code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not numbers: return 0 if not isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) or not all( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) lowerCAmelCase : Tuple = numbers[0] for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): # update the maximum and minimum subarray products lowerCAmelCase : Any = numbers[i] if number < 0: lowerCAmelCase , lowerCAmelCase : str = min_till_now, max_till_now lowerCAmelCase : Tuple = max(SCREAMING_SNAKE_CASE , max_till_now * number ) lowerCAmelCase : Optional[Any] = min(SCREAMING_SNAKE_CASE , min_till_now * number ) # update the maximum product found till now lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_prod
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , "words.txt" ) lowerCAmelCase : List[Any] = "" with open(SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase : int = f.readline() lowerCAmelCase : int = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowerCAmelCase : Tuple = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =StableDiffusionInpaintPipeline a : Dict =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS a : str =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS a : Any =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a : Optional[Any] =frozenset([] ) def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , ) lowerCAmelCase : Union[str, Any] = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCAmelCase : int = CLIPTextModel(snake_case__ ) lowerCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : str = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((64, 64) ) lowerCAmelCase : Dict = Image.fromarray(np.uinta(image + 4 ) ).convert("RGB" ).resize((64, 64) ) if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Optional[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : Tuple = StableDiffusionInpaintPipeline(**snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Optional[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCAmelCase : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCAmelCase : int = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench.npy" ) lowerCAmelCase : Tuple = "stabilityai/stable-diffusion-2-inpainting" lowerCAmelCase : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCAmelCase : Dict = torch.manual_seed(0 ) lowerCAmelCase : str = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type="np" , ) lowerCAmelCase : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint" "/yellow_cat_sitting_on_a_park_bench_fp16.npy" ) lowerCAmelCase : Dict = "stabilityai/stable-diffusion-2-inpainting" lowerCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : str = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCAmelCase : Any = torch.manual_seed(0 ) lowerCAmelCase : Tuple = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type="np" , ) lowerCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowercase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCAmelCase : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCAmelCase : List[str] = "stabilityai/stable-diffusion-2-inpainting" lowerCAmelCase : Tuple = PNDMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) lowerCAmelCase : Tuple = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , scheduler=snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCAmelCase : Optional[Any] = torch.manual_seed(0 ) lowerCAmelCase : int = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" import heapq def a__ ( SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' lowerCAmelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(SCREAMING_SNAKE_CASE , [-1 * len(SCREAMING_SNAKE_CASE ), (key, value)] ) # chosen_vertices = set of chosen vertices lowerCAmelCase : Optional[int] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCAmelCase : Optional[Any] = heapq.heappop(SCREAMING_SNAKE_CASE )[1][0] chosen_vertices.add(SCREAMING_SNAKE_CASE ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCAmelCase : List[Any] = elem[1][1].index(SCREAMING_SNAKE_CASE ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(SCREAMING_SNAKE_CASE ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : jnp.ndarray a : jnp.ndarray class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a : int a : Tuple[int] =(16, 32, 96, 2_56) a : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase : str = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase : Dict = self.block_out_channels[i] lowerCAmelCase : Union[str, Any] = self.block_out_channels[i + 1] lowerCAmelCase : Union[str, Any] = nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCAmelCase : Tuple = nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCAmelCase : Optional[Any] = blocks lowerCAmelCase : Union[str, Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.conv_in(snake_case__ ) lowerCAmelCase : int = nn.silu(snake_case__ ) for block in self.blocks: lowerCAmelCase : Dict = block(snake_case__ ) lowerCAmelCase : List[str] = nn.silu(snake_case__ ) lowerCAmelCase : int = self.conv_out(snake_case__ ) return embedding @flax_register_to_config class SCREAMING_SNAKE_CASE__ ( nn.Module , lowercase , lowercase ): """simple docstring""" a : int =32 a : int =4 a : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a : Union[bool, Tuple[bool]] =False a : Tuple[int] =(3_20, 6_40, 12_80, 12_80) a : int =2 a : Union[int, Tuple[int]] =8 a : Optional[Union[int, Tuple[int]]] =None a : int =12_80 a : float =0.0 a : bool =False a : jnp.dtype =jnp.floataa a : bool =True a : int =0 a : str ="rgb" a : Tuple[int] =(16, 32, 96, 2_56) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase : List[str] = jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCAmelCase : Optional[int] = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase : int = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase : str = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase : Dict = jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCAmelCase , lowerCAmelCase : Optional[int] = jax.random.split(snake_case__ ) lowerCAmelCase : int = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.block_out_channels lowerCAmelCase : List[str] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase : Dict = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase : List[str] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase : Union[str, Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase : List[Any] = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) lowerCAmelCase : List[Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase : str = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Tuple = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : Tuple = block_out_channels[0] lowerCAmelCase : Optional[Any] = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase : Any = output_channel lowerCAmelCase : Dict = block_out_channels[i] lowerCAmelCase : List[Any] = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase : str = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase : Optional[Any] = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): lowerCAmelCase : Dict = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: lowerCAmelCase : int = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) lowerCAmelCase : Tuple = down_blocks lowerCAmelCase : List[str] = controlnet_down_blocks # mid lowerCAmelCase : List[str] = block_out_channels[-1] lowerCAmelCase : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase : List[Any] = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1.0 , snake_case__ = True , snake_case__ = False , ): """simple docstring""" lowerCAmelCase : Dict = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase : Optional[int] = jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): lowerCAmelCase : Optional[int] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase : Optional[int] = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase : List[Any] = jnp.expand_dims(snake_case__ , 0 ) lowerCAmelCase : Optional[int] = self.time_proj(snake_case__ ) lowerCAmelCase : Dict = self.time_embedding(snake_case__ ) # 2. pre-process lowerCAmelCase : Dict = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCAmelCase : Optional[int] = self.conv_in(snake_case__ ) lowerCAmelCase : Union[str, Any] = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCAmelCase : Any = self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down lowerCAmelCase : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase , lowerCAmelCase : Dict = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase : List[Any] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase : Tuple = () for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): lowerCAmelCase : List[str] = controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase : Dict = controlnet_down_block_res_samples lowerCAmelCase : Tuple = self.controlnet_mid_block(snake_case__ ) # 6. scaling lowerCAmelCase : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch lowerCAmelCase__ = random.Random() def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=1.0 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Any=None ): '''simple docstring''' if rng is None: lowerCAmelCase : Tuple = global_rng lowerCAmelCase : Dict = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=400 , snake_case__=2_000 , snake_case__=1 , snake_case__=0.0 , snake_case__=16_000 , snake_case__=True , snake_case__=80 , snake_case__=16 , snake_case__=64 , snake_case__="hann_window" , snake_case__=80 , snake_case__=7_600 , snake_case__=1e-10 , snake_case__=True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : List[Any] = min_seq_length lowerCAmelCase : Any = max_seq_length lowerCAmelCase : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase : Tuple = feature_size lowerCAmelCase : Tuple = padding_value lowerCAmelCase : Dict = sampling_rate lowerCAmelCase : Optional[Any] = do_normalize lowerCAmelCase : Optional[Any] = num_mel_bins lowerCAmelCase : Any = hop_length lowerCAmelCase : Tuple = win_length lowerCAmelCase : Optional[int] = win_function lowerCAmelCase : Optional[int] = fmin lowerCAmelCase : Tuple = fmax lowerCAmelCase : List[Any] = mel_floor lowerCAmelCase : int = return_attention_mask def lowercase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def lowercase__ ( self , snake_case__=False , snake_case__=False ): """simple docstring""" def _flatten(snake_case__ ): return list(itertools.chain(*snake_case__ ) ) if equal_length: lowerCAmelCase : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase : List[str] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : List[Any] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs def lowercase__ ( self , snake_case__=False , snake_case__=False ): """simple docstring""" if equal_length: lowerCAmelCase : Any = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase : List[Any] = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : List[str] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Dict =SpeechTaFeatureExtractor def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = SpeechTaFeatureExtractionTester(self ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.assertTrue(np.all(np.mean(snake_case__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(snake_case__ , axis=0 ) - 1 ) < 1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : int = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase : str = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase : Tuple = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test batched lowerCAmelCase : Optional[Any] = feat_extract(snake_case__ , return_tensors="np" ).input_values lowerCAmelCase : Optional[Any] = feat_extract(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Tuple = ["longest", "max_length", "do_not_pad"] lowerCAmelCase : Tuple = [None, 1_600, None] for max_length, padding in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Optional[Any] = feat_extract(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors="np" ) lowerCAmelCase : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : int = range(800 , 1_400 , 200 ) lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase : Optional[Any] = ["longest", "max_length", "do_not_pad"] lowerCAmelCase : int = [None, 1_600, None] for max_length, padding in zip(snake_case__ , snake_case__ ): lowerCAmelCase : Dict = feat_extract(snake_case__ , max_length=snake_case__ , padding=snake_case__ ) lowerCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = feat_extract( snake_case__ , truncation=snake_case__ , max_length=1_000 , padding="max_length" , return_tensors="np" ) lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : List[Any] = feat_extract( snake_case__ , truncation=snake_case__ , max_length=1_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Tuple = feat_extract( snake_case__ , truncation=snake_case__ , max_length=2_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase : Dict = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase : List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Dict = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase : int = feature_extractor(audio_target=snake_case__ , padding=snake_case__ , return_tensors="np" ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input lowerCAmelCase : List[str] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test batched lowerCAmelCase : Any = feature_extractor(snake_case__ , return_tensors="np" ).input_values lowerCAmelCase : List[Any] = feature_extractor(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase : str = np.asarray(snake_case__ ) lowerCAmelCase : Dict = feature_extractor(snake_case__ , return_tensors="np" ).input_values lowerCAmelCase : Tuple = feature_extractor(snake_case__ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase : Dict = feat_extract.model_input_names[0] lowerCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(snake_case__ ) == len(snake_case__ ) for x, y in zip(snake_case__ , processed_features[input_name] ) ) ) lowerCAmelCase : int = self.feat_extract_tester.prepare_inputs_for_target(equal_length=snake_case__ ) lowerCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} , tensor_type="np" ) lowerCAmelCase : int = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase : Optional[int] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.feat_extract_tester.prepare_inputs_for_target(equal_length=snake_case__ ) lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase : Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase : str = BatchFeature({input_name: speech_inputs} , tensor_type="pt" ) lowerCAmelCase : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: lowerCAmelCase : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase : List[str] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase : Optional[int] = feat_extract.model_input_names[0] lowerCAmelCase : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase : Any = feat_extract.num_mel_bins # hack! lowerCAmelCase : Optional[Any] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" )[input_name] lowerCAmelCase : List[Any] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="pt" )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.feat_extract_dict lowerCAmelCase : str = True lowerCAmelCase : Union[str, Any] = self.feature_extraction_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase : List[str] = [len(snake_case__ ) for x in speech_inputs] lowerCAmelCase : Union[str, Any] = feat_extract.model_input_names[0] lowerCAmelCase : Optional[int] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase : Optional[int] = feat_extract.num_mel_bins # hack! lowerCAmelCase : Optional[int] = feat_extract.pad(snake_case__ , padding="longest" , return_tensors="np" ) self.assertIn("attention_mask" , snake_case__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.feat_extract_dict lowerCAmelCase : List[Any] = True