean=a_ , std=a_ ) for image in images] __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ )
718
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : int = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """mobilenet_v2""" def __init__( self : Tuple , a_ : int=3 , a_ : int=224 , a_ : List[Any]=1.0 , a_ : List[str]=8 , a_ : Dict=8 , a_ : Optional[Any]=6 , a_ : Optional[Any]=32 , a_ : str=True , a_ : Union[str, Any]=True , a_ : List[Any]="relu6" , a_ : Optional[Any]=True , a_ : Any=0.8 , a_ : Dict=0.02 , a_ : Optional[int]=0.001 , a_ : Optional[int]=255 , **a_ : List[str] , ): """simple docstring""" super().__init__(**a_ ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) __snake_case = num_channels __snake_case = image_size __snake_case = depth_multiplier __snake_case = depth_divisible_by __snake_case = min_depth __snake_case = expand_ratio __snake_case = output_stride __snake_case = first_layer_is_expansion __snake_case = finegrained_output __snake_case = hidden_act __snake_case = tf_padding __snake_case = classifier_dropout_prob __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = semantic_loss_ignore_index class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.11""" ) @property def A ( self : Optional[int] ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def A ( self : int ): """simple docstring""" return 1e-4
680
0
'''simple docstring''' from functools import lru_cache @lru_cache def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if num < 0: raise ValueError("Number should not be negative." ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : List[Any] = { '''facebook/data2vec-text-base''': '''https://huggingface.co/data2vec/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """data2vec-text""" def __init__( self : List[str] , a_ : str=30_522 , a_ : Optional[int]=768 , a_ : Dict=12 , a_ : int=12 , a_ : Dict=3_072 , a_ : Dict="gelu" , a_ : Optional[Any]=0.1 , a_ : List[str]=0.1 , a_ : int=512 , a_ : Any=2 , a_ : int=0.02 , a_ : Dict=1e-12 , a_ : Dict=1 , a_ : Any=0 , a_ : Dict=2 , a_ : Optional[int]="absolute" , a_ : List[Any]=True , a_ : Dict=None , **a_ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Any ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
680
0
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = MBartConfig __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : Union[str, Any] , a_ : List[str] , a_ : str=13 , a_ : str=7 , a_ : Union[str, Any]=True , a_ : Dict=False , a_ : Optional[int]=99 , a_ : List[Any]=32 , a_ : Tuple=2 , a_ : List[str]=4 , a_ : Optional[Any]=37 , a_ : List[str]=0.1 , a_ : Tuple=0.1 , a_ : str=20 , a_ : Dict=2 , a_ : Any=1 , a_ : Any=0 , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = eos_token_id __snake_case = pad_token_id __snake_case = bos_token_id def A ( self : int ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __snake_case = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __snake_case = tf.concat([input_ids, eos_tensor] , axis=1 ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __snake_case = prepare_mbart_inputs_dict(a_ , a_ , a_ ) return config, inputs_dict def A ( self : Any , a_ : int , a_ : str ): """simple docstring""" __snake_case = TFMBartModel(config=a_ ).get_decoder() __snake_case = inputs_dict["input_ids"] __snake_case = input_ids[:1, :] __snake_case = inputs_dict["attention_mask"][:1, :] __snake_case = inputs_dict["head_mask"] __snake_case = 1 # first forward pass __snake_case = model(a_ , attention_mask=a_ , head_mask=a_ , use_cache=a_ ) __snake_case , __snake_case = outputs.to_tuple() __snake_case = past_key_values[1] def __UpperCAmelCase ( _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Tuple=None , ) -> str: if attention_mask is None: __snake_case = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __snake_case = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __snake_case = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __snake_case = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () __SCREAMING_SNAKE_CASE = (TFMBartForConditionalGeneration,) if is_tf_available() else () __SCREAMING_SNAKE_CASE = ( { """conversational""": TFMBartForConditionalGeneration, """feature-extraction""": TFMBartModel, """summarization""": TFMBartForConditionalGeneration, """text2text-generation""": TFMBartForConditionalGeneration, """translation""": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : int , a_ : Dict , a_ : Optional[Any] , a_ : str , a_ : Tuple , a_ : List[Any] ): """simple docstring""" if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A ( self : Optional[int] ): """simple docstring""" __snake_case = TFMBartModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ ) def A ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*a_ ) @require_sentencepiece @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = [ """ UN Chief Says There Is No Military Solution in Syria""", ] __SCREAMING_SNAKE_CASE = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", ] __SCREAMING_SNAKE_CASE = """facebook/mbart-large-en-ro""" @cached_property def A ( self : str ): """simple docstring""" return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A ( self : List[str] ): """simple docstring""" __snake_case = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A ( self : Optional[Any] , **a_ : Optional[Any] ): """simple docstring""" __snake_case = self.translate_src_text(**a_ ) self.assertListEqual(self.expected_text , a_ ) def A ( self : int , **a_ : Optional[int] ): """simple docstring""" __snake_case = self.tokenizer(self.src_text , **a_ , return_tensors="tf" ) __snake_case = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) __snake_case = self.tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) return generated_words @slow def A ( self : Optional[int] ): """simple docstring""" self._assert_generated_batch_equal_expected()
720
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
680
0
'''simple docstring''' import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel a : Tuple = logging.getLogger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> int: # save results if os.path.exists(_UpperCAmelCase ): if os.path.exists(os.path.join(_UpperCAmelCase , "config.json" ) ) and os.path.isfile( os.path.join(_UpperCAmelCase , "config.json" ) ): os.remove(os.path.join(_UpperCAmelCase , "config.json" ) ) if os.path.exists(os.path.join(_UpperCAmelCase , "pytorch_model.bin" ) ) and os.path.isfile( os.path.join(_UpperCAmelCase , "pytorch_model.bin" ) ): os.remove(os.path.join(_UpperCAmelCase , "pytorch_model.bin" ) ) else: os.makedirs(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=False ) -> Any: __snake_case = 2 if unlogit: __snake_case = torch.pow(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = p * torch.log(_UpperCAmelCase ) __snake_case = 0 return -plogp.sum(dim=-1 ) def __UpperCAmelCase ( _UpperCAmelCase : Any ) -> List[str]: logger.info("lv, h >\t" + "\t".join(F'''{x + 1}''' for x in range(len(_UpperCAmelCase ) ) ) ) for row in range(len(_UpperCAmelCase ) ): if tensor.dtype != torch.long: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:.5f}''' for x in tensor[row].cpu().data ) ) else: logger.info(F'''layer {row + 1}:\t''' + "\t".join(F'''{x:d}''' for x in tensor[row].cpu().data ) ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=False ) -> Any: __snake_case , __snake_case = model.config.num_hidden_layers, model.config.num_attention_heads __snake_case = torch.zeros(_UpperCAmelCase , _UpperCAmelCase ).to(args.device ) __snake_case = torch.zeros(_UpperCAmelCase , _UpperCAmelCase ).to(args.device ) if head_mask is None: __snake_case = torch.ones(_UpperCAmelCase , _UpperCAmelCase ).to(args.device ) head_mask.requires_grad_(requires_grad=_UpperCAmelCase ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __snake_case = None __snake_case = 0.0 __snake_case = 0.0 for step, inputs in enumerate(tqdm(_UpperCAmelCase , desc="Iteration" , disable=args.local_rank not in [-1, 0] ) ): __snake_case = tuple(t.to(args.device ) for t in inputs ) ((__snake_case ) , ) = inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __snake_case = model(_UpperCAmelCase , labels=_UpperCAmelCase , head_mask=_UpperCAmelCase ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __snake_case , __snake_case , __snake_case = ( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(_UpperCAmelCase ): __snake_case = entropy(attn.detach() , _UpperCAmelCase ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(_UpperCAmelCase ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __snake_case = 2 __snake_case = torch.pow(torch.pow(_UpperCAmelCase , _UpperCAmelCase ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-2_0 if not args.dont_normalize_global_importance: __snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info("Attention entropies" ) print_ad_tensor(_UpperCAmelCase ) if compute_importance: logger.info("Head importance scores" ) print_ad_tensor(_UpperCAmelCase ) logger.info("Head ranked by importance scores" ) __snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __snake_case = torch.arange( head_importance.numel() , device=args.device ) __snake_case = head_ranks.view_as(_UpperCAmelCase ) print_ad_tensor(_UpperCAmelCase ) return attn_entropy, head_importance, total_loss def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int ) -> List[Any]: __snake_case , __snake_case , __snake_case = compute_heads_importance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , compute_entropy=_UpperCAmelCase ) __snake_case = 1 / loss # instead of downsteam score use the LM loss logger.info("Pruning: original score: %f, threshold: %f" , _UpperCAmelCase , original_score * args.masking_threshold ) __snake_case = torch.ones_like(_UpperCAmelCase ) __snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __snake_case = original_score while current_score >= original_score * args.masking_threshold: __snake_case = new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __snake_case = float("Inf" ) __snake_case = head_importance.view(-1 ).sort()[1] if len(_UpperCAmelCase ) <= num_to_mask: print("BREAK BY num_to_mask" ) break # mask heads __snake_case = current_heads_to_mask[:num_to_mask] logger.info("Heads to mask: %s" , str(current_heads_to_mask.tolist() ) ) __snake_case = new_head_mask.view(-1 ) __snake_case = 0.0 __snake_case = new_head_mask.view_as(_UpperCAmelCase ) __snake_case = new_head_mask.clone().detach() print_ad_tensor(_UpperCAmelCase ) # Compute metric and head importance again __snake_case , __snake_case , __snake_case = compute_heads_importance( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , compute_entropy=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case = 1 / loss logger.info( "Masking: current score: %f, remaining heads %d (%.1f percents)" , _UpperCAmelCase , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info("Final head mask" ) print_ad_tensor(_UpperCAmelCase ) np.save(os.path.join(args.output_dir , "head_mask.npy" ) , head_mask.detach().cpu().numpy() ) return head_mask def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple ) -> str: __snake_case = datetime.now() __snake_case , __snake_case , __snake_case = compute_heads_importance( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , compute_entropy=_UpperCAmelCase , compute_importance=_UpperCAmelCase , head_mask=_UpperCAmelCase ) __snake_case = 1 / loss __snake_case = datetime.now() - before_time __snake_case = sum(p.numel() for p in model.parameters() ) __snake_case = { layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_UpperCAmelCase ) ) } for k, v in heads_to_prune.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): __snake_case = [ v, ] assert sum(len(_UpperCAmelCase ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(_UpperCAmelCase ) __snake_case = sum(p.numel() for p in model.parameters() ) __snake_case = datetime.now() __snake_case , __snake_case , __snake_case = compute_heads_importance( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , compute_entropy=_UpperCAmelCase , compute_importance=_UpperCAmelCase , head_mask=_UpperCAmelCase , actually_pruned=_UpperCAmelCase , ) __snake_case = 1 / loss __snake_case = datetime.now() - before_time logger.info( "Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)" , _UpperCAmelCase , _UpperCAmelCase , pruned_num_params / original_num_params * 1_00 , ) logger.info("Pruning: score with masking: %f score with pruning: %f" , _UpperCAmelCase , _UpperCAmelCase ) logger.info("Pruning: speed ratio (original timing / new timing): %f percents" , original_time / new_time * 1_00 ) save_model(_UpperCAmelCase , args.output_dir ) def __UpperCAmelCase ( ) -> str: __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( "--data_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The input data dir. Should contain the .tsv files (or other data files) for the task." , ) parser.add_argument( "--model_name_or_path" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models" , ) parser.add_argument( "--output_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="The output directory where the model predictions and checkpoints will be written." , ) # Other parameters parser.add_argument( "--config_name" , default="" , type=_UpperCAmelCase , help="Pretrained config name or path if not the same as model_name_or_path" , ) parser.add_argument( "--tokenizer_name" , default="" , type=_UpperCAmelCase , help="Pretrained tokenizer name or path if not the same as model_name_or_path" , ) parser.add_argument( "--cache_dir" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Where do you want to store the pre-trained models downloaded from s3" , ) parser.add_argument( "--data_subset" , type=_UpperCAmelCase , default=-1 , help="If > 0: limit the data to a subset of data_subset instances." ) parser.add_argument( "--overwrite_output_dir" , action="store_true" , help="Whether to overwrite data in output directory" ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--dont_normalize_importance_by_layer" , action="store_true" , help="Don't normalize importance score by layers" ) parser.add_argument( "--dont_normalize_global_importance" , action="store_true" , help="Don't normalize all importance scores between 0 and 1" , ) parser.add_argument( "--try_masking" , action="store_true" , help="Whether to try to mask head until a threshold of accuracy." ) parser.add_argument( "--masking_threshold" , default=0.9 , type=_UpperCAmelCase , help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value)." , ) parser.add_argument( "--masking_amount" , default=0.1 , type=_UpperCAmelCase , help="Amount to heads to masking at each masking step." ) parser.add_argument("--metric_name" , default="acc" , type=_UpperCAmelCase , help="Metric to use for head masking." ) parser.add_argument( "--max_seq_length" , default=1_28 , type=_UpperCAmelCase , help=( "The maximum total input sequence length after WordPiece tokenization. \n" "Sequences longer than this will be truncated, sequences shorter padded." ) , ) parser.add_argument("--batch_size" , default=1 , type=_UpperCAmelCase , help="Batch size." ) parser.add_argument("--seed" , type=_UpperCAmelCase , default=42 ) parser.add_argument("--local_rank" , type=_UpperCAmelCase , default=-1 , help="local_rank for distributed training on gpus" ) parser.add_argument("--no_cuda" , action="store_true" , help="Whether not to use CUDA when available" ) parser.add_argument("--server_ip" , type=_UpperCAmelCase , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=_UpperCAmelCase , default="" , help="Can be used for distant debugging." ) __snake_case = parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_UpperCAmelCase ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __snake_case = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" ) __snake_case = 0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __snake_case = torch.device("cuda" , args.local_rank ) __snake_case = 1 torch.distributed.init_process_group(backend="nccl" ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __snake_case = nn.parallel.DistributedDataParallel( _UpperCAmelCase , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_UpperCAmelCase ) elif args.n_gpu > 1: __snake_case = nn.DataParallel(_UpperCAmelCase ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=_UpperCAmelCase ) torch.save(_UpperCAmelCase , os.path.join(args.output_dir , "run_args.bin" ) ) logger.info("Training/evaluation parameters %s" , _UpperCAmelCase ) # Prepare dataset __snake_case = np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __snake_case = (torch.from_numpy(_UpperCAmelCase ),) __snake_case = TensorDataset(*_UpperCAmelCase ) __snake_case = RandomSampler(_UpperCAmelCase ) __snake_case = DataLoader(_UpperCAmelCase , sampler=_UpperCAmelCase , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __snake_case = mask_heads(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) prune_heads(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
721
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : Tuple , a_ : Optional[Any]=2 , a_ : str=32 , a_ : Dict=16 , a_ : List[str]=3 , a_ : Dict=True , a_ : Optional[int]=True , a_ : List[str]=32 , a_ : int=4 , a_ : str=[0, 1, 2, 3] , a_ : Any=4 , a_ : Optional[int]=37 , a_ : Any="gelu" , a_ : Optional[int]=0.1 , a_ : Optional[Any]=0.1 , a_ : Union[str, Any]=0.02 , a_ : Union[str, Any]=3 , a_ : Any=[1, 384, 24, 24] , a_ : Optional[Any]=True , a_ : Optional[int]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_size __snake_case = num_channels __snake_case = is_training __snake_case = use_labels __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = backbone_out_indices __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = initializer_range __snake_case = num_labels __snake_case = backbone_featmap_shape __snake_case = scope __snake_case = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) __snake_case = (image_size // patch_size) ** 2 __snake_case = num_patches + 1 def A ( self : int ): """simple docstring""" __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ): """simple docstring""" __snake_case = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 192, 384, 768], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=a_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def A ( self : int , a_ : Union[str, Any] , a_ : List[str] , a_ : List[str] ): """simple docstring""" __snake_case = DPTModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : List[str] ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForDepthEstimation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def A ( self : Optional[Any] , a_ : List[str] , a_ : int , a_ : Tuple ): """simple docstring""" __snake_case = self.num_labels __snake_case = DPTForSemanticSegmentation(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , labels=a_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = DPTModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def A ( self : Any ): """simple docstring""" pass def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def A ( self : List[str] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(a_ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ["pixel_values"] self.assertListEqual(arg_names[:1] , a_ ) def A ( self : int ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*a_ ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*a_ ) def A ( self : Optional[int] ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = True if model_class in get_values(a_ ): continue __snake_case = model_class(a_ ) model.to(a_ ) model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = False __snake_case = True if model_class in get_values(a_ ) or not model_class.supports_gradient_checkpointing: continue __snake_case = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case = model(**a_ ).loss loss.backward() def A ( self : Dict ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = _config_zero_init(a_ ) for model_class in self.all_model_classes: __snake_case = model_class(config=a_ ) # Skip the check for the backbone __snake_case = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": __snake_case = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def A ( self : Tuple ): """simple docstring""" pass @slow def A ( self : int ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: __snake_case = DPTModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A ( self : int ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = "add" with self.assertRaises(a_ ): __snake_case = DPTForDepthEstimation(a_ ) def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) __snake_case = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(a_ ) __snake_case = prepare_img() __snake_case = image_processor(images=a_ , return_tensors="pt" ).to(a_ ) # forward pass with torch.no_grad(): __snake_case = model(**a_ ) __snake_case = outputs.predicted_depth # verify the predicted depth __snake_case = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , a_ ) __snake_case = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , a_ , atol=1e-4 ) )