lowerCAmelCase : int = self.feature_extraction_class(**snake_case__ ) lowerCAmelCase : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() lowerCAmelCase : Optional[int] = [len(snake_case__ ) for x in speech_inputs] lowerCAmelCase : List[Any] = feat_extract.model_input_names[0] lowerCAmelCase : List[Any] = BatchFeature({input_name: speech_inputs} ) lowerCAmelCase : int = min(snake_case__ ) lowerCAmelCase : Optional[Any] = feat_extract.num_mel_bins # hack! lowerCAmelCase : List[Any] = feat_extract.pad( snake_case__ , padding="max_length" , max_length=snake_case__ , truncation=snake_case__ , return_tensors="np" ) self.assertIn("attention_mask" , snake_case__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" from datasets import load_dataset lowerCAmelCase : List[str] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech lowerCAmelCase : str = ds.sort("id" ).select(range(snake_case__ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = torch.tensor( [2.38_04e-03, 2.07_52e-03, 1.98_36e-03, 2.10_57e-03, 1.61_74e-03, 3.05_18e-04, 9.15_53e-05, 3.35_69e-04, 9.76_56e-04, 1.83_11e-03, 2.01_42e-03, 2.10_57e-03, 1.73_95e-03, 4.57_76e-04, -3.96_73e-04, 4.57_76e-04, 1.00_71e-03, 9.15_53e-05, 4.88_28e-04, 1.15_97e-03, 7.32_42e-04, 9.46_04e-04, 1.80_05e-03, 1.83_11e-03, 8.85_01e-04, 4.27_25e-04, 4.88_28e-04, 7.32_42e-04, 1.09_86e-03, 2.10_57e-03] ) # fmt: on lowerCAmelCase : Tuple = self._load_datasamples(1 ) lowerCAmelCase : int = SpeechTaFeatureExtractor() lowerCAmelCase : Any = feature_extractor(snake_case__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 93_680) ) self.assertTrue(torch.allclose(input_values[0, :30] , snake_case__ , atol=1e-6 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on lowerCAmelCase : Optional[Any] = self._load_datasamples(1 ) lowerCAmelCase : List[Any] = SpeechTaFeatureExtractor() lowerCAmelCase : Optional[Any] = feature_extractor(audio_target=snake_case__ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , snake_case__ , atol=1e-4 ) )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = list[tuple[int, int]] lowerCAmelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase__ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : List[Any] = pos_x lowerCAmelCase : int = pos_y lowerCAmelCase : Tuple = (pos_y, pos_x) lowerCAmelCase : List[str] = goal_x lowerCAmelCase : Tuple = goal_y lowerCAmelCase : str = g_cost lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = self.calculate_heuristic() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = abs(self.pos_x - self.goal_x ) lowerCAmelCase : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , snake_case__ ): """simple docstring""" return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , snake_case__ ) lowerCAmelCase : Any = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , snake_case__ ) lowerCAmelCase : Any = [self.start] lowerCAmelCase : list[Node] = [] lowerCAmelCase : Dict = False def lowercase__ ( self ): """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() lowerCAmelCase : Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: lowerCAmelCase : Dict = True return self.retrace_path(snake_case__ ) self.closed_nodes.append(snake_case__ ) lowerCAmelCase : str = self.get_successors(snake_case__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(snake_case__ ) else: # retrieve the best current path lowerCAmelCase : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(snake_case__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(snake_case__ ) else: self.open_nodes.append(snake_case__ ) if not self.reached: return [self.start.pos] return None def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] for action in delta: lowerCAmelCase : Optional[int] = parent.pos_x + action[1] lowerCAmelCase : int = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(snake_case__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( snake_case__ , snake_case__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , snake_case__ , ) ) return successors def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = node lowerCAmelCase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) lowerCAmelCase : int = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCAmelCase__ = (0, 0) lowerCAmelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') lowerCAmelCase__ = GreedyBestFirst(init, goal) lowerCAmelCase__ = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCAmelCase__ = 2 for elem in grid: print(elem)
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_pegasus_x''': ['''PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PegasusXConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PegasusXForConditionalGeneration''', '''PegasusXModel''', '''PegasusXPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = k_size // 2 lowerCAmelCase , lowerCAmelCase : Optional[int] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] lowerCAmelCase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(SCREAMING_SNAKE_CASE ) + square(SCREAMING_SNAKE_CASE )) / (2 * square(SCREAMING_SNAKE_CASE )) ) return g def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : str = image.shape[0], image.shape[1] # dst image height and width lowerCAmelCase : List[str] = height - k_size + 1 lowerCAmelCase : List[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows lowerCAmelCase : str = zeros((dst_height * dst_width, k_size * k_size) ) lowerCAmelCase : Dict = 0 for i, j in product(range(SCREAMING_SNAKE_CASE ) , range(SCREAMING_SNAKE_CASE ) ): lowerCAmelCase : Dict = ravel(image[i : i + k_size, j : j + k_size] ) lowerCAmelCase : Union[str, Any] = window row += 1 # turn the kernel into shape(k*k, 1) lowerCAmelCase : List[Any] = gen_gaussian_kernel(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = ravel(SCREAMING_SNAKE_CASE ) # reshape and get the dst image lowerCAmelCase : Optional[int] = dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).astype(SCREAMING_SNAKE_CASE ) return dst if __name__ == "__main__": # read original image lowerCAmelCase__ = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value lowerCAmelCase__ = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowerCAmelCase__ = gaussian_filter(gray, 3, sigma=1) lowerCAmelCase__ = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1
"""simple docstring""" lowerCAmelCase__ = [ (1_000, '''M'''), (900, '''CM'''), (500, '''D'''), (400, '''CD'''), (100, '''C'''), (90, '''XC'''), (50, '''L'''), (40, '''XL'''), (10, '''X'''), (9, '''IX'''), (5, '''V'''), (4, '''IV'''), (1, '''I'''), ] def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = {"I": 1, "V": 5, "X": 1_0, "L": 5_0, "C": 1_0_0, "D": 5_0_0, "M": 1_0_0_0} lowerCAmelCase : str = 0 lowerCAmelCase : Optional[Any] = 0 while place < len(SCREAMING_SNAKE_CASE ): if (place + 1 < len(SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = [] for arabic, roman in ROMAN: ((lowerCAmelCase) , (lowerCAmelCase)) : int = divmod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) result.append(roman * factor ) if number == 0: break return "".join(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCAmelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Dict =["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Dict = size if size is not None else {"shortest_edge": 224} lowerCAmelCase : Optional[int] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ , param_name="crop_size" ) lowerCAmelCase : int = do_resize lowerCAmelCase : int = size lowerCAmelCase : Tuple = resample lowerCAmelCase : int = do_center_crop lowerCAmelCase : Optional[Any] = crop_size lowerCAmelCase : Tuple = do_rescale lowerCAmelCase : int = rescale_factor lowerCAmelCase : str = do_normalize lowerCAmelCase : int = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase : str = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase : Optional[int] = do_convert_rgb def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase : List[Any] = get_resize_output_image_size(snake_case__ , size=size["shortest_edge"] , default_to_square=snake_case__ ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Any = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(snake_case__ , size=(size["height"], size["width"]) , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Dict = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Optional[Any] = size if size is not None else self.size lowerCAmelCase : List[Any] = get_size_dict(snake_case__ , param_name="size" , default_to_square=snake_case__ ) lowerCAmelCase : int = resample if resample is not None else self.resample lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : Optional[Any] = get_size_dict(snake_case__ , param_name="crop_size" , default_to_square=snake_case__ ) lowerCAmelCase : Any = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : Union[str, Any] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : List[str] = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : List[str] = [to_numpy_array(snake_case__ ) for image in images] if do_resize: lowerCAmelCase : int = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: lowerCAmelCase : List[str] = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: lowerCAmelCase : List[str] = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: lowerCAmelCase : int = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] lowerCAmelCase : int = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowerCAmelCase : int = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ )
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =KandinskyInpaintPipeline a : List[Any] =["prompt", "image_embeds", "negative_image_embeds", "image", "mask_image"] a : List[str] =[ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", "mask_image", ] a : Dict =[ "generator", "height", "width", "latents", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] a : Optional[Any] =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 100 @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : int = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) lowerCAmelCase : List[str] = MultilingualCLIP(snake_case__ ) lowerCAmelCase : List[Any] = text_encoder.eval() return text_encoder @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : str = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase__ ( self ): """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.dummy_text_encoder lowerCAmelCase : Optional[Any] = self.dummy_tokenizer lowerCAmelCase : str = self.dummy_unet lowerCAmelCase : List[Any] = self.dummy_movq lowerCAmelCase : Tuple = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule="linear" , beta_start=0.00085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type="epsilon" , thresholding=snake_case__ , ) lowerCAmelCase : Tuple = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : int = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case__ ) # create init_image lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : Dict = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((256, 256) ) # create mask lowerCAmelCase : str = np.ones((64, 64) , dtype=np.floataa ) lowerCAmelCase : Union[str, Any] = 0 if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Any = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "cpu" lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : Any = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Dict = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Dict = output.images lowerCAmelCase : List[Any] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : Dict = image[0, -3:, -3:, -1] lowerCAmelCase : str = image_from_tuple[0, -3:, -3:, -1] print(f"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Any = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) lowerCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCAmelCase : Optional[int] = np.ones((768, 768) , dtype=np.floataa ) lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = "a hat" lowerCAmelCase : int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) lowerCAmelCase : List[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase : Tuple = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCAmelCase : List[Any] = pipeline( snake_case__ , image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) lowerCAmelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class SCREAMING_SNAKE_CASE__ ( enum.Enum ): """simple docstring""" a : int =0 a : Dict =1 a : str =2 @add_end_docstrings(lowercase ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Dict ="\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. lowerCAmelCase : Optional[int] = None if self.model.config.prefix is not None: lowerCAmelCase : int = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. lowerCAmelCase : List[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = self._sanitize_parameters(prefix=snake_case__ , **self._forward_params ) lowerCAmelCase : str = {**self._preprocess_params, **preprocess_params} lowerCAmelCase : Tuple = {**self._forward_params, **forward_params} def lowercase__ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Tuple = {} if prefix is not None: lowerCAmelCase : List[str] = prefix if prefix: lowerCAmelCase : Union[str, Any] = self.tokenizer( snake_case__ , padding=snake_case__ , add_special_tokens=snake_case__ , return_tensors=self.framework ) lowerCAmelCase : int = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" " [None, 'hole']" ) lowerCAmelCase : Tuple = handle_long_generation preprocess_params.update(snake_case__ ) lowerCAmelCase : List[str] = generate_kwargs lowerCAmelCase : List[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) lowerCAmelCase : int = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) lowerCAmelCase : Tuple = ReturnType.TENSORS if return_type is not None: lowerCAmelCase : Union[str, Any] = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase : Optional[Any] = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase : str = self.tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) if len(snake_case__ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) lowerCAmelCase : int = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*snake_case__ , **snake_case__ ) def __call__( self , snake_case__ , **snake_case__ ): """simple docstring""" return super().__call__(snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__="" , snake_case__=None , **snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.tokenizer( prefix + prompt_text , padding=snake_case__ , add_special_tokens=snake_case__ , return_tensors=self.framework ) lowerCAmelCase : Tuple = prompt_text if handle_long_generation == "hole": lowerCAmelCase : Union[str, Any] = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: lowerCAmelCase : List[Any] = generate_kwargs["max_new_tokens"] else: lowerCAmelCase : Optional[Any] = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: lowerCAmelCase : Dict = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) lowerCAmelCase : Optional[Any] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: lowerCAmelCase : Optional[Any] = inputs["attention_mask"][:, -keep_length:] return inputs def lowercase__ ( self , snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Any = model_inputs["input_ids"] lowerCAmelCase : Optional[int] = model_inputs.get("attention_mask" , snake_case__ ) # Allow empty prompts if input_ids.shape[1] == 0: lowerCAmelCase : Dict = None lowerCAmelCase : List[Any] = None lowerCAmelCase : Optional[int] = 1 else: lowerCAmelCase : List[str] = input_ids.shape[0] lowerCAmelCase : int = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. lowerCAmelCase : List[Any] = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: lowerCAmelCase : Union[str, Any] = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: lowerCAmelCase : Tuple = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length lowerCAmelCase : Tuple = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL lowerCAmelCase : Optional[Any] = self.model.generate(input_ids=snake_case__ , attention_mask=snake_case__ , **snake_case__ ) lowerCAmelCase : Any = generated_sequence.shape[0] if self.framework == "pt": lowerCAmelCase : Union[str, Any] = generated_sequence.reshape(snake_case__ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": lowerCAmelCase : Optional[Any] = tf.reshape(snake_case__ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase__ ( self , snake_case__ , snake_case__=ReturnType.FULL_TEXT , snake_case__=True ): """simple docstring""" lowerCAmelCase : Tuple = model_outputs["generated_sequence"][0] lowerCAmelCase : Optional[Any] = model_outputs["input_ids"] lowerCAmelCase : Optional[int] = model_outputs["prompt_text"] lowerCAmelCase : Tuple = generated_sequence.numpy().tolist() lowerCAmelCase : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: lowerCAmelCase : int = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text lowerCAmelCase : Union[str, Any] = self.tokenizer.decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: lowerCAmelCase : Union[str, Any] = 0 else: lowerCAmelCase : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , ) ) if return_type == ReturnType.FULL_TEXT: lowerCAmelCase : str = prompt_text + text[prompt_length:] else: lowerCAmelCase : Union[str, Any] = text[prompt_length:] lowerCAmelCase : Any = {"generated_text": all_text} records.append(snake_case__ ) return records
681
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
1
"""simple docstring""" import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(snake_case__ ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: with self.subTest(snake_case__ ): lowerCAmelCase : Dict = AutoConfig.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = FlaxAutoModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCAmelCase : int = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = FlaxBertModel.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["roberta-base", "roberta-large"]: lowerCAmelCase : str = AutoTokenizer.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = FlaxRobertaModel.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**snake_case__ ): return model(**snake_case__ ) eval(**snake_case__ ).block_until_ready() def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , "bert-base is not a local folder and is not a valid model identifier" ): lowerCAmelCase : Union[str, Any] = FlaxAutoModel.from_pretrained("bert-base" ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCAmelCase : Optional[Any] = FlaxAutoModel.from_pretrained(snake_case__ , revision="aaaaaa" ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( snake_case__ , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): lowerCAmelCase : List[str] = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex(snake_case__ , "Use `from_pt=True` to load this model" ): lowerCAmelCase : List[Any] = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = sum(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): lowerCAmelCase : List[Any] = True for i in range(1 , s + 1 ): lowerCAmelCase : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): lowerCAmelCase : Dict = dp[i][j - 1] if arr[i - 1] <= j: lowerCAmelCase : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: lowerCAmelCase : int = s - 2 * j break return diff
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =BertGenerationTokenizer a : Union[str, Any] =False a : Tuple =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Optional[int] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "<s>" lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(snake_case__ ) , 1_002 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase__ ( self ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = "Hello World!" lowerCAmelCase : Optional[int] = [18_536, 2_260, 101] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCAmelCase : Dict = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase : str = " ".join(snake_case__ ) lowerCAmelCase : Dict = self.big_tokenizer.encode_plus(snake_case__ , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = BertGenerationConfig() lowerCAmelCase : int = BertGenerationEncoder(snake_case__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case__ ) model(**snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {"input_ids": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] ="naver-clova-ix/donut-base-finetuned-docvqa" a : List[Any] =( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) a : List[Any] ="document_qa" a : Union[str, Any] =AutoProcessor a : Optional[Any] =VisionEncoderDecoderModel a : List[str] =["image", "text"] a : Tuple =["text"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowerCAmelCase : Any = task_prompt.replace("{user_input}" , snake_case__ ) lowerCAmelCase : Any = self.pre_processor.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors="pt" ).input_ids lowerCAmelCase : Optional[Any] = self.pre_processor(snake_case__ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=snake_case__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=snake_case__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=snake_case__ , ).sequences def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.pre_processor.batch_decode(snake_case__ )[0] lowerCAmelCase : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) lowerCAmelCase : Dict = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) lowerCAmelCase : List[Any] = re.sub(r"<.*?>" , "" , snake_case__ , count=1 ).strip() # remove first task start token lowerCAmelCase : Dict = self.pre_processor.tokenajson(snake_case__ ) return sequence["answer"]
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
1
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '''\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel\'s Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = "{COMET}: A Neural Framework for {MT} Evaluation", author = "Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon", booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.emnlp-main.213", pages = "2685--2702", } ''' lowerCAmelCase__ = '''\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA\'s or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. ''' lowerCAmelCase__ = ''' COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric(\'comet\') >>> # comet_metric = load_metric(\'comet\', \'wmt20-comet-da\') # you can also choose which model to use >>> source = ["Dem Feuer konnte Einhalt geboten werden", "Schulen und Kindergärten wurden eröffnet."] >>> hypothesis = ["The fire could be stopped", "Schools and kindergartens were open"] >>> reference = ["They were able to control the fire.", "Schools and kindergartens opened"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results["scores"]]) [0.19, 0.92] ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence" ), "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.config_name == "default": lowerCAmelCase : str = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da" ) ) else: lowerCAmelCase : Tuple = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , snake_case__=False ): """simple docstring""" if gpus is None: lowerCAmelCase : Dict = 1 if torch.cuda.is_available() else 0 lowerCAmelCase : Optional[int] = {"src": sources, "mt": predictions, "ref": references} lowerCAmelCase : List[Any] = [dict(zip(snake_case__ , snake_case__ ) ) for t in zip(*data.values() )] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.scorer.predict(snake_case__ , gpus=snake_case__ , progress_bar=snake_case__ ) return {"mean_score": mean_score, "scores": scores}
681
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < k or k < 0: raise ValueError("Invalid Input" ) lowerCAmelCase : Optional[int] = sum(array[:k] ) for i in range(len(SCREAMING_SNAKE_CASE ) - k ): lowerCAmelCase : str = current_sum - array[i] + array[i + k] lowerCAmelCase : Optional[int] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() lowerCAmelCase__ = [randint(-1_000, 1_000) for i in range(100)] lowerCAmelCase__ = randint(0, 110) print(F"The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}")
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
"""simple docstring""" from __future__ import annotations import math def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if depth < 0: raise ValueError("Depth cannot be less than 0" ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Scores cannot be empty" ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3] lowerCAmelCase : Union[str, Any] = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print("Optimal value : " , end="" ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" from functools import reduce lowerCAmelCase__ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def a__ ( SCREAMING_SNAKE_CASE : str = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str(int(SCREAMING_SNAKE_CASE ) * int(SCREAMING_SNAKE_CASE ) ) , n[i : i + 1_3] ) ) for i in range(len(SCREAMING_SNAKE_CASE ) - 1_2 ) ) if __name__ == "__main__": print(F"{solution() = }")
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''transfo-xl-wt103''': '''https://huggingface.co/transfo-xl-wt103/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] ="transfo-xl" a : str =["mems"] a : Optional[Any] ={ "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=267_735 , snake_case__=[20_000, 40_000, 200_000] , snake_case__=1_024 , snake_case__=1_024 , snake_case__=16 , snake_case__=64 , snake_case__=4_096 , snake_case__=4 , snake_case__=False , snake_case__=18 , snake_case__=1_600 , snake_case__=1_000 , snake_case__=True , snake_case__=True , snake_case__=0 , snake_case__=-1 , snake_case__=True , snake_case__=0.1 , snake_case__=0.0 , snake_case__=True , snake_case__="normal" , snake_case__=0.01 , snake_case__=0.01 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__=0 , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : Optional[Any] = [] self.cutoffs.extend(snake_case__ ) if proj_share_all_but_first: lowerCAmelCase : List[Any] = [False] + [True] * len(self.cutoffs ) else: lowerCAmelCase : List[Any] = [False] + [False] * len(self.cutoffs ) lowerCAmelCase : Optional[int] = d_model lowerCAmelCase : Dict = d_embed lowerCAmelCase : Optional[int] = d_head lowerCAmelCase : str = d_inner lowerCAmelCase : Union[str, Any] = div_val lowerCAmelCase : int = pre_lnorm lowerCAmelCase : str = n_layer lowerCAmelCase : Optional[int] = n_head lowerCAmelCase : Tuple = mem_len lowerCAmelCase : str = same_length lowerCAmelCase : int = attn_type lowerCAmelCase : Any = clamp_len lowerCAmelCase : List[Any] = sample_softmax lowerCAmelCase : Any = adaptive lowerCAmelCase : Any = dropout lowerCAmelCase : Union[str, Any] = dropatt lowerCAmelCase : Any = untie_r lowerCAmelCase : str = init lowerCAmelCase : Tuple = init_range lowerCAmelCase : int = proj_init_std lowerCAmelCase : Tuple = init_std lowerCAmelCase : Dict = layer_norm_epsilon super().__init__(eos_token_id=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def lowercase__ ( self , snake_case__ ): """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = data lowerCAmelCase : int = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0] @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0xff_fff_fff def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = B"\x80" + B"\x00" * (63 - (len(self.data ) + 8) % 64) lowerCAmelCase : Dict = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def lowercase__ ( self ): """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = list(struct.unpack(">16L" , snake_case__ ) ) + [0] * 64 for i in range(16 , 80 ): lowerCAmelCase : List[str] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.padding() lowerCAmelCase : Union[str, Any] = self.split_blocks() for block in self.blocks: lowerCAmelCase : str = self.expand_block(snake_case__ ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.h for i in range(0 , 80 ): if 0 <= i < 20: lowerCAmelCase : List[Any] = (b & c) | ((~b) & d) lowerCAmelCase : List[str] = 0x5a_827_999 elif 20 <= i < 40: lowerCAmelCase : List[Any] = b ^ c ^ d lowerCAmelCase : Any = 0x6e_d9e_ba1 elif 40 <= i < 60: lowerCAmelCase : Any = (b & c) | (b & d) | (c & d) lowerCAmelCase : Tuple = 0x8f_1bb_cdc elif 60 <= i < 80: lowerCAmelCase : Dict = b ^ c ^ d lowerCAmelCase : Any = 0xca_62c_1d6 lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = ( self.rotate(snake_case__ , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff, a, self.rotate(snake_case__ , 30 ), c, d, ) lowerCAmelCase : Tuple = ( self.h[0] + a & 0xff_fff_fff, self.h[1] + b & 0xff_fff_fff, self.h[2] + c & 0xff_fff_fff, self.h[3] + d & 0xff_fff_fff, self.h[4] + e & 0xff_fff_fff, ) return ("{:08x}" * 5).format(*self.h ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = B"Test String" assert SHAaHash(SCREAMING_SNAKE_CASE ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE ).hexdigest() # noqa: S324 def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) lowerCAmelCase : int = parser.parse_args() lowerCAmelCase : List[Any] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCAmelCase : str = f.read() else: lowerCAmelCase : List[str] = bytes(SCREAMING_SNAKE_CASE , "utf-8" ) print(SHAaHash(SCREAMING_SNAKE_CASE ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''prophetnet.tokenizer'''} lowerCAmelCase__ = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } lowerCAmelCase__ = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } lowerCAmelCase__ = { '''microsoft/xprophetnet-large-wiki100-cased''': 512, } def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : int = collections.OrderedDict() with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as reader: lowerCAmelCase : List[Any] = reader.readlines() for index, token in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[int] = token.rstrip("\n" ) lowerCAmelCase : List[Any] = index return vocab class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[int] =["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__="[SEP]" , snake_case__="[SEP]" , snake_case__="[SEP]" , snake_case__="[UNK]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCAmelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCAmelCase : List[str] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): lowerCAmelCase : Optional[int] = f"""[unused{i}]""" lowerCAmelCase : Optional[int] = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCAmelCase : int = 12 lowerCAmelCase : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(snake_case__ ) def __getstate__( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.__dict__.copy() lowerCAmelCase : List[Any] = None return state def __setstate__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return ([0] * len(snake_case__ )) + [1] return ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Optional[int] = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : List[str] = self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self , snake_case__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = "".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: lowerCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCAmelCase : List[str] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 1_6 , SCREAMING_SNAKE_CASE : str = "bert-base-cased" ): '''simple docstring''' lowerCAmelCase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase : Union[str, Any] = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : int = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase : str = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' model.eval() lowerCAmelCase : Tuple = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase , lowerCAmelCase : Union[str, Any] = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : List[str] = metric.compute() return eval_metric["accuracy"] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : int = config["lr"] lowerCAmelCase : Tuple = int(config["num_epochs"] ) lowerCAmelCase : List[str] = int(config["seed"] ) lowerCAmelCase : int = int(config["batch_size"] ) lowerCAmelCase : List[Any] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) # Instantiate optimizer lowerCAmelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase : int = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase : str = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowerCAmelCase : str = 1 lowerCAmelCase : List[str] = (len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE , ) else: lowerCAmelCase : List[str] = DummyScheduler(SCREAMING_SNAKE_CASE , total_num_steps=SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = evaluate.load("glue" , "mrpc" ) lowerCAmelCase : Any = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase : Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase : int = args.resume_from_checkpoint.split("epoch_" )[1] lowerCAmelCase : Optional[Any] = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE ) + 1 lowerCAmelCase : str = evaluation_loop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.print("resumed checkpoint performance:" , SCREAMING_SNAKE_CASE ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , "r" ) as f: lowerCAmelCase : str = json.load(SCREAMING_SNAKE_CASE ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase : Optional[int] = {} for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = outputs.loss lowerCAmelCase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase : Optional[int] = f"""epoch_{epoch}""" lowerCAmelCase : Optional[Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = evaluation_loop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = accuracy lowerCAmelCase : Tuple = lr_scheduler.get_lr()[0] lowerCAmelCase : Tuple = optimizer.param_groups[0]["lr"] lowerCAmelCase : List[Any] = epoch lowerCAmelCase : Optional[int] = overall_step accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( "--output_dir" , type=SCREAMING_SNAKE_CASE , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=SCREAMING_SNAKE_CASE , default=2 , help="Number of train epochs." , ) lowerCAmelCase : Tuple = parser.parse_args() lowerCAmelCase : Union[str, Any] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''sentencepiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''', }, '''tokenizer_file''': { '''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/tokenizer.json''', }, } lowerCAmelCase__ = { '''google/rembert''': 256, } lowerCAmelCase__ = '''▁''' class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str =VOCAB_FILES_NAMES a : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict =RemBertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__="[CLS]" , snake_case__="[SEP]" , snake_case__="<unk>" , snake_case__="[SEP]" , snake_case__="<pad>" , snake_case__="[CLS]" , snake_case__="[MASK]" , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) lowerCAmelCase : Optional[int] = do_lower_case lowerCAmelCase : str = remove_space lowerCAmelCase : Any = keep_accents lowerCAmelCase : Optional[Any] = vocab_file lowerCAmelCase : Tuple = False if not self.vocab_file else True def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Optional[int] = [self.sep_token_id] lowerCAmelCase : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : List[Any] = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error("Vocabulary path ({}) should be a directory".format(snake_case__ ) ) return lowerCAmelCase : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Dict ="perceiver" def __init__( self , snake_case__=256 , snake_case__=1_280 , snake_case__=768 , snake_case__=1 , snake_case__=26 , snake_case__=8 , snake_case__=8 , snake_case__=None , snake_case__=None , snake_case__="kv" , snake_case__=1 , snake_case__=1 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=262 , snake_case__=2_048 , snake_case__=56 , snake_case__=[368, 496] , snake_case__=16 , snake_case__=1_920 , snake_case__=16 , snake_case__=[1, 16, 224, 224] , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[int] = num_latents lowerCAmelCase : str = d_latents lowerCAmelCase : List[str] = d_model lowerCAmelCase : Dict = num_blocks lowerCAmelCase : Any = num_self_attends_per_block lowerCAmelCase : Optional[Any] = num_self_attention_heads lowerCAmelCase : Union[str, Any] = num_cross_attention_heads lowerCAmelCase : Tuple = qk_channels lowerCAmelCase : List[Any] = v_channels lowerCAmelCase : Optional[int] = cross_attention_shape_for_attention lowerCAmelCase : Optional[Any] = self_attention_widening_factor lowerCAmelCase : str = cross_attention_widening_factor lowerCAmelCase : Any = hidden_act lowerCAmelCase : List[str] = attention_probs_dropout_prob lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = use_query_residual # masked language modeling attributes lowerCAmelCase : int = vocab_size lowerCAmelCase : Dict = max_position_embeddings # image classification attributes lowerCAmelCase : str = image_size # flow attributes lowerCAmelCase : Union[str, Any] = train_size # multimodal autoencoding attributes lowerCAmelCase : List[Any] = num_frames lowerCAmelCase : Union[str, Any] = audio_samples_per_frame lowerCAmelCase : Tuple = samples_per_patch lowerCAmelCase : Dict = output_shape class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4 def lowercase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 40 , snake_case__ = 40 , ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase : Tuple = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase : Optional[Any] = preprocessor.num_special_tokens_to_add(snake_case__ ) lowerCAmelCase : Optional[Any] = compute_effective_axis_dimension( snake_case__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=snake_case__ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase : Tuple = [" ".join(["a"] ) * seq_length] * batch_size lowerCAmelCase : List[str] = dict(preprocessor(snake_case__ , return_tensors=snake_case__ ) ) lowerCAmelCase : Dict = inputs.pop("input_ids" ) return inputs elif isinstance(snake_case__ , snake_case__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase : Union[str, Any] = compute_effective_axis_dimension(snake_case__ , fixed_dimension=OnnxConfig.default_fixed_batch ) lowerCAmelCase : Optional[Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : str = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) lowerCAmelCase : str = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="M-CLIP" def __init__( self , snake_case__=1_024 , snake_case__=768 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = transformerDimSize lowerCAmelCase : Optional[int] = imageDimSize super().__init__(**snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Tuple =MCLIPConfig def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = XLMRobertaModel(snake_case__ ) lowerCAmelCase : Tuple = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.transformer(input_ids=snake_case__ , attention_mask=snake_case__ )[0] lowerCAmelCase : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case__ ), embs
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" import os def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = len(grid[0] ) lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE ): for j in range(n_rows - 3 ): lowerCAmelCase : Optional[int] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase : Optional[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase : int = max( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if max_product > largest: lowerCAmelCase : List[Any] = max_product return largest def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCAmelCase : Dict = [[int(SCREAMING_SNAKE_CASE ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE ) )] return largest_product(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase__ = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : int = EfficientNetConfig() lowerCAmelCase : Optional[int] = CONFIG_MAP[model_name]["hidden_dim"] lowerCAmelCase : List[str] = CONFIG_MAP[model_name]["width_coef"] lowerCAmelCase : int = CONFIG_MAP[model_name]["depth_coef"] lowerCAmelCase : Union[str, Any] = CONFIG_MAP[model_name]["image_size"] lowerCAmelCase : List[Any] = CONFIG_MAP[model_name]["dropout_rate"] lowerCAmelCase : Dict = CONFIG_MAP[model_name]["dw_padding"] lowerCAmelCase : str = "huggingface/label-files" lowerCAmelCase : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase : Dict = 1_0_0_0 lowerCAmelCase : Tuple = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : List[str] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase : str = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} return config def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = CONFIG_MAP[model_name]["image_size"] lowerCAmelCase : Optional[int] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47_853_944, 0.4_732_864, 0.47_434_163] , do_center_crop=SCREAMING_SNAKE_CASE , ) return preprocessor def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Tuple = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowerCAmelCase : Optional[int] = sorted(set(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : int = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = {b: str(SCREAMING_SNAKE_CASE ) for b, i in zip(SCREAMING_SNAKE_CASE , range(SCREAMING_SNAKE_CASE ) )} lowerCAmelCase : Dict = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowerCAmelCase : List[Any] = block_name_mapping[b] rename_keys.append((f"""block{b}_expand_conv/kernel:0""", f"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((f"""block{b}_expand_bn/gamma:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((f"""block{b}_expand_bn/beta:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (f"""block{b}_expand_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (f"""block{b}_dwconv/depthwise_kernel:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((f"""block{b}_bn/gamma:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((f"""block{b}_bn/beta:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (f"""block{b}_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (f"""block{b}_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((f"""block{b}_se_reduce/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((f"""block{b}_se_reduce/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((f"""block{b}_se_expand/kernel:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((f"""block{b}_se_expand/bias:0""", f"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (f"""block{b}_project_conv/kernel:0""", f"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((f"""block{b}_project_bn/gamma:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((f"""block{b}_project_bn/beta:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (f"""block{b}_project_bn/moving_mean:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (f"""block{b}_project_bn/moving_variance:0""", f"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowerCAmelCase : str = {} for item in rename_keys: if item[0] in original_param_names: lowerCAmelCase : Optional[int] = "efficientnet." + item[1] lowerCAmelCase : int = "classifier.weight" lowerCAmelCase : Union[str, Any] = "classifier.bias" return key_mapping def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue lowerCAmelCase : str = key_mapping[key] if "_conv" in key and "kernel" in key: lowerCAmelCase : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowerCAmelCase : List[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowerCAmelCase : Any = torch.from_numpy(np.transpose(SCREAMING_SNAKE_CASE ) ) else: lowerCAmelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(SCREAMING_SNAKE_CASE ) @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[int] = model_classes[model_name]( include_top=SCREAMING_SNAKE_CASE , weights="imagenet" , input_tensor=SCREAMING_SNAKE_CASE , input_shape=SCREAMING_SNAKE_CASE , pooling=SCREAMING_SNAKE_CASE , classes=1_0_0_0 , classifier_activation="softmax" , ) lowerCAmelCase : str = original_model.trainable_variables lowerCAmelCase : Union[str, Any] = original_model.non_trainable_variables lowerCAmelCase : int = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowerCAmelCase : int = param.numpy() lowerCAmelCase : Optional[int] = list(tf_params.keys() ) # Load HuggingFace model lowerCAmelCase : Tuple = get_efficientnet_config(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = EfficientNetForImageClassification(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowerCAmelCase : Optional[int] = rename_keys(SCREAMING_SNAKE_CASE ) replace_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Initialize preprocessor and preprocess input image lowerCAmelCase : int = convert_image_processor(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = hf_model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = outputs.logits.detach().numpy() # Original model inference lowerCAmelCase : int = False lowerCAmelCase : Any = CONFIG_MAP[model_name]["image_size"] lowerCAmelCase : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowerCAmelCase : Dict = image.img_to_array(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.expand_dims(SCREAMING_SNAKE_CASE , axis=0 ) lowerCAmelCase : Any = original_model.predict(SCREAMING_SNAKE_CASE ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(SCREAMING_SNAKE_CASE ): os.mkdir(SCREAMING_SNAKE_CASE ) # Save converted model and image processor hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) preprocessor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: # Push model and image processor to hub print(f"""Pushing converted {model_name} to the hub...""" ) lowerCAmelCase : Union[str, Any] = f"""efficientnet-{model_name}""" preprocessor.push_to_hub(SCREAMING_SNAKE_CASE ) hf_model.push_to_hub(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowerCAmelCase__ = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase__ = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : str = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : Union[str, Any] = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if images.ndim == 3: lowerCAmelCase : List[Any] = images[None, ...] lowerCAmelCase : Any = (images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase : Tuple = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowerCAmelCase : Any = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="markuplm" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=0 , snake_case__=2 , snake_case__=256 , snake_case__=1_024 , snake_case__=216 , snake_case__=1_001 , snake_case__=32 , snake_case__=50 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ , ) lowerCAmelCase : Any = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : int = num_hidden_layers lowerCAmelCase : Optional[Any] = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : str = max_position_embeddings lowerCAmelCase : List[str] = type_vocab_size lowerCAmelCase : str = initializer_range lowerCAmelCase : int = layer_norm_eps lowerCAmelCase : Optional[int] = position_embedding_type lowerCAmelCase : List[Any] = use_cache lowerCAmelCase : str = classifier_dropout # additional properties lowerCAmelCase : str = max_depth lowerCAmelCase : Union[str, Any] = max_xpath_tag_unit_embeddings lowerCAmelCase : List[Any] = max_xpath_subs_unit_embeddings lowerCAmelCase : int = tag_pad_id lowerCAmelCase : Union[str, Any] = subs_pad_id lowerCAmelCase : List[str] = xpath_unit_hidden_size
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("This should never happen" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase__ = '''Enter the base and the power separated by a comma: ''' lowerCAmelCase__ ,lowerCAmelCase__ = map(int, input(prompt).split(''',''')) lowerCAmelCase__ ,lowerCAmelCase__ = map(int, input(prompt).split(''',''')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase__ = res(xa, ya) lowerCAmelCase__ = res(xa, ya) # We check for the largest number if resa > resa: print('''Largest number is''', xa, '''^''', ya) elif resa > resa: print('''Largest number is''', xa, '''^''', ya) else: print('''Both are equal''')