680
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__( self : str , a_ : Any , a_ : List[str]=7 , a_ : Union[str, Any]=3 , a_ : Any=18 , a_ : Tuple=30 , a_ : str=400 , a_ : List[str]=True , a_ : Any=None , a_ : List[Any]=True , a_ : Dict=None , a_ : Optional[Any]=True , a_ : List[str]=[0.5, 0.5, 0.5] , a_ : List[Any]=[0.5, 0.5, 0.5] , a_ : List[Any]=False , ): """simple docstring""" __snake_case = size if size is not None else {"height": 20, "width": 20} __snake_case = crop_size if crop_size is not None else {"height": 18, "width": 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_center_crop __snake_case = crop_size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std __snake_case = do_reduce_labels def A ( self : Optional[int] ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def __UpperCAmelCase ( ) -> List[Any]: __snake_case = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __snake_case = Image.open(dataset[0]["file"] ) __snake_case = Image.open(dataset[1]["file"] ) return image, map def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) __snake_case = Image.open(ds[0]["file"] ) __snake_case = Image.open(ds[1]["file"] ) __snake_case = Image.open(ds[2]["file"] ) __snake_case = Image.open(ds[3]["file"] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = BeitImageProcessor if is_vision_available() else None def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = BeitImageProcessingTester(self ) @property def A ( self : Union[str, Any] ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def A ( self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , "do_resize" ) ) self.assertTrue(hasattr(a_ , "size" ) ) self.assertTrue(hasattr(a_ , "do_center_crop" ) ) self.assertTrue(hasattr(a_ , "center_crop" ) ) self.assertTrue(hasattr(a_ , "do_normalize" ) ) self.assertTrue(hasattr(a_ , "image_mean" ) ) self.assertTrue(hasattr(a_ , "image_std" ) ) def A ( self : List[Any] ): """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 20, "width": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) self.assertEqual(image_processor.do_reduce_labels , a_ ) __snake_case = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a_ ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) self.assertEqual(image_processor.do_reduce_labels , a_ ) def A ( self : Any ): """simple docstring""" pass def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A ( self : Tuple ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched __snake_case = image_processing(a_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def A ( self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) __snake_case = [] for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __snake_case = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test not batched input (PIL images) __snake_case , __snake_case = prepare_semantic_single_inputs() __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 1, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) # Test batched input (PIL images) __snake_case , __snake_case = prepare_semantic_batch_inputs() __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertEqual( encoding["pixel_values"].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual( encoding["labels"].shape , ( 2, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) self.assertEqual(encoding["labels"].dtype , torch.long ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 ) def A ( self : Dict ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __snake_case , __snake_case = prepare_semantic_single_inputs() __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 150 ) __snake_case = True __snake_case = image_processing(a_ , a_ , return_tensors="pt" ) self.assertTrue(encoding["labels"].min().item() >= 0 ) self.assertTrue(encoding["labels"].max().item() <= 255 )
700
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class SCREAMING_SNAKE_CASE__ : __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None def A ( self : Any ): """simple docstring""" return self.__class__(**{k: copy.deepcopy(a_ ) for k, v in self.__dict__.items()} )
680
0
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
701
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device a : Optional[Any] = False class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : int ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : List[Any] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = generator.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def A ( self : Optional[int] ): """simple docstring""" __snake_case = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) __snake_case = "A painting of a squirrel eating a burger " __snake_case = torch.manual_seed(0 ) __snake_case = pipe( prompt=a_ , generator=a_ , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images __snake_case = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __snake_case = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
680
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : Any = logging.get_logger(__name__) a : int = { '''facebook/xlm-roberta-xl''': '''https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json''', '''facebook/xlm-roberta-xxl''': '''https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json''', # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """xlm-roberta-xl""" def __init__( self : List[str] , a_ : Optional[Any]=250_880 , a_ : Any=2_560 , a_ : Dict=36 , a_ : Union[str, Any]=32 , a_ : List[str]=10_240 , a_ : Tuple="gelu" , a_ : Optional[int]=0.1 , a_ : str=0.1 , a_ : str=514 , a_ : Union[str, Any]=1 , a_ : str=0.02 , a_ : List[str]=1e-05 , a_ : List[Any]=1 , a_ : Any=0 , a_ : Union[str, Any]=2 , a_ : str="absolute" , a_ : int=True , a_ : Any=None , **a_ : Any , ): """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = use_cache __snake_case = classifier_dropout class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): @property def A ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": __snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
702
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
680
0
'''simple docstring''' import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('''>=''', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType a : Any = get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=0 ) -> Any: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if accelerator.process_index == 0: logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving model to {output_model_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Model saved to {output_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving model to {ckpt_dir}''' ) __snake_case = {"model": state_dict} dist_cp.save_state_dict( state_dict=_UpperCAmelCase , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Model saved to {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : str=0 ) -> List[str]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(_UpperCAmelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( "Set the `sync_module_states` flag to `True` so that model states are synced across processes when " "initializing FSDP object" ) return __snake_case = F'''{MODEL_NAME}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}.bin''' __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __snake_case = ( F'''{MODEL_NAME}_rank{accelerator.process_index}.bin''' if model_index == 0 else F'''{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading model from {input_model_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Model loaded from {input_model_file}''' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{MODEL_NAME}_{model_index}''' ) if F'''{MODEL_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading model from {ckpt_dir}''' ) __snake_case = {"model": model.state_dict()} dist_cp.load_state_dict( state_dict=_UpperCAmelCase , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , planner=DefaultLoadPlanner() , ) __snake_case = state_dict["model"] logger.info(F'''Model loaded from {ckpt_dir}''' ) model.load_state_dict(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=0 ) -> Union[str, Any]: os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __snake_case = FSDP.optim_state_dict(_UpperCAmelCase , _UpperCAmelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {output_optimizer_file}''' ) torch.save(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Optimizer state saved in {output_optimizer_file}''' ) else: __snake_case = os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) logger.info(F'''Saving Optimizer state to {ckpt_dir}''' ) dist_cp.save_state_dict( state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_UpperCAmelCase ) , planner=DefaultSavePlanner() , ) logger.info(F'''Optimizer state saved in {ckpt_dir}''' ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int]=0 ) -> Union[str, Any]: accelerator.wait_for_everyone() with FSDP.state_dict_type( _UpperCAmelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __snake_case = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __snake_case = ( F'''{OPTIMIZER_NAME}.bin''' if optimizer_index == 0 else F'''{OPTIMIZER_NAME}_{optimizer_index}.bin''' ) __snake_case = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) logger.info(F'''Loading Optimizer state from {input_optimizer_file}''' ) __snake_case = torch.load(_UpperCAmelCase ) logger.info(F'''Optimizer state loaded from {input_optimizer_file}''' ) else: __snake_case = ( os.path.join(_UpperCAmelCase , F'''{OPTIMIZER_NAME}_{optimizer_index}''' ) if F'''{OPTIMIZER_NAME}''' not in input_dir else input_dir ) logger.info(F'''Loading Optimizer from {ckpt_dir}''' ) __snake_case = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_UpperCAmelCase ) , ) __snake_case = optim_state["optimizer"] logger.info(F'''Optimizer loaded from {ckpt_dir}''' ) __snake_case = FSDP.optim_state_dict_to_load(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) optimizer.load_state_dict(_UpperCAmelCase )