681
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''tokenizer_file''': { '''bigscience/tokenizer''': '''https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json''', '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json''', }, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : Any =["input_ids", "attention_mask"] a : Any =None def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__=False , snake_case__=False , **snake_case__ , ): """simple docstring""" super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , add_prefix_space=snake_case__ , clean_up_tokenization_spaces=snake_case__ , **snake_case__ , ) lowerCAmelCase : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: lowerCAmelCase : Optional[Any] = getattr(snake_case__ , pre_tok_state.pop("type" ) ) lowerCAmelCase : Tuple = add_prefix_space lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = add_prefix_space def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = kwargs.get("is_split_into_words" , snake_case__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : str = kwargs.get("is_split_into_words" , snake_case__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with""" " pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : List[str] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: lowerCAmelCase : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase ): """simple docstring""" a : List[str] =["torch", "scipy"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=2 , snake_case__=True , snake_case__=False , snake_case__=10 , snake_case__=3 , snake_case__=32 * 8 , snake_case__=32 * 8 , snake_case__=4 , snake_case__=64 , ): """simple docstring""" lowerCAmelCase : Tuple = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : List[str] = is_training lowerCAmelCase : str = use_auxiliary_loss lowerCAmelCase : Any = num_queries lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Union[str, Any] = min_size lowerCAmelCase : Tuple = max_size lowerCAmelCase : int = num_labels lowerCAmelCase : List[Any] = hidden_dim lowerCAmelCase : List[str] = hidden_dim def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case__ ) lowerCAmelCase : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case__ ) lowerCAmelCase : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case__ ) > 0.5 ).float() lowerCAmelCase : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=snake_case__ ) > 0.5).long() lowerCAmelCase : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase : Optional[Any] = self.num_queries lowerCAmelCase : Any = self.num_labels lowerCAmelCase : Tuple = [1, 1, 1, 1] lowerCAmelCase : Optional[int] = self.num_channels lowerCAmelCase : Tuple = 64 lowerCAmelCase : Tuple = 128 lowerCAmelCase : Optional[int] = self.hidden_dim lowerCAmelCase : Dict = self.hidden_dim lowerCAmelCase : Dict = self.hidden_dim return config def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = self.prepare_config_and_inputs() lowerCAmelCase : Union[str, Any] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = output.encoder_hidden_states lowerCAmelCase : int = output.pixel_decoder_hidden_states lowerCAmelCase : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , config.decoder_layers ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" with torch.no_grad(): lowerCAmelCase : int = MaskaFormerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowerCAmelCase : List[str] = model(snake_case__ , output_hidden_states=snake_case__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() def comm_check_on_output(snake_case__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowerCAmelCase : List[str] = model(snake_case__ ) comm_check_on_output(snake_case__ ) lowerCAmelCase : str = model( pixel_values=snake_case__ , pixel_mask=snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) comm_check_on_output(snake_case__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a : str ={"feature-extraction": MaskaFormerModel} if is_torch_available() else {} a : Dict =False a : str =False a : Dict =False a : int =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = MaskaFormerModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(snake_case__ ) lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase : Union[str, Any] = MaskaFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase : Optional[int] = { "pixel_values": torch.randn((2, 3, *size) , device=snake_case__ ), "mask_labels": torch.randn((2, 10, *size) , device=snake_case__ ), "class_labels": torch.zeros(2 , 10 , device=snake_case__ ).long(), } lowerCAmelCase : List[Any] = self.model_tester.get_config() lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(snake_case__ ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(snake_case__ ).to(snake_case__ ) lowerCAmelCase : Tuple = model(**snake_case__ , output_attentions=snake_case__ ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowerCAmelCase : Tuple = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase : List[str] = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ).loss loss.backward() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.all_model_classes[1] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Dict = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ).to(snake_case__ ) model.train() lowerCAmelCase : Optional[Any] = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) lowerCAmelCase : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase : int = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1e-4 def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self ): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case__ ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Optional[Any] = image_processor(snake_case__ , return_tensors="pt" ).to(snake_case__ ) lowerCAmelCase : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowerCAmelCase : Optional[int] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowerCAmelCase : str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowerCAmelCase : Dict = self.default_image_processor lowerCAmelCase : Optional[int] = prepare_img() lowerCAmelCase : List[str] = image_processor(snake_case__ , return_tensors="pt" ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) # masks_queries_logits lowerCAmelCase : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase : int = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase : Dict = torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits lowerCAmelCase : Optional[int] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowerCAmelCase : int = self.default_image_processor lowerCAmelCase : int = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase : List[str] = inputs["pixel_values"].to(snake_case__ ) lowerCAmelCase : Dict = [el.to(snake_case__ ) for el in inputs["mask_labels"]] lowerCAmelCase : str = [el.to(snake_case__ ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) self.assertTrue(outputs.loss is not None )
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' try: with open(SCREAMING_SNAKE_CASE , "rb" ) as flax_state_f: lowerCAmelCase : Dict = from_bytes(SCREAMING_SNAKE_CASE , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowerCAmelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE ) ).values() if any(SCREAMING_SNAKE_CASE ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowerCAmelCase : Tuple = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = "" lowerCAmelCase : str = flatten_dict(SCREAMING_SNAKE_CASE , sep="." ) lowerCAmelCase : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys lowerCAmelCase : List[str] = [] lowerCAmelCase : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCAmelCase : Union[str, Any] = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: lowerCAmelCase : Dict = flax_key_tuple_array[:-1] + ["weight"] lowerCAmelCase : int = jnp.transpose(SCREAMING_SNAKE_CASE , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": lowerCAmelCase : List[Any] = flax_key_tuple_array[:-1] + ["weight"] lowerCAmelCase : Optional[Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": lowerCAmelCase : int = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) lowerCAmelCase : Union[str, Any] = ".".join(SCREAMING_SNAKE_CASE ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict lowerCAmelCase : List[Any] = np.asarray(SCREAMING_SNAKE_CASE ) if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) else flax_tensor lowerCAmelCase : Union[str, Any] = torch.from_numpy(SCREAMING_SNAKE_CASE ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE ) # re-transform missing_keys to list lowerCAmelCase : List[Any] = list(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(SCREAMING_SNAKE_CASE ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" " use it for predictions and inference." ) return pt_model
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = tempfile.mkdtemp() lowerCAmelCase : List[str] = BlipImageProcessor() lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" ) lowerCAmelCase : str = BlipProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def lowercase__ ( self , **snake_case__ ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCAmelCase : Optional[int] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase : List[str] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.get_image_processor() lowerCAmelCase : str = self.get_tokenizer() lowerCAmelCase : int = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : Tuple = self.prepare_image_inputs() lowerCAmelCase : str = image_processor(snake_case__ , return_tensors="np" ) lowerCAmelCase : Optional[Any] = processor(images=snake_case__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : Optional[Any] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : Union[str, Any] = "lower newer" lowerCAmelCase : List[str] = processor(text=snake_case__ ) lowerCAmelCase : List[Any] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_image_processor() lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Optional[Any] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : int = "lower newer" lowerCAmelCase : List[Any] = self.prepare_image_inputs() lowerCAmelCase : str = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : Union[str, Any] = self.get_tokenizer() lowerCAmelCase : str = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase : str = processor.batch_decode(snake_case__ ) lowerCAmelCase : Optional[int] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.get_image_processor() lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase : str = "lower newer" lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() lowerCAmelCase : List[str] = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
681
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] =VOCAB_FILES_NAMES a : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str =["input_ids", "attention_mask"] a : int =TaTokenizer a : List[int] =[] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__=100 , snake_case__=None , **snake_case__ , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : Any = [f"""<extra_id_{i}>""" for i in range(snake_case__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase : List[str] = len(set(filter(lambda snake_case__ : bool("extra_id_" in str(snake_case__ ) ) , snake_case__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( snake_case__ , tokenizer_file=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase : int = vocab_file lowerCAmelCase : int = False if not self.vocab_file else True lowerCAmelCase : Union[str, Any] = extra_ids @staticmethod def lowercase__ ( snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase : List[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , snake_case__ , ) return max_model_length def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self ): """simple docstring""" return list( set(filter(lambda snake_case__ : bool(re.search(r"<extra_id_\d+>" , snake_case__ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self ): """simple docstring""" return [self.convert_tokens_to_ids(snake_case__ ) for token in self.get_sentinel_tokens()]
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def a__ ( SCREAMING_SNAKE_CASE : Optional[Any]="" ): '''simple docstring''' lowerCAmelCase : Dict = tempfile.mkdtemp() return os.path.join(SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Optional[Any] = AgentAudio(snake_case__ ) lowerCAmelCase : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , torch.tensor(snake_case__ ) , atol=1e-4 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Optional[Any] = get_new_path(suffix=".wav" ) sf.write(snake_case__ , snake_case__ , 16_000 ) lowerCAmelCase : List[str] = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case__ ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = torch.randint(0 , 256 , (64, 64, 3) ) lowerCAmelCase : Tuple = AgentImage(snake_case__ ) lowerCAmelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowerCAmelCase : str = Image.open(snake_case__ ) lowerCAmelCase : List[str] = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowerCAmelCase : List[str] = Image.open(snake_case__ ) lowerCAmelCase : Tuple = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "Hey!" lowerCAmelCase : Union[str, Any] = AgentText(snake_case__ ) self.assertEqual(snake_case__ , agent_type.to_string() ) self.assertEqual(snake_case__ , agent_type.to_raw() ) self.assertEqual(snake_case__ , snake_case__ )
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="van" def __init__( self , snake_case__=224 , snake_case__=3 , snake_case__=[7, 3, 3, 3] , snake_case__=[4, 2, 2, 2] , snake_case__=[64, 128, 320, 512] , snake_case__=[3, 3, 12, 3] , snake_case__=[8, 8, 4, 4] , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=1e-2 , snake_case__=0.0 , snake_case__=0.0 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : int = num_channels lowerCAmelCase : Optional[Any] = patch_sizes lowerCAmelCase : Optional[int] = strides lowerCAmelCase : int = hidden_sizes lowerCAmelCase : int = depths lowerCAmelCase : Optional[int] = mlp_ratios lowerCAmelCase : int = hidden_act lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : List[str] = layer_scale_init_value lowerCAmelCase : List[Any] = drop_path_rate lowerCAmelCase : str = dropout_rate
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): '''simple docstring''' lowerCAmelCase : int = bnb_quantization_config.load_in_abit lowerCAmelCase : List[str] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) lowerCAmelCase : Tuple = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: lowerCAmelCase : Union[str, Any] = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: lowerCAmelCase : Any = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Tuple = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft lowerCAmelCase : Optional[Any] = load_in_abit lowerCAmelCase : List[Any] = load_in_abit lowerCAmelCase : List[str] = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) lowerCAmelCase : Optional[int] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype lowerCAmelCase : Dict = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: lowerCAmelCase : List[str] = name.replace(".weight" , "" ).replace(".bias" , "" ) lowerCAmelCase : int = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): lowerCAmelCase : Any = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): lowerCAmelCase : List[str] = True lowerCAmelCase : Union[str, Any] = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): lowerCAmelCase : Optional[Any] = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) lowerCAmelCase : Dict = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) lowerCAmelCase : List[Any] = {} lowerCAmelCase : List[str] = special_dtypes lowerCAmelCase : Optional[int] = no_split_module_classes lowerCAmelCase : List[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": lowerCAmelCase : str = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == "balanced_low_0") , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Optional[int] = max_memory lowerCAmelCase : Optional[int] = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu lowerCAmelCase : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules lowerCAmelCase : str = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : str=None ): '''simple docstring''' if modules_to_not_convert is None: lowerCAmelCase : List[Any] = [] lowerCAmelCase , lowerCAmelCase : List[Any] = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : str=None , ): '''simple docstring''' lowerCAmelCase : List[str] = False for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase : Optional[Any] = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` lowerCAmelCase : List[str] = ".".join(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: lowerCAmelCase : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: lowerCAmelCase : Union[str, Any] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: lowerCAmelCase : str = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) lowerCAmelCase : Tuple = module.weight.data if module.bias is not None: lowerCAmelCase : Optional[int] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = True if len(list(module.children() ) ) > 0: lowerCAmelCase , lowerCAmelCase : List[str] = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' with init_empty_weights(): lowerCAmelCase : List[str] = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` lowerCAmelCase : Dict = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase : List[Any] = sum(SCREAMING_SNAKE_CASE , [] ) lowerCAmelCase : List[Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model lowerCAmelCase : Optional[Any] = False if hasattr(SCREAMING_SNAKE_CASE , "base_model_prefix" ): lowerCAmelCase : str = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase : Optional[int] = list(model.named_children() ) lowerCAmelCase : Dict = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase : Optional[Any] = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys lowerCAmelCase : Optional[Any] = [".weight", ".bias"] lowerCAmelCase : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase : List[Any] = name.replace(SCREAMING_SNAKE_CASE , "" ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def a__ ( SCREAMING_SNAKE_CASE : nn.Module ): '''simple docstring''' return next(parameter.parameters() ).device def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = param_name lowerCAmelCase : Dict = model if "." in tensor_name: lowerCAmelCase : int = tensor_name.split("." ) for split in splits[:-1]: lowerCAmelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) lowerCAmelCase : Optional[Any] = new_module lowerCAmelCase : Tuple = splits[-1] # offload weights lowerCAmelCase : Dict = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace("weight" , "SCB" ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "meta" , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a__ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE ): requests.request("GET" , "https://huggingface.co" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("GET" , "https://huggingface.co" , timeout=1.0 ) @pytest.mark.integration def a__ ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("GET" , "https://huggingface.co" ) def a__ ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE ): http_head("https://huggingface.co" )
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" warnings.warn( "The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DeiTImageProcessor instead." , snake_case__ , ) super().__init__(*snake_case__ , **snake_case__ )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter lowerCAmelCase__ = '''Create a default config file for Accelerate with only a few flags set.''' def a__ ( SCREAMING_SNAKE_CASE : Any="no" , SCREAMING_SNAKE_CASE : str = default_json_config_file , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = Path(SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False lowerCAmelCase : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) lowerCAmelCase : Optional[Any] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase : List[Any] = torch.cuda.device_count() lowerCAmelCase : Optional[int] = num_gpus lowerCAmelCase : Optional[Any] = False if num_gpus > 1: lowerCAmelCase : str = "MULTI_GPU" else: lowerCAmelCase : Union[str, Any] = "NO" elif is_xpu_available() and use_xpu: lowerCAmelCase : List[Any] = torch.xpu.device_count() lowerCAmelCase : Optional[int] = num_xpus lowerCAmelCase : List[str] = False if num_xpus > 1: lowerCAmelCase : Tuple = "MULTI_XPU" else: lowerCAmelCase : Dict = "NO" elif is_npu_available(): lowerCAmelCase : List[Any] = torch.npu.device_count() lowerCAmelCase : str = num_npus lowerCAmelCase : Any = False if num_npus > 1: lowerCAmelCase : Optional[int] = "MULTI_NPU" else: lowerCAmelCase : Tuple = "NO" else: lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = True lowerCAmelCase : Union[str, Any] = 1 lowerCAmelCase : Optional[int] = "NO" lowerCAmelCase : Optional[Any] = ClusterConfig(**SCREAMING_SNAKE_CASE ) config.to_json_file(SCREAMING_SNAKE_CASE ) return path def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : Dict = parser.add_parser("default" , parents=SCREAMING_SNAKE_CASE , help=SCREAMING_SNAKE_CASE , formatter_class=SCREAMING_SNAKE_CASE ) parser.add_argument( "--config_file" , default=SCREAMING_SNAKE_CASE , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=SCREAMING_SNAKE_CASE , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=SCREAMING_SNAKE_CASE ) return parser def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = 0 lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase : Optional[Any] = i + 1 else: lowerCAmelCase : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"{two_pointer([2, 7, 11, 15], 9) = }")
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for char in word: lowerCAmelCase : Optional[int] = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Any = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE ) return word_list def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens lowerCAmelCase : str = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) lowerCAmelCase : List[Any] = bert_tokens lowerCAmelCase , lowerCAmelCase : List[Any] = 0, len(SCREAMING_SNAKE_CASE ) while start < end: lowerCAmelCase : List[str] = True if is_chinese(bert_word[start] ): lowerCAmelCase : Dict = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): lowerCAmelCase : Union[str, Any] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Union[str, Any] = "##" + bert_word[j] lowerCAmelCase : Dict = start + i lowerCAmelCase : str = False break if single_word: start += 1 return bert_word def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : LTP , SCREAMING_SNAKE_CASE : BertTokenizer ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 1_0_0 ): lowerCAmelCase : str = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["cws"] ).cws lowerCAmelCase : List[Any] = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 1_0_0 ): lowerCAmelCase : List[str] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = [] for id in input_ids: lowerCAmelCase : List[str] = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": lowerCAmelCase : Optional[Any] = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: lowerCAmelCase : Optional[Any] = f.readlines() lowerCAmelCase : Tuple = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Tuple = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : List[str] = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , "w" , encoding="utf-8" ) as f: lowerCAmelCase : Dict = [json.dumps(SCREAMING_SNAKE_CASE ) + "\n" for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) lowerCAmelCase__ = parser.parse_args() main(args)
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) lowerCAmelCase : Tuple = {} def lowercase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : int = super().add_tokens(snake_case__ , *snake_case__ , **snake_case__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def lowercase__ ( self , snake_case__ , *snake_case__ , snake_case__=1 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) else: lowerCAmelCase : Dict = [] for i in range(snake_case__ ): lowerCAmelCase : int = placeholder_token + f"""_{i}""" self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) lowerCAmelCase : int = output def lowercase__ ( self , snake_case__ , snake_case__=False , snake_case__=1.0 ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Any = [] for i in range(len(snake_case__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCAmelCase : Union[str, Any] = self.token_map[placeholder_token] lowerCAmelCase : Optional[Any] = tokens[: 1 + int(len(snake_case__ ) * prop_tokens_to_load )] if vector_shuffle: lowerCAmelCase : List[Any] = copy.copy(snake_case__ ) random.shuffle(snake_case__ ) lowerCAmelCase : Union[str, Any] = text.replace(snake_case__ , " ".join(snake_case__ ) ) return text def __call__( self , snake_case__ , *snake_case__ , snake_case__=False , snake_case__=1.0 , **snake_case__ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , ) def lowercase__ ( self , snake_case__ , *snake_case__ , snake_case__=False , snake_case__=1.0 , **snake_case__ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , )
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : tuple[int, int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[Any] = position lowerCAmelCase : Union[str, Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCAmelCase : List[str] = [] for position in positions: lowerCAmelCase , lowerCAmelCase : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : tuple[int, int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowerCAmelCase , lowerCAmelCase : Any = position if board[y][x] == 0: lowerCAmelCase : int = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowerCAmelCase : Optional[Any] = 0 return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Optional[Any] = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') lowerCAmelCase__ = get_tests_dir('''fixtures/vocab.json''') lowerCAmelCase__ = get_tests_dir('''fixtures''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Tuple =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = 0 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Tuple = WavaVecaConfig() lowerCAmelCase : List[str] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(snake_case__ ) processor.save_pretrained(snake_case__ ) lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , snake_case__ ) ) copyfile(snake_case__ , os.path.join(snake_case__ , "vocab.json" ) ) lowerCAmelCase : List[Any] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Optional[int] = WavaVecaFeatureExtractor() lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) lowerCAmelCase : Any = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in tokenizer with open(os.path.join(snake_case__ , snake_case__ ) , "r" ) as f: lowerCAmelCase : Union[str, Any] = json.load(snake_case__ ) config_dict.pop("processor_class" ) with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write(json.dumps(snake_case__ ) ) lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Dict = WavaVecaFeatureExtractor() lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) lowerCAmelCase : str = WavaVecaProcessor(snake_case__ , snake_case__ ) # save in new folder processor.save_pretrained(snake_case__ ) # drop `processor_class` in feature extractor with open(os.path.join(snake_case__ , snake_case__ ) , "r" ) as f: lowerCAmelCase : Tuple = json.load(snake_case__ ) config_dict.pop("processor_class" ) with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write(json.dumps(snake_case__ ) ) lowerCAmelCase : List[str] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase : Dict = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(snake_case__ ) # copy relevant files copyfile(snake_case__ , os.path.join(snake_case__ , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(snake_case__ , snake_case__ ) , "w" ) as f: f.write("{}" ) lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises(snake_case__ ): lowerCAmelCase : Dict = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case__ ): lowerCAmelCase : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) lowerCAmelCase : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) lowerCAmelCase : Optional[int] = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) lowerCAmelCase : Optional[Any] = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version lowerCAmelCase : Tuple = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ , use_fast=snake_case__ ) lowerCAmelCase : str = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def lowercase__ ( self ): """simple docstring""" try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case__ ): AutoProcessor.register(snake_case__ , snake_case__ ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase : int = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[int] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase : List[str] = CustomTokenizer(snake_case__ ) lowerCAmelCase : str = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(snake_case__ ) lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] =False class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =False class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="AutoFeatureExtractor" a : Dict ="AutoTokenizer" a : Dict =False try: AutoConfig.register("custom" , snake_case__ ) AutoFeatureExtractor.register(snake_case__ , snake_case__ ) AutoTokenizer.register(snake_case__ , slow_tokenizer_class=snake_case__ ) AutoProcessor.register(snake_case__ , snake_case__ ) # If remote code is not set, the default is to use local classes. lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase : int = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=snake_case__ ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Optional[Any] =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowercase__ ( cls ): """simple docstring""" lowerCAmelCase : Dict = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def lowercase__ ( cls ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , "test-processor" ) , push_to_hub=snake_case__ , use_auth_token=self._token ) lowerCAmelCase : Optional[int] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = WavaVecaProcessor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(snake_case__ , "test-processor-org" ) , push_to_hub=snake_case__ , use_auth_token=self._token , organization="valid_org" , ) lowerCAmelCase : List[Any] = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(snake_case__ , getattr(new_processor.feature_extractor , snake_case__ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowercase__ ( self ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase : Optional[Any] = CustomFeatureExtractor.from_pretrained(snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : Optional[Any] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) lowerCAmelCase : Optional[int] = CustomTokenizer(snake_case__ ) lowerCAmelCase : List[str] = CustomProcessor(snake_case__ , snake_case__ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) lowerCAmelCase : Optional[Any] = Repository(snake_case__ , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(snake_case__ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(snake_case__ , "tokenizer_config.json" ) ) as f: lowerCAmelCase : str = json.load(snake_case__ ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(snake_case__ , "custom_processing.py" ) ) ) repo.push_to_hub() lowerCAmelCase : Optional[int] = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : List[Any] =AltDiffusionPipeline a : int =TEXT_TO_IMAGE_PARAMS a : int =TEXT_TO_IMAGE_BATCH_PARAMS a : Union[str, Any] =TEXT_TO_IMAGE_IMAGE_PARAMS a : Dict =TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_002 , ) lowerCAmelCase : List[str] = CLIPTextModel(snake_case__ ) lowerCAmelCase : List[Any] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowerCAmelCase : Optional[Any] = 77 lowerCAmelCase : List[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : int = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : Optional[int] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[str] = self.get_dummy_components() torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase : int = RobertaSeriesModelWithTransformation(snake_case__ ) lowerCAmelCase : Optional[int] = text_encoder lowerCAmelCase : str = AltDiffusionPipeline(**snake_case__ ) lowerCAmelCase : Any = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Tuple = "A photo of an astronaut" lowerCAmelCase : List[Any] = alt_pipe(**snake_case__ ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : int = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5_002 , ) # TODO: remove after fixing the non-deterministic text encoder lowerCAmelCase : Union[str, Any] = RobertaSeriesModelWithTransformation(snake_case__ ) lowerCAmelCase : Union[str, Any] = text_encoder lowerCAmelCase : Any = AltDiffusionPipeline(**snake_case__ ) lowerCAmelCase : Any = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Any = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : List[str] = alt_pipe(**snake_case__ ) lowerCAmelCase : Optional[int] = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Union[str, Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , safety_checker=snake_case__ ) lowerCAmelCase : Union[str, Any] = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Tuple = "A painting of a squirrel eating a burger" lowerCAmelCase : Optional[int] = torch.manual_seed(0 ) lowerCAmelCase : str = alt_pipe([prompt] , generator=snake_case__ , guidance_scale=6.0 , num_inference_steps=20 , output_type="np" ) lowerCAmelCase : Union[str, Any] = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : str = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DDIMScheduler.from_pretrained("BAAI/AltDiffusion" , subfolder="scheduler" ) lowerCAmelCase : Tuple = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion" , scheduler=snake_case__ , safety_checker=snake_case__ ) lowerCAmelCase : Any = alt_pipe.to(snake_case__ ) alt_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[str] = "A painting of a squirrel eating a burger" lowerCAmelCase : Dict = torch.manual_seed(0 ) lowerCAmelCase : Tuple = alt_pipe([prompt] , generator=snake_case__ , num_inference_steps=2 , output_type="numpy" ) lowerCAmelCase : Tuple = output.images lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase : Optional[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig lowerCAmelCase__ = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="tapas" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1_024 , snake_case__=[3, 256, 256, 2, 256, 256, 10] , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__=10.0 , snake_case__=0 , snake_case__=1.0 , snake_case__=None , snake_case__=1.0 , snake_case__=False , snake_case__=None , snake_case__=1.0 , snake_case__=1.0 , snake_case__=False , snake_case__=False , snake_case__="ratio" , snake_case__=None , snake_case__=None , snake_case__=64 , snake_case__=32 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=None , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) lowerCAmelCase : Union[str, Any] = vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : str = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : List[Any] = type_vocab_sizes lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps # Fine-tuning task hyperparameters lowerCAmelCase : Union[str, Any] = positive_label_weight lowerCAmelCase : Tuple = num_aggregation_labels lowerCAmelCase : Union[str, Any] = aggregation_loss_weight lowerCAmelCase : Optional[int] = use_answer_as_supervision lowerCAmelCase : List[str] = answer_loss_importance lowerCAmelCase : List[Any] = use_normalized_answer_loss lowerCAmelCase : Optional[int] = huber_loss_delta lowerCAmelCase : Union[str, Any] = temperature lowerCAmelCase : Dict = aggregation_temperature lowerCAmelCase : Optional[Any] = use_gumbel_for_cells lowerCAmelCase : Union[str, Any] = use_gumbel_for_aggregation lowerCAmelCase : Optional[Any] = average_approximation_function lowerCAmelCase : Optional[Any] = cell_selection_preference lowerCAmelCase : int = answer_loss_cutoff lowerCAmelCase : int = max_num_rows lowerCAmelCase : str = max_num_columns lowerCAmelCase : Union[str, Any] = average_logits_per_cell lowerCAmelCase : Any = select_one_column lowerCAmelCase : Optional[Any] = allow_empty_column_selection lowerCAmelCase : Tuple = init_cell_selection_weights_to_zero lowerCAmelCase : str = reset_position_index_per_cell lowerCAmelCase : str = disable_per_token_loss # Aggregation hyperparameters lowerCAmelCase : Dict = aggregation_labels lowerCAmelCase : Optional[Any] = no_aggregation_label_index if isinstance(self.aggregation_labels , snake_case__ ): lowerCAmelCase : str = {int(snake_case__ ): v for k, v in aggregation_labels.items()}
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int =["image_processor", "tokenizer"] a : int ="OwlViTImageProcessor" a : List[Any] =("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ): """simple docstring""" lowerCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) lowerCAmelCase : Dict = kwargs.pop("feature_extractor" ) lowerCAmelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="max_length" , snake_case__="np" , **snake_case__ ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(snake_case__ , snake_case__ ) or (isinstance(snake_case__ , snake_case__ ) and not isinstance(text[0] , snake_case__ )): lowerCAmelCase : Any = [self.tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ , **snake_case__ )] elif isinstance(snake_case__ , snake_case__ ) and isinstance(text[0] , snake_case__ ): lowerCAmelCase : int = [] # Maximum number of queries across batch lowerCAmelCase : Tuple = max([len(snake_case__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(snake_case__ ) != max_num_queries: lowerCAmelCase : str = t + [" "] * (max_num_queries - len(snake_case__ )) lowerCAmelCase : int = self.tokenizer(snake_case__ , padding=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) encodings.append(snake_case__ ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowerCAmelCase : Any = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCAmelCase : Any = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase : Optional[int] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCAmelCase : Tuple = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase : Union[str, Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) lowerCAmelCase : str = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase : Tuple = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCAmelCase : str = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowerCAmelCase : Union[str, Any] = BatchEncoding() lowerCAmelCase : str = input_ids lowerCAmelCase : Any = attention_mask if query_images is not None: lowerCAmelCase : Tuple = BatchEncoding() lowerCAmelCase : Dict = self.image_processor( snake_case__ , return_tensors=snake_case__ , **snake_case__ ).pixel_values lowerCAmelCase : Union[str, Any] = query_pixel_values if images is not None: lowerCAmelCase : Optional[int] = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) if text is not None and images is not None: lowerCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase : Any = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.image_processor.post_process(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.image_processor.post_process_object_detection(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class @property def lowercase__ ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , ) return self.image_processor
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" lowerCAmelCase__ = ''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
681
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
1
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ = 16 , snake_case__ = 88 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = 32 , snake_case__ = None , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = "geglu" , snake_case__ = None , ): """simple docstring""" super().__init__() lowerCAmelCase : Union[str, Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case__ , attention_head_dim=snake_case__ , in_channels=snake_case__ , num_layers=snake_case__ , dropout=snake_case__ , norm_num_groups=snake_case__ , cross_attention_dim=snake_case__ , attention_bias=snake_case__ , sample_size=snake_case__ , num_vector_embeds=snake_case__ , activation_fn=snake_case__ , num_embeds_ada_norm=snake_case__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase : Optional[int] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase : str = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase : str = [1, 0] def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[int] = hidden_states lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Union[str, Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase : Union[str, Any] = self.transformer_index_for_condition[i] lowerCAmelCase : Any = self.transformers[transformer_index]( snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ , cross_attention_kwargs=snake_case__ , return_dict=snake_case__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase : str = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case__ )
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def a__ ( SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : NDArray[floataa] , SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[Any] = coefficient_matrix.shape lowerCAmelCase , lowerCAmelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: lowerCAmelCase : Optional[Any] = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(SCREAMING_SNAKE_CASE ) if colsa != 1: lowerCAmelCase : List[str] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(SCREAMING_SNAKE_CASE ) if rowsa != rowsa: lowerCAmelCase : Optional[Any] = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) != rowsa: lowerCAmelCase : Tuple = ( "Number of initial values must be equal to number of rows in coefficient " f"""matrix but received {len(SCREAMING_SNAKE_CASE )} and {rowsa}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) lowerCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCAmelCase , lowerCAmelCase : str = table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = [] for row in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = 0 for col in range(SCREAMING_SNAKE_CASE ): if col == row: lowerCAmelCase : Any = table[row][col] elif col == cols - 1: lowerCAmelCase : Optional[Any] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCAmelCase : Tuple = (temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = new_val return [float(SCREAMING_SNAKE_CASE ) for i in new_val] def a__ ( SCREAMING_SNAKE_CASE : NDArray[floataa] ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[Any] = table.shape lowerCAmelCase : List[str] = True for i in range(0 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Optional[Any] = 13 lowerCAmelCase : Optional[Any] = 7 lowerCAmelCase : Any = True lowerCAmelCase : Optional[int] = True lowerCAmelCase : int = True lowerCAmelCase : Dict = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : str = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : str = 99 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Union[str, Any] = 32 lowerCAmelCase : str = 2 lowerCAmelCase : Dict = 4 lowerCAmelCase : str = 0.1 lowerCAmelCase : Optional[Any] = 0.1 lowerCAmelCase : List[str] = 512 lowerCAmelCase : List[str] = 16 lowerCAmelCase : List[Any] = 2 lowerCAmelCase : Tuple = 0.02 lowerCAmelCase : List[str] = 3 lowerCAmelCase : Dict = 4 lowerCAmelCase : Any = "last" lowerCAmelCase : List[Any] = True lowerCAmelCase : str = None lowerCAmelCase : List[str] = 0 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCAmelCase : Optional[Any] = None if self.use_input_lengths: lowerCAmelCase : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase : Tuple = None lowerCAmelCase : List[Any] = None lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = TFFlaubertModel(config=snake_case__ ) lowerCAmelCase : Tuple = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCAmelCase : Dict = model(snake_case__ ) lowerCAmelCase : int = [input_ids, input_mask] lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFFlaubertWithLMHeadModel(snake_case__ ) lowerCAmelCase : Tuple = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(snake_case__ ) lowerCAmelCase : Dict = {"input_ids": input_ids, "lengths": input_lengths} lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : List[Any] = TFFlaubertForSequenceClassification(snake_case__ ) lowerCAmelCase : int = {"input_ids": input_ids, "lengths": input_lengths} lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : Any = TFFlaubertForTokenClassification(config=snake_case__ ) lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : Dict = TFFlaubertForMultipleChoice(config=snake_case__ ) lowerCAmelCase : Dict = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : str = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Optional[int] = config_and_inputs lowerCAmelCase : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Tuple =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a : List[Any] =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a : List[Any] =( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a : str =False a : List[str] =False def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = TFFlaubertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[Any] = TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) lowerCAmelCase : str = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCAmelCase : Dict = model(snake_case__ )[0] lowerCAmelCase : List[Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. lowerCAmelCase : str = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[int] =None a : Optional[jnp.ndarray] =None a : Optional[jnp.ndarray] =None # sigma(t_i) @classmethod def lowercase__ ( cls ): """simple docstring""" return cls() @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : jnp.ndarray a : jnp.ndarray a : KarrasVeSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 0.02 , snake_case__ = 100 , snake_case__ = 1.007 , snake_case__ = 80 , snake_case__ = 0.05 , snake_case__ = 50 , ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" return KarrasVeSchedulerState.create() def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : Optional[Any] = jnp.arange(0 , snake_case__ )[::-1].copy() lowerCAmelCase : str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=snake_case__ , schedule=jnp.array(snake_case__ , dtype=jnp.floataa ) , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase : Optional[Any] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase : int = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase : int = random.split(snake_case__ , num=1 ) lowerCAmelCase : Union[str, Any] = self.config.s_noise * random.normal(key=snake_case__ , shape=sample.shape ) lowerCAmelCase : Optional[int] = sigma + gamma * sigma lowerCAmelCase : Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : str = sample_hat + sigma_hat * model_output lowerCAmelCase : Tuple = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=snake_case__ , derivative=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : int = sample_prev + sigma_prev * model_output lowerCAmelCase : Dict = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase : int = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=snake_case__ , derivative=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" raise NotImplementedError()
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
1