703
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> str: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __snake_case = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCAmelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' from __future__ import annotations import pandas as pd def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> list[int]: __snake_case = [0] * no_of_processes __snake_case = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_UpperCAmelCase ): __snake_case = burst_time[i] __snake_case = 0 __snake_case = 0 __snake_case = 9_99_99_99_99 __snake_case = 0 __snake_case = False # Process until all processes are completed while complete != no_of_processes: for j in range(_UpperCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: __snake_case = remaining_time[j] __snake_case = j __snake_case = True if not check: increment_time += 1 continue remaining_time[short] -= 1 __snake_case = remaining_time[short] if minm == 0: __snake_case = 9_99_99_99_99 if remaining_time[short] == 0: complete += 1 __snake_case = False # Find finish time of current process __snake_case = increment_time + 1 # Calculate waiting time __snake_case = finish_time - arrival_time[short] __snake_case = finar - burst_time[short] if waiting_time[short] < 0: __snake_case = 0 # Increment time increment_time += 1 return waiting_time def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] ) -> list[int]: __snake_case = [0] * no_of_processes for i in range(_UpperCAmelCase ): __snake_case = burst_time[i] + waiting_time[i] return turn_around_time def __UpperCAmelCase ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] , _UpperCAmelCase : int ) -> None: __snake_case = 0 __snake_case = 0 for i in range(_UpperCAmelCase ): __snake_case = total_waiting_time + waiting_time[i] __snake_case = total_turn_around_time + turn_around_time[i] print(F'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print("Average turn around time =" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') a : str = int(input()) a : Any = [0] * no_of_processes a : Any = [0] * no_of_processes a : List[str] = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) a : int = map(int, input().split()) a : Dict = calculate_waitingtime(arrival_time, burst_time, no_of_processes) a : Optional[int] = burst_time a : List[Any] = no_of_processes a : List[Any] = waiting_time a : Tuple = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) a : Dict = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
704
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : int ) -> str: if number > 0: raise ValueError("input must be a negative integer" ) __snake_case = len(bin(_UpperCAmelCase )[3:] ) __snake_case = bin(abs(_UpperCAmelCase ) - (1 << binary_number_length) )[3:] __snake_case = ( ( "1" + "0" * (binary_number_length - len(_UpperCAmelCase )) + twos_complement_number ) if number < 0 else "0" ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a : List[Any] = logging.get_logger(__name__) a : Dict = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) a : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __UpperCAmelCase ( _UpperCAmelCase : str ) -> Optional[int]: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __snake_case = model_type_to_module_name(_UpperCAmelCase ) __snake_case = importlib.import_module(F'''.{module_name}''' , "transformers.models" ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , "__name__" , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __snake_case = importlib.import_module("transformers" ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def __UpperCAmelCase ( _UpperCAmelCase : Union[str, os.PathLike] , _UpperCAmelCase : Optional[Union[str, os.PathLike]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[Dict[str, str]] = None , _UpperCAmelCase : Optional[Union[bool, str]] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : bool = False , **_UpperCAmelCase : Optional[Any] , ) -> Tuple: __snake_case = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(_UpperCAmelCase , encoding="utf-8" ) as reader: return json.load(_UpperCAmelCase ) class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[int] ): """simple docstring""" raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(a_ ) def A ( cls : int , a_ : Optional[Any] , **a_ : int ): """simple docstring""" __snake_case = kwargs.pop("config" , a_ ) __snake_case = kwargs.pop("trust_remote_code" , a_ ) __snake_case = True __snake_case , __snake_case = ImageProcessingMixin.get_image_processor_dict(a_ , **a_ ) __snake_case = config_dict.get("image_processor_type" , a_ ) __snake_case = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): __snake_case = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __snake_case = config_dict.pop("feature_extractor_type" , a_ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __snake_case = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __snake_case = config_dict["auto_map"]["AutoFeatureExtractor"] __snake_case = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(a_ , a_ ): __snake_case = AutoConfig.from_pretrained(a_ , **a_ ) # It could be in `config.image_processor_type`` __snake_case = getattr(a_ , "image_processor_type" , a_ ) if hasattr(a_ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: __snake_case = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __snake_case = image_processor_class_from_name(a_ ) __snake_case = image_processor_auto_map is not None __snake_case = image_processor_class is not None or type(a_ ) in IMAGE_PROCESSOR_MAPPING __snake_case = resolve_trust_remote_code( a_ , a_ , a_ , a_ ) if has_remote_code and trust_remote_code: __snake_case = get_class_from_dynamic_module( a_ , a_ , **a_ ) __snake_case = kwargs.pop("code_revision" , a_ ) if os.path.isdir(a_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(a_ , **a_ ) elif image_processor_class is not None: return image_processor_class.from_dict(a_ , **a_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(a_ ) in IMAGE_PROCESSOR_MAPPING: __snake_case = IMAGE_PROCESSOR_MAPPING[type(a_ )] return image_processor_class.from_dict(a_ , **a_ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def A ( a_ : List[Any] , a_ : List[Any] ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(a_ , a_ )
705
'''simple docstring''' from timeit import timeit def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: number &= number - 1 result += 1 return result def __UpperCAmelCase ( _UpperCAmelCase : int ) -> int: if number < 0: raise ValueError("the value of input must not be negative" ) __snake_case = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def __UpperCAmelCase ( ) -> None: def do_benchmark(_UpperCAmelCase : int ) -> None: __snake_case = "import __main__ as z" print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(_UpperCAmelCase ) = }''' ) __snake_case = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=_UpperCAmelCase ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(_UpperCAmelCase ) = }''' ) __snake_case = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=_UpperCAmelCase , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(_UpperCAmelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
680
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Tuple ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = SamImageProcessor() __snake_case = SamProcessor(a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : int , **a_ : Dict ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : Tuple ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Dict ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : str ): """simple docstring""" __snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) __snake_case = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="np" ) __snake_case = processor(images=a_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_torch def A ( self : Dict ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = [torch.ones((1, 3, 5, 5) )] __snake_case = [[1_764, 2_646]] __snake_case = [[683, 1_024]] __snake_case = processor.post_process_masks(a_ , a_ , a_ ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = processor.post_process_masks( a_ , torch.tensor(a_ ) , torch.tensor(a_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __snake_case = [np.ones((1, 3, 5, 5) )] __snake_case = processor.post_process_masks(a_ , np.array(a_ ) , np.array(a_ ) ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = [[1, 0], [0, 1]] with self.assertRaises(a_ ): __snake_case = processor.post_process_masks(a_ , np.array(a_ ) , np.array(a_ ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : List[Any] ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = SamImageProcessor() __snake_case = SamProcessor(a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : Optional[int] , **a_ : Union[str, Any] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : List[str] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : int ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def A ( self : List[str] ): """simple docstring""" __snake_case = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_image_processor(do_normalize=a_ , padding_value=1.0 ) __snake_case = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=a_ , padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def A ( self : str ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="np" ) __snake_case = processor(images=a_ , return_tensors="np" ) input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) @require_tf def A ( self : str ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = [tf.ones((1, 3, 5, 5) )] __snake_case = [[1_764, 2_646]] __snake_case = [[683, 1_024]] __snake_case = processor.post_process_masks(a_ , a_ , a_ , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = processor.post_process_masks( a_ , tf.convert_to_tensor(a_ ) , tf.convert_to_tensor(a_ ) , return_tensors="tf" , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) # should also work with np __snake_case = [np.ones((1, 3, 5, 5) )] __snake_case = processor.post_process_masks( a_ , np.array(a_ ) , np.array(a_ ) , return_tensors="tf" ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646) ) __snake_case = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): __snake_case = processor.post_process_masks( a_ , np.array(a_ ) , np.array(a_ ) , return_tensors="tf" ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = tempfile.mkdtemp() __snake_case = SamImageProcessor() __snake_case = SamProcessor(a_ ) processor.save_pretrained(self.tmpdirname ) def A ( self : int , **a_ : List[str] ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **a_ ).image_processor def A ( self : Union[str, Any] ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def A ( self : Any ): """simple docstring""" __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def A ( self : List[Any] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa ) __snake_case = [tf.convert_to_tensor(a_ )] __snake_case = [torch.tensor(a_ )] __snake_case = [[1_764, 2_646]] __snake_case = [[683, 1_024]] __snake_case = processor.post_process_masks( a_ , a_ , a_ , return_tensors="tf" ) __snake_case = processor.post_process_masks( a_ , a_ , a_ , return_tensors="pt" ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def A ( self : Optional[int] ): """simple docstring""" __snake_case = self.get_image_processor() __snake_case = SamProcessor(image_processor=a_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(a_ , return_tensors="pt" )["pixel_values"].numpy() __snake_case = processor(images=a_ , return_tensors="pt" )["pixel_values"].numpy() __snake_case = image_processor(a_ , return_tensors="tf" )["pixel_values"].numpy() __snake_case = processor(images=a_ , return_tensors="tf" )["pixel_values"].numpy() self.assertTrue(np.allclose(a_ , a_ ) ) self.assertTrue(np.allclose(a_ , a_ ) ) self.assertTrue(np.allclose(a_ , a_ ) )
706
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch a : Dict = '''sshleifer/bart-tiny-random''' a : str = '''patrickvonplaten/t5-tiny-random''' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ): """simple docstring""" return AutoConfig.from_pretrained(a_ ) def A ( self : str ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) def A ( self : Dict ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=a_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def A ( self : Optional[int] ): """simple docstring""" __snake_case , *__snake_case = create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def A ( self : Dict ): """simple docstring""" with self.assertRaises(a_ ): create_student_by_copying_alternating_layers(a_ , tempfile.mkdtemp() , e=a_ , d=a_ )
680
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a : List[str] = logging.get_logger(__name__) a : Optional[int] = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """bloom""" __SCREAMING_SNAKE_CASE = ["""past_key_values"""] __SCREAMING_SNAKE_CASE = { """num_hidden_layers""": """n_layer""", """num_attention_heads""": """n_head""", } def __init__( self : List[str] , a_ : Dict=250_880 , a_ : List[Any]=64 , a_ : int=2 , a_ : int=8 , a_ : Optional[Any]=1e-5 , a_ : Dict=0.02 , a_ : Union[str, Any]=True , a_ : Optional[int]=1 , a_ : int=2 , a_ : Dict=False , a_ : Tuple=0.0 , a_ : str=0.0 , a_ : int=1 , a_ : List[Any]=False , **a_ : Any , ): """simple docstring""" __snake_case = vocab_size # Backward compatibility with n_embed kwarg __snake_case = kwargs.pop("n_embed" , a_ ) __snake_case = hidden_size if n_embed is None else n_embed __snake_case = n_layer __snake_case = n_head __snake_case = layer_norm_epsilon __snake_case = initializer_range __snake_case = use_cache __snake_case = pretraining_tp __snake_case = apply_residual_connection_post_layernorm __snake_case = hidden_dropout __snake_case = attention_dropout __snake_case = bos_token_id __snake_case = eos_token_id __snake_case = slow_but_exact super().__init__(bos_token_id=a_ , eos_token_id=a_ , **a_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = version.parse("""1.12""" ) def __init__( self : Optional[Any] , a_ : PretrainedConfig , a_ : str = "default" , a_ : List[PatchingSpec] = None , a_ : bool = False , ): """simple docstring""" super().__init__(a_ , task=a_ , patching_specs=a_ , use_past=a_ ) if not getattr(self._config , "pad_token_id" , a_ ): # TODO: how to do that better? __snake_case = 0 @property def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(a_ , direction="inputs" , inverted_values_shape=a_ ) __snake_case = {0: "batch", 1: "past_sequence + sequence"} else: __snake_case = {0: "batch", 1: "sequence"} return common_inputs @property def A ( self : Optional[Any] ): """simple docstring""" return self._config.n_layer @property def A ( self : Optional[Any] ): """simple docstring""" return self._config.n_head @property def A ( self : Optional[Any] ): """simple docstring""" return 1e-3 def A ( self : Union[str, Any] , a_ : "PreTrainedTokenizer" , a_ : int = -1 , a_ : int = -1 , a_ : bool = False , a_ : Optional["TensorType"] = None , ): """simple docstring""" __snake_case = super(a_ , self ).generate_dummy_inputs( a_ , batch_size=a_ , seq_length=a_ , is_pair=a_ , framework=a_ ) # We need to order the input in the way they appears in the forward() __snake_case = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __snake_case , __snake_case = common_inputs["input_ids"].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case = self._config.hidden_size // self.num_attention_heads __snake_case = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __snake_case = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __snake_case = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] __snake_case = common_inputs["attention_mask"] if self.use_past: __snake_case = ordered_inputs["attention_mask"].dtype __snake_case = torch.cat( [ordered_inputs["attention_mask"], torch.ones(a_ , a_ , dtype=a_ )] , dim=1 ) return ordered_inputs @property def A ( self : Tuple ): """simple docstring""" return 13
707
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : List[Any] = logging.get_logger(__name__) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> List[str]: __snake_case = b.T __snake_case = np.sum(np.square(_UpperCAmelCase ) , axis=1 ) __snake_case = np.sum(np.square(_UpperCAmelCase ) , axis=0 ) __snake_case = np.matmul(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = aa[:, None] - 2 * ab + ba[None, :] return d def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> Union[str, Any]: __snake_case = x.reshape(-1 , 3 ) __snake_case = squared_euclidean_distance(_UpperCAmelCase , _UpperCAmelCase ) return np.argmin(_UpperCAmelCase , axis=1 ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = ["""pixel_values"""] def __init__( self : Union[str, Any] , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : bool = True , a_ : Dict[str, int] = None , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : bool = True , a_ : bool = True , **a_ : Dict , ): """simple docstring""" super().__init__(**a_ ) __snake_case = size if size is not None else {"height": 256, "width": 256} __snake_case = get_size_dict(a_ ) __snake_case = np.array(a_ ) if clusters is not None else None __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_normalize __snake_case = do_color_quantize def A ( self : List[Any] , a_ : np.ndarray , a_ : Dict[str, int] , a_ : PILImageResampling = PILImageResampling.BILINEAR , a_ : Optional[Union[str, ChannelDimension]] = None , **a_ : int , ): """simple docstring""" __snake_case = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''' ) return resize( a_ , size=(size["height"], size["width"]) , resample=a_ , data_format=a_ , **a_ ) def A ( self : int , a_ : np.ndarray , a_ : Optional[Union[str, ChannelDimension]] = None , ): """simple docstring""" __snake_case = rescale(image=a_ , scale=1 / 127.5 , data_format=a_ ) __snake_case = image - 1 return image def A ( self : Optional[Any] , a_ : ImageInput , a_ : bool = None , a_ : Dict[str, int] = None , a_ : PILImageResampling = None , a_ : bool = None , a_ : Optional[bool] = None , a_ : Optional[Union[List[List[int]], np.ndarray]] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **a_ : List[str] , ): """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(a_ ) __snake_case = resample if resample is not None else self.resample __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = do_color_quantize if do_color_quantize is not None else self.do_color_quantize __snake_case = clusters if clusters is not None else self.clusters __snake_case = np.array(a_ ) __snake_case = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(a_ ) for image in images] if do_resize: __snake_case = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_normalize: __snake_case = [self.normalize(image=a_ ) for image in images] if do_color_quantize: __snake_case = [to_channel_dimension_format(a_ , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) __snake_case = np.array(a_ ) __snake_case = color_quantize(a_ , a_ ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) __snake_case = images.shape[0] __snake_case = images.reshape(a_ , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. __snake_case = list(a_ ) else: __snake_case = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case = {"input_ids": images} return BatchFeature(data=a_ , tensor_type=a_ )
708
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" , [None, 4_00 * 2**20, 6_00 * 2**20] ) @pytest.mark.parametrize("input_in_memory_max_size" , ["default", 0, 1_00 * 2**20, 9_00 * 2**20] ) def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , "IN_MEMORY_MAX_SIZE" , _UpperCAmelCase ) __snake_case = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: __snake_case = dataset_size < in_memory_max_size else: __snake_case = False __snake_case = is_small_dataset(_UpperCAmelCase ) assert result == expected
680
0
'''simple docstring''' from math import sqrt def __UpperCAmelCase ( _UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(_UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __UpperCAmelCase ( _UpperCAmelCase : int = 1_00_01 ) -> int: __snake_case = 0 __snake_case = 1 while count != nth and number < 3: number += 1 if is_prime(_UpperCAmelCase ): count += 1 while count != nth: number += 2 if is_prime(_UpperCAmelCase ): count += 1 return number if __name__ == "__main__": print(F'''{solution() = }''')
709
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __UpperCAmelCase ( _UpperCAmelCase : float ) -> float: if edge <= 0 or not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError("Length must be a positive." ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : int ): """simple docstring""" __snake_case = n __snake_case = [None] * self.n __snake_case = 0 # index of the first element __snake_case = 0 __snake_case = 0 def __len__( self : Optional[Any] ): """simple docstring""" return self.size def A ( self : Optional[int] ): """simple docstring""" return self.size == 0 def A ( self : int ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def A ( self : Any , a_ : List[str] ): """simple docstring""" if self.size >= self.n: raise Exception("QUEUE IS FULL" ) __snake_case = data __snake_case = (self.rear + 1) % self.n self.size += 1 return self def A ( self : Dict ): """simple docstring""" if self.size == 0: raise Exception("UNDERFLOW" ) __snake_case = self.array[self.front] __snake_case = None __snake_case = (self.front + 1) % self.n self.size -= 1 return temp
710
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a : Any = 6_378_137.0 a : List[Any] = 6_356_752.314_245 a : Dict = 6_378_137 def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: __snake_case = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) __snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case = (b_lata + b_lata) / 2 __snake_case = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2) __snake_case = cos(sigma / 2 ) ** 2 __snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2) __snake_case = sin(sigma / 2 ) ** 2 __snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Dict ): """simple docstring""" __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = AutoImageProcessor.from_pretrained("openai/clip-vit-base-patch32" ) self.assertIsInstance(a_ , a_ ) def A ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : Union[str, Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = CLIPConfig() # Create a dummy config file with image_proceesor_type __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __snake_case = AutoImageProcessor.from_pretrained(a_ ).to_dict() config_dict.pop("image_processor_type" ) __snake_case = CLIPImageProcessor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved __snake_case = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(a_ , a_ ) def A ( self : Optional[int] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" json.dump( {"image_processor_type": "CLIPImageProcessor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : int ): """simple docstring""" with self.assertRaisesRegex( a_ , "clip-base is not a local folder and is not a valid model identifier" ): __snake_case = AutoImageProcessor.from_pretrained("clip-base" ) def A ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( a_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case = AutoImageProcessor.from_pretrained(a_ , revision="aaaaaa" ) def A ( self : Optional[int] ): """simple docstring""" with self.assertRaisesRegex( a_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __snake_case = AutoImageProcessor.from_pretrained("hf-internal-testing/config-no-model" ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ): __snake_case = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) __snake_case = AutoImageProcessor.from_pretrained(a_ , trust_remote_code=a_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ , "NewImageProcessor" ) def A ( self : str ): """simple docstring""" try: AutoConfig.register("custom" , a_ ) AutoImageProcessor.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoImageProcessor.register(a_ , a_ ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = Path(a_ ) / "preprocessor_config.json" __snake_case = Path(a_ ) / "config.json" json.dump( {"feature_extractor_type": "CLIPFeatureExtractor", "processor_class": "CLIPProcessor"} , open(a_ , "w" ) , ) json.dump({"model_type": "clip"} , open(a_ , "w" ) ) __snake_case = CustomImageProcessor.from_pretrained(a_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) __snake_case = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A ( self : str ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = True try: AutoConfig.register("custom" , a_ ) AutoImageProcessor.register(a_ , a_ ) # If remote code is not set, the default is to use local __snake_case = AutoImageProcessor.from_pretrained("hf-internal-testing/test_dynamic_image_processor" ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub __snake_case = AutoImageProcessor.from_pretrained( "hf-internal-testing/test_dynamic_image_processor" , trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ , "NewImageProcessor" ) self.assertTrue(not hasattr(a_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
711
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
0
'''simple docstring''' import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ) -> str: # Initialise PyTorch model __snake_case = TaConfig.from_json_file(_UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) __snake_case = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": a : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a : str = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
712
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Dict , a_ : Union[str, Any] , a_ : Tuple ): """simple docstring""" __snake_case = name __snake_case = value __snake_case = weight def __repr__( self : Optional[int] ): """simple docstring""" return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def A ( self : Any ): """simple docstring""" return self.value def A ( self : str ): """simple docstring""" return self.name def A ( self : int ): """simple docstring""" return self.weight def A ( self : Tuple ): """simple docstring""" return self.value / self.weight def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ) -> Optional[int]: __snake_case = [] for i in range(len(_UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> int: __snake_case = sorted(_UpperCAmelCase , key=_UpperCAmelCase , reverse=_UpperCAmelCase ) __snake_case = [] __snake_case , __snake_case = 0.0, 0.0 for i in range(len(_UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __UpperCAmelCase ( ) -> Optional[Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
680
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : str ) -> str: return " ".join( "".join(word[::-1] ) if len(_UpperCAmelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
713
'''simple docstring''' import os from math import logaa def __UpperCAmelCase ( _UpperCAmelCase : str = "base_exp.txt" ) -> int: __snake_case = 0 __snake_case = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(_UpperCAmelCase ) , _UpperCAmelCase ) ) ): __snake_case , __snake_case = list(map(_UpperCAmelCase , line.split("," ) ) ) if x * logaa(_UpperCAmelCase ) > largest: __snake_case = x * logaa(_UpperCAmelCase ) __snake_case = i + 1 return result if __name__ == "__main__": print(solution())
680
0
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=10_24 ) -> Union[str, Any]: __snake_case , __snake_case = [], [] __snake_case = list(zip(_UpperCAmelCase , _UpperCAmelCase ) ) __snake_case , __snake_case = sorted_examples[0] def is_too_big(_UpperCAmelCase ): return tok(_UpperCAmelCase , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __snake_case = new_src + " " + src __snake_case = new_tgt + " " + tgt if is_too_big(_UpperCAmelCase ) or is_too_big(_UpperCAmelCase ): # cant fit, finalize example finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) __snake_case , __snake_case = src, tgt else: # can fit, keep adding __snake_case , __snake_case = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(_UpperCAmelCase ) finished_tgt.append(_UpperCAmelCase ) return finished_src, finished_tgt def __UpperCAmelCase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[Any]: __snake_case = Path(_UpperCAmelCase ) save_path.mkdir(exist_ok=_UpperCAmelCase ) for split in ["train"]: __snake_case , __snake_case = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' __snake_case = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] __snake_case = [x.rstrip() for x in Path(_UpperCAmelCase ).open().readlines()] __snake_case , __snake_case = pack_examples(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) print(F'''packed {split} split from {len(_UpperCAmelCase )} examples -> {len(_UpperCAmelCase )}.''' ) Path(save_path / F'''{split}.source''' ).open("w" ).write("\n".join(_UpperCAmelCase ) ) Path(save_path / F'''{split}.target''' ).open("w" ).write("\n".join(_UpperCAmelCase ) ) for split in ["val", "test"]: __snake_case , __snake_case = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.source''' ) shutil.copyfile(_UpperCAmelCase , save_path / F'''{split}.target''' ) def __UpperCAmelCase ( ) -> Tuple: __snake_case = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=_UpperCAmelCase , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=_UpperCAmelCase , default=1_28 ) parser.add_argument("--data_dir" , type=_UpperCAmelCase ) parser.add_argument("--save_path" , type=_UpperCAmelCase ) __snake_case = parser.parse_args() __snake_case = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(_UpperCAmelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
714
'''simple docstring''' from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer a : List[Any] = logging.get_logger(__name__) a : Dict = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } a : Any = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } a : Optional[int] = { '''facebook/blenderbot_small-90M''': 512, } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = BlenderbotSmallTokenizer def __init__( self : List[Any] , a_ : Optional[int]=None , a_ : Dict=None , a_ : int="<|endoftext|>" , a_ : str="<|endoftext|>" , a_ : Any="<|endoftext|>" , a_ : Dict=False , a_ : Optional[Any]=True , **a_ : Dict , ): """simple docstring""" super().__init__( ByteLevelBPETokenizer( vocab=a_ , merges=a_ , add_prefix_space=a_ , trim_offsets=a_ , ) , bos_token=a_ , eos_token=a_ , unk_token=a_ , **a_ , ) __snake_case = add_prefix_space def A ( self : Dict , a_ : int , a_ : Union[str, Any]=None ): """simple docstring""" __snake_case = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None ): """simple docstring""" __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
680
0
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) a : Tuple = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def A ( self : Union[str, Any] , a_ : List[str] , a_ : Optional[int] , a_ : List[str]=None , a_ : Any=None ): """simple docstring""" __snake_case = self.layer[current_layer](a_ , a_ , head_mask[current_layer] ) __snake_case = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : int , a_ : int ): """simple docstring""" super().__init__(a_ ) __snake_case = BertEncoderWithPabee(a_ ) self.init_weights() __snake_case = 0 __snake_case = 0 __snake_case = 0 __snake_case = 0 def A ( self : Optional[int] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = threshold def A ( self : Optional[Any] , a_ : Union[str, Any] ): """simple docstring""" __snake_case = patience def A ( self : Any ): """simple docstring""" __snake_case = 0 __snake_case = 0 def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.inference_layers_num / self.inference_instances_num __snake_case = ( f'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' f''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(a_ ) @add_start_docstrings_to_model_forward(a_ ) def A ( self : Dict , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Optional[int]=None , a_ : int=None , a_ : Optional[Any]=None , a_ : Union[str, Any]=None , a_ : int=None , a_ : Any=None , a_ : Optional[Any]=None , a_ : Any=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __snake_case = input_ids.size() elif inputs_embeds is not None: __snake_case = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __snake_case = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) if token_type_ids is None: __snake_case = torch.zeros(a_ , dtype=torch.long , device=a_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __snake_case = self.get_extended_attention_mask(a_ , a_ , a_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: __snake_case , __snake_case , __snake_case = encoder_hidden_states.size() __snake_case = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: __snake_case = torch.ones(a_ , device=a_ ) __snake_case = self.invert_attention_mask(a_ ) else: __snake_case = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __snake_case = self.get_head_mask(a_ , self.config.num_hidden_layers ) __snake_case = self.embeddings( input_ids=a_ , position_ids=a_ , token_type_ids=a_ , inputs_embeds=a_ ) __snake_case = embedding_output if self.training: __snake_case = [] for i in range(self.config.num_hidden_layers ): __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](output_dropout(a_ ) ) res.append(a_ ) elif self.patience == 0: # Use all layers for inference __snake_case = self.encoder( a_ , attention_mask=a_ , head_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = self.pooler(encoder_outputs[0] ) __snake_case = [output_layers[self.config.num_hidden_layers - 1](a_ )] else: __snake_case = 0 __snake_case = None __snake_case = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 __snake_case = self.encoder.adaptive_forward( a_ , current_layer=a_ , attention_mask=a_ , head_mask=a_ ) __snake_case = self.pooler(a_ ) __snake_case = output_layers[i](a_ ) if regression: __snake_case = logits.detach() if patient_result is not None: __snake_case = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: __snake_case = 0 else: __snake_case = logits.detach().argmax(dim=1 ) if patient_result is not None: __snake_case = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(a_ ) ): patient_counter += 1 else: __snake_case = 0 __snake_case = logits if patient_counter == self.patience: break __snake_case = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , _UpperCamelCase , ) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): def __init__( self : List[str] , a_ : Tuple ): """simple docstring""" super().__init__(a_ ) __snake_case = config.num_labels __snake_case = BertModelWithPabee(a_ ) __snake_case = nn.Dropout(config.hidden_dropout_prob ) __snake_case = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(a_ ) def A ( self : int , a_ : str=None , a_ : Tuple=None , a_ : Union[str, Any]=None , a_ : List[str]=None , a_ : Optional[int]=None , a_ : Union[str, Any]=None , a_ : Tuple=None , ): """simple docstring""" __snake_case = self.bert( input_ids=a_ , attention_mask=a_ , token_type_ids=a_ , position_ids=a_ , head_mask=a_ , inputs_embeds=a_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) __snake_case = (logits[-1],) if labels is not None: __snake_case = None __snake_case = 0 for ix, logits_item in enumerate(a_ ): if self.num_labels == 1: # We are doing regression __snake_case = MSELoss() __snake_case = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: __snake_case = CrossEntropyLoss() __snake_case = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: __snake_case = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 __snake_case = (total_loss / total_weights,) + outputs return outputs
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : str = { '''configuration_gpt_bigcode''': ['''GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTBigCodeConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTBigCodeForSequenceClassification''', '''GPTBigCodeForTokenClassification''', '''GPTBigCodeForCausalLM''', '''GPTBigCodeModel''', '''GPTBigCodePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys a : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a : int = 16 a : Tuple = 32 def A__ ( _UpperCAmelCase : Accelerator , _UpperCAmelCase : int = 16 , _UpperCAmelCase : str = "bert-base-cased" ) -> Any: __snake_case = AutoTokenizer.from_pretrained(_UpperCAmelCase ) __snake_case = load_dataset("glue" , "mrpc" ) def tokenize_function(_UpperCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_UpperCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_UpperCAmelCase : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_UpperCAmelCase , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(_UpperCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets["train"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) __snake_case = DataLoader( tokenized_datasets["validation"] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader def A__ ( _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict ) -> str: model.eval() __snake_case = 0 for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __snake_case , __snake_case = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_UpperCAmelCase ) - 1: __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) __snake_case = metric.compute() return eval_metric["accuracy"] def A__ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> Union[str, Any]: # Initialize accelerator __snake_case = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config["lr"] __snake_case = int(config["num_epochs"] ) __snake_case = int(config["seed"] ) __snake_case = int(config["batch_size"] ) __snake_case = args.model_name_or_path set_seed(_UpperCAmelCase ) __snake_case , __snake_case = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) # Instantiate optimizer __snake_case = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case = optimizer_cls(params=model.parameters() , lr=_UpperCAmelCase ) if accelerator.state.deepspeed_plugin is not None: __snake_case = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: __snake_case = 1 __snake_case = (len(_UpperCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=0 , num_training_steps=_UpperCAmelCase , ) else: __snake_case = DummyScheduler(_UpperCAmelCase , total_num_steps=_UpperCAmelCase , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # We need to keep track of how many total steps we have iterated over __snake_case = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case = 0 __snake_case = evaluate.load("glue" , "mrpc" ) __snake_case = num_epochs if args.partial_train_epoch is not None: __snake_case = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __snake_case = args.resume_from_checkpoint.split("epoch_" )[1] __snake_case = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __snake_case = int(_UpperCAmelCase ) + 1 __snake_case = evaluation_loop(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) accelerator.print("resumed checkpoint performance:" , _UpperCAmelCase ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F'''state_{starting_epoch-1}.json''' ) , "r" ) as f: __snake_case = json.load(_UpperCAmelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __snake_case = {} for epoch in range(_UpperCAmelCase , _UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): __snake_case = model(**_UpperCAmelCase ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(_UpperCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __snake_case = F'''epoch_{epoch}''' __snake_case = os.path.join(args.output_dir , _UpperCAmelCase ) accelerator.save_state(_UpperCAmelCase ) __snake_case = evaluation_loop(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = accuracy __snake_case = lr_scheduler.get_lr()[0] __snake_case = optimizer.param_groups[0]["lr"] __snake_case = epoch __snake_case = overall_step accelerator.print(F'''epoch {epoch}:''' , _UpperCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F'''state_{epoch}.json''' ) , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def A__ ( ) -> Tuple: __snake_case = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_UpperCAmelCase , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_UpperCAmelCase , ) parser.add_argument( "--output_dir" , type=_UpperCAmelCase , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_UpperCAmelCase , default=_UpperCAmelCase , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_UpperCAmelCase , default=2 , help="Number of train epochs." , ) __snake_case = parser.parse_args() __snake_case = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
716
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers a : Optional[Any] = float('''nan''') class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : Optional[int] ): """simple docstring""" __snake_case = sys.stdout __snake_case = open(a_ , "a" ) def __getattr__( self : str , a_ : List[Any] ): """simple docstring""" return getattr(self.stdout , a_ ) def A ( self : Union[str, Any] , a_ : List[Any] ): """simple docstring""" self.stdout.write(a_ ) # strip tqdm codes self.file.write(re.sub(r"^.*\r" , "" , a_ , 0 , re.M ) ) def __UpperCAmelCase ( _UpperCAmelCase : int=80 , _UpperCAmelCase : Any=False ) -> Optional[int]: __snake_case = [] # deal with critical env vars __snake_case = ["CUDA_VISIBLE_DEVICES"] for key in env_keys: __snake_case = os.environ.get(_UpperCAmelCase , _UpperCAmelCase ) if val is not None: cmd.append(F'''{key}={val}''' ) # python executable (not always needed if the script is executable) __snake_case = sys.executable if full_python_path else sys.executable.split("/" )[-1] cmd.append(_UpperCAmelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes __snake_case = [] __snake_case = "" while len(_UpperCAmelCase ) > 0: current_line += F'''{cmd.pop(0 )} ''' if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(_UpperCAmelCase ) __snake_case = "" return "\\\n".join(_UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] ) -> Tuple: # unwrap multi-line input __snake_case = re.sub(R"[\\\n]+" , " " , args.base_cmd ) # remove --output_dir if any and set our own __snake_case = re.sub("--output_dir\s+[^\s]+" , "" , args.base_cmd ) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir __snake_case = re.sub("--overwrite_output_dir\s+" , "" , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any ) -> str: # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.2222_2222] )} , ) __snake_case = subprocess.run(_UpperCAmelCase , capture_output=_UpperCAmelCase , text=_UpperCAmelCase ) if verbose: print("STDOUT" , result.stdout ) print("STDERR" , result.stderr ) # save the streams __snake_case = variation.replace(" " , "-" ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stdout.txt''' , "w" ) as f: f.write(result.stdout ) with open(Path(_UpperCAmelCase ) / F'''log.{prefix}.stderr.txt''' , "w" ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print("failed" ) return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , "r" , encoding="utf-8" ) as f: __snake_case = json.load(_UpperCAmelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def __UpperCAmelCase ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , ) -> Dict: __snake_case = [] __snake_case = [] __snake_case = F'''{id}: {variation:<{longest_variation_len}}''' __snake_case = F'''{preamble}: ''' __snake_case = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(_UpperCAmelCase ) , desc=_UpperCAmelCase , leave=_UpperCAmelCase ): __snake_case = process_run_single( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = single_run_metrics[target_metric_key] if not math.isnan(_UpperCAmelCase ): metrics.append(_UpperCAmelCase ) results.append(_UpperCAmelCase ) outcome += "✓" else: outcome += "✘" __snake_case = F'''\33[2K\r{outcome}''' if len(_UpperCAmelCase ) > 0: __snake_case = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} __snake_case = round(mean_metrics[target_metric_key] , 2 ) __snake_case = F'''{outcome} {mean_target}''' if len(_UpperCAmelCase ) > 1: results_str += F''' {tuple(round(_UpperCAmelCase , 2 ) for x in results )}''' print(_UpperCAmelCase ) __snake_case = variation return mean_metrics else: print(_UpperCAmelCase ) return {variation_key: variation, target_metric_key: nan} def __UpperCAmelCase ( ) -> Optional[int]: __snake_case = torch.cuda.get_device_properties(torch.device("cuda" ) ) return F''' Datetime : {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S" )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def __UpperCAmelCase ( _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[Any]: __snake_case = pd.DataFrame(_UpperCAmelCase ) __snake_case = "variation" __snake_case = "diff_%" __snake_case = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan __snake_case = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(_UpperCAmelCase ): # as a fallback, use the minimal value as the sentinel __snake_case = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(_UpperCAmelCase ): __snake_case = df.apply( lambda _UpperCAmelCase : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis="columns" , ) # re-order columns __snake_case = [variation_key, target_metric_key, diff_key, *report_metric_keys] __snake_case = df.reindex(_UpperCAmelCase , axis="columns" ) # reorder cols # capitalize __snake_case = df.rename(str.capitalize , axis="columns" ) # make the cols as narrow as possible __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "<br>" ) , axis="columns" ) __snake_case = df.rename(lambda _UpperCAmelCase : c.replace("_" , "\n" ) , axis="columns" ) __snake_case = ["", "Copy between the cut-here-lines and paste as is to github or a forum"] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=_UpperCAmelCase , floatfmt=".2f" )] print("\n\n".join(_UpperCAmelCase ) ) def __UpperCAmelCase ( ) -> Dict: __snake_case = argparse.ArgumentParser() parser.add_argument( "--base-cmd" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Base cmd" , ) parser.add_argument( "--variations" , default=_UpperCAmelCase , type=_UpperCAmelCase , nargs="+" , required=_UpperCAmelCase , help="Multi-dimensional variations, example: '|--fp16|--bf16' '|--tf32'" , ) parser.add_argument( "--base-variation" , default=_UpperCAmelCase , type=_UpperCAmelCase , help="Baseline variation to compare to. if None the minimal target value will be used to compare against" , ) parser.add_argument( "--target-metric-key" , default=_UpperCAmelCase , type=_UpperCAmelCase , required=_UpperCAmelCase , help="Target metric key in output_dir/all_results.json, e.g., train_samples_per_second" , ) parser.add_argument( "--report-metric-keys" , default="" , type=_UpperCAmelCase , help="Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., 'train_loss train_samples" , ) parser.add_argument( "--repeat-times" , default=1 , type=_UpperCAmelCase , help="How many times to re-run each variation - an average will be reported" , ) parser.add_argument( "--output_dir" , default="output_benchmark" , type=_UpperCAmelCase , help="The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked" , ) parser.add_argument( "--verbose" , default=_UpperCAmelCase , action="store_true" , help="Whether to show the outputs of each run or just the benchmark progress" , ) __snake_case = parser.parse_args() __snake_case = args.output_dir Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) __snake_case = get_base_command(_UpperCAmelCase , _UpperCAmelCase ) # split each dimension into its --foo variations __snake_case = [list(map(str.strip , re.split(R"\|" , _UpperCAmelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty __snake_case = list(map(str.strip , map(" ".join , itertools.product(*_UpperCAmelCase ) ) ) ) __snake_case = max(len(_UpperCAmelCase ) for x in variations ) # split wanted keys __snake_case = args.report_metric_keys.split() # capture prints into a log file for convenience __snake_case = F'''benchmark-report-{datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S" )}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(F'''and this script\'s output is also piped into {report_fn}''' ) __snake_case = Tee(_UpperCAmelCase ) print(F'''\n*** Running {len(_UpperCAmelCase )} benchmarks:''' ) print(F'''Base command: {" ".join(_UpperCAmelCase )}''' ) __snake_case = "variation" __snake_case = [] for id, variation in enumerate(tqdm(_UpperCAmelCase , desc="Total completion: " , leave=_UpperCAmelCase ) ): __snake_case = base_cmd + variation.split() results.append( process_run( id + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.repeat_times , _UpperCAmelCase , args.verbose , ) ) process_results(_UpperCAmelCase , args.target_metric_key , _UpperCAmelCase , args.base_variation , _UpperCAmelCase ) if __name__ == "__main__": main()
680
0