"""simple docstring""" import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=1 ): '''simple docstring''' if n_shave_prefix_segments >= 0: return ".".join(path.split("." )[n_shave_prefix_segments:] ) else: return ".".join(path.split("." )[:n_shave_prefix_segments] ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=0 ): '''simple docstring''' lowerCAmelCase : Optional[Any] = [] for old_item in old_list: lowerCAmelCase : List[str] = old_item.replace("in_layers.0" , "norm1" ) lowerCAmelCase : int = new_item.replace("in_layers.2" , "conv1" ) lowerCAmelCase : Optional[Any] = new_item.replace("out_layers.0" , "norm2" ) lowerCAmelCase : Any = new_item.replace("out_layers.3" , "conv2" ) lowerCAmelCase : List[Any] = new_item.replace("emb_layers.1" , "time_emb_proj" ) lowerCAmelCase : List[Any] = new_item.replace("skip_connection" , "conv_shortcut" ) lowerCAmelCase : str = shave_segments(SCREAMING_SNAKE_CASE , n_shave_prefix_segments=SCREAMING_SNAKE_CASE ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any]=0 ): '''simple docstring''' lowerCAmelCase : Dict = [] for old_item in old_list: lowerCAmelCase : List[str] = old_item lowerCAmelCase : Dict = new_item.replace("norm.weight" , "group_norm.weight" ) lowerCAmelCase : Union[str, Any] = new_item.replace("norm.bias" , "group_norm.bias" ) lowerCAmelCase : List[Any] = new_item.replace("proj_out.weight" , "proj_attn.weight" ) lowerCAmelCase : List[str] = new_item.replace("proj_out.bias" , "proj_attn.bias" ) lowerCAmelCase : Optional[int] = shave_segments(SCREAMING_SNAKE_CASE , n_shave_prefix_segments=SCREAMING_SNAKE_CASE ) mapping.append({"old": old_item, "new": new_item} ) return mapping def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): lowerCAmelCase : Any = old_checkpoint[path] lowerCAmelCase : List[Any] = old_tensor.shape[0] // 3 lowerCAmelCase : Union[str, Any] = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) lowerCAmelCase : str = old_tensor.shape[0] // config["num_head_channels"] // 3 lowerCAmelCase : List[Any] = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = old_tensor.split(channels // num_heads , dim=1 ) lowerCAmelCase : int = query.reshape(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = key.reshape(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = value.reshape(SCREAMING_SNAKE_CASE ) for path in paths: lowerCAmelCase : Union[str, Any] = path["new"] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here lowerCAmelCase : Union[str, Any] = new_path.replace("middle_block.0" , "mid_block.resnets.0" ) lowerCAmelCase : Optional[Any] = new_path.replace("middle_block.1" , "mid_block.attentions.0" ) lowerCAmelCase : Union[str, Any] = new_path.replace("middle_block.2" , "mid_block.resnets.1" ) if additional_replacements is not None: for replacement in additional_replacements: lowerCAmelCase : Any = new_path.replace(replacement["old"] , replacement["new"] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: lowerCAmelCase : Optional[int] = old_checkpoint[path["old"]][:, :, 0] else: lowerCAmelCase : Optional[Any] = old_checkpoint[path["old"]] def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : List[Any] = {} lowerCAmelCase : List[Any] = checkpoint["time_embed.0.weight"] lowerCAmelCase : Optional[Any] = checkpoint["time_embed.0.bias"] lowerCAmelCase : Dict = checkpoint["time_embed.2.weight"] lowerCAmelCase : Tuple = checkpoint["time_embed.2.bias"] lowerCAmelCase : int = checkpoint["input_blocks.0.0.weight"] lowerCAmelCase : List[Any] = checkpoint["input_blocks.0.0.bias"] lowerCAmelCase : Dict = checkpoint["out.0.weight"] lowerCAmelCase : Any = checkpoint["out.0.bias"] lowerCAmelCase : List[str] = checkpoint["out.2.weight"] lowerCAmelCase : str = checkpoint["out.2.bias"] # Retrieves the keys for the input blocks only lowerCAmelCase : Tuple = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "input_blocks" in layer} ) lowerCAmelCase : Any = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the middle blocks only lowerCAmelCase : Dict = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "middle_block" in layer} ) lowerCAmelCase : Optional[Any] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } # Retrieves the keys for the output blocks only lowerCAmelCase : List[Any] = len({".".join(layer.split("." )[:2] ) for layer in checkpoint if "output_blocks" in layer} ) lowerCAmelCase : Dict = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(SCREAMING_SNAKE_CASE ) } for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = (i - 1) // (config["num_res_blocks"] + 1) lowerCAmelCase : Optional[Any] = (i - 1) % (config["num_res_blocks"] + 1) lowerCAmelCase : Union[str, Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] lowerCAmelCase : int = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: lowerCAmelCase : Any = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] lowerCAmelCase : Optional[Any] = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue lowerCAmelCase : Any = renew_resnet_paths(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = {"old": f"""input_blocks.{i}.0""", "new": f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} lowerCAmelCase : List[str] = {"old": "resnets.2.op", "new": "downsamplers.0.op"} assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path, resnet_op] , config=SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = renew_attention_paths(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = { "old": f"""input_blocks.{i}.1""", "new": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCAmelCase : Any = { f"""input_blocks.{i}.1.qkv.bias""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { "key": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : str = middle_blocks[0] lowerCAmelCase : Union[str, Any] = middle_blocks[1] lowerCAmelCase : Optional[int] = middle_blocks[2] lowerCAmelCase : Optional[Any] = renew_resnet_paths(SCREAMING_SNAKE_CASE ) assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = renew_resnet_paths(SCREAMING_SNAKE_CASE ) assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = renew_attention_paths(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = { "middle_block.1.qkv.bias": { "key": "mid_block.attentions.0.key.bias", "query": "mid_block.attentions.0.query.bias", "value": "mid_block.attentions.0.value.bias", }, "middle_block.1.qkv.weight": { "key": "mid_block.attentions.0.key.weight", "query": "mid_block.attentions.0.query.weight", "value": "mid_block.attentions.0.value.weight", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , attention_paths_to_split=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = i // (config["num_res_blocks"] + 1) lowerCAmelCase : Union[str, Any] = i % (config["num_res_blocks"] + 1) lowerCAmelCase : Optional[Any] = [shave_segments(SCREAMING_SNAKE_CASE , 2 ) for name in output_blocks[i]] lowerCAmelCase : List[Any] = {} for layer in output_block_layers: lowerCAmelCase , lowerCAmelCase : Optional[int] = layer.split("." )[0], shave_segments(SCREAMING_SNAKE_CASE , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : List[Any] = [layer_name] if len(SCREAMING_SNAKE_CASE ) > 1: lowerCAmelCase : Tuple = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] lowerCAmelCase : str = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] lowerCAmelCase : int = renew_resnet_paths(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = renew_resnet_paths(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = {"old": f"""output_blocks.{i}.0""", "new": f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , config=SCREAMING_SNAKE_CASE ) if ["conv.weight", "conv.bias"] in output_block_list.values(): lowerCAmelCase : Tuple = list(output_block_list.values() ).index(["conv.weight", "conv.bias"] ) lowerCAmelCase : Union[str, Any] = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] lowerCAmelCase : Dict = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(SCREAMING_SNAKE_CASE ) == 2: lowerCAmelCase : Optional[Any] = [] if len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = renew_attention_paths(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = { "old": f"""output_blocks.{i}.1""", "new": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } lowerCAmelCase : Optional[Any] = { f"""output_blocks.{i}.1.qkv.bias""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { "key": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", "query": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", "value": f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any("qkv" in key for key in attentions ) else None , config=SCREAMING_SNAKE_CASE , ) else: lowerCAmelCase : int = renew_resnet_paths(SCREAMING_SNAKE_CASE , n_shave_prefix_segments=1 ) for path in resnet_0_paths: lowerCAmelCase : Optional[Any] = ".".join(["output_blocks", str(SCREAMING_SNAKE_CASE ), path["old"]] ) lowerCAmelCase : Tuple = ".".join(["up_blocks", str(SCREAMING_SNAKE_CASE ), "resnets", str(SCREAMING_SNAKE_CASE ), path["new"]] ) lowerCAmelCase : Any = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = torch.load(args.checkpoint_path) with open(args.config_file) as f: lowerCAmelCase__ = json.loads(f.read()) lowerCAmelCase__ = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] lowerCAmelCase__ = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: lowerCAmelCase__ = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) lowerCAmelCase__ = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) lowerCAmelCase__ = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
681
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), }, '''tokenizer_file''': { '''google/bigbird-roberta-base''': ( '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json''' ), '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json''' ), }, } lowerCAmelCase__ = { '''google/bigbird-roberta-base''': 4_096, '''google/bigbird-roberta-large''': 4_096, '''google/bigbird-base-trivia-itc''': 4_096, } lowerCAmelCase__ = '''▁''' class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =BigBirdTokenizer a : Any =["input_ids", "attention_mask"] a : List[int] =[] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token lowerCAmelCase : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token lowerCAmelCase : Optional[int] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) lowerCAmelCase : int = vocab_file lowerCAmelCase : Tuple = False if not self.vocab_file else True def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = [self.sep_token_id] lowerCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : List[Any] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
"""simple docstring""" from torch import nn class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" super().__init__() lowerCAmelCase : str = class_size lowerCAmelCase : Any = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowerCAmelCase : str = nn.Linear(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = self.mlp(snake_case__ ) return logits
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = parent def lowercase__ ( self ): """simple docstring""" return {} def a__ ( ): '''simple docstring''' lowerCAmelCase : int = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>" lowerCAmelCase : Any = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n " return [html_string_a, html_string_a] @require_bsa class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =MarkupLMFeatureExtractor if is_bsa_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = MarkupLMFeatureExtractionTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.feature_extraction_class() # Test not batched input lowerCAmelCase : Optional[int] = get_html_strings()[0] lowerCAmelCase : Optional[Any] = feature_extractor(snake_case__ ) # fmt: off lowerCAmelCase : Dict = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]] lowerCAmelCase : Tuple = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]] # fmt: on self.assertEqual(encoding.nodes , snake_case__ ) self.assertEqual(encoding.xpaths , snake_case__ ) # Test batched lowerCAmelCase : str = get_html_strings() lowerCAmelCase : Any = feature_extractor(snake_case__ ) # fmt: off lowerCAmelCase : Tuple = expected_nodes + [["My First Heading", "My first paragraph."]] lowerCAmelCase : Optional[Any] = expected_xpaths + [["/html/body/h1", "/html/body/p"]] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , snake_case__ ) self.assertEqual(encoding.xpaths , snake_case__ )
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : str = BertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase : Optional[Any] = BertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_bert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @staticmethod @abstractmethod def lowercase__ ( snake_case__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowercase__ ( self ): """simple docstring""" raise NotImplementedError()
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = FlaxAutoModelForSeqaSeqLM.from_config(config=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": lowerCAmelCase : Optional[Any] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCAmelCase : Tuple = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : List[str] = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type='t5'`, or `model_type='longt5` with `encoder_attention_type`" " attribute with a value from ['local', 'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): lowerCAmelCase : Tuple = f"""layers_{str(SCREAMING_SNAKE_CASE )}""" # Self-Attention lowerCAmelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] lowerCAmelCase : List[str] = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] lowerCAmelCase : List[Any] = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] lowerCAmelCase : int = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : int = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization lowerCAmelCase : Dict = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: lowerCAmelCase : Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowerCAmelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowerCAmelCase : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] lowerCAmelCase : List[str] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowerCAmelCase : Any = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowerCAmelCase : Optional[int] = flax_model.params["encoder"]["block"][str(SCREAMING_SNAKE_CASE )]["layer"] lowerCAmelCase : Tuple = tax_attention_key lowerCAmelCase : List[Any] = tax_attention_out lowerCAmelCase : Dict = tax_attention_query lowerCAmelCase : List[str] = tax_attention_value lowerCAmelCase : Union[str, Any] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : int = tax_global_layer_norm if split_mlp_wi: lowerCAmelCase : Union[str, Any] = tax_mlp_wi_a lowerCAmelCase : Tuple = tax_mlp_wi_a else: lowerCAmelCase : Union[str, Any] = tax_mlp_wi lowerCAmelCase : Optional[Any] = tax_mlp_wo lowerCAmelCase : int = tax_mlp_layer_norm lowerCAmelCase : List[str] = flax_model_encoder_layer_block # Only for layer 0: lowerCAmelCase : List[Any] = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T lowerCAmelCase : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCAmelCase : Optional[int] = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T lowerCAmelCase : Optional[Any] = tax_encoder_global_rel_embedding # Assigning lowerCAmelCase : str = tax_model["target"]["encoder"]["encoder_norm"]["scale"] lowerCAmelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCAmelCase : Optional[int] = f"""layers_{str(SCREAMING_SNAKE_CASE )}""" # Self-Attention lowerCAmelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] lowerCAmelCase : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] lowerCAmelCase : List[str] = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] lowerCAmelCase : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization lowerCAmelCase : Dict = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention lowerCAmelCase : Any = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] lowerCAmelCase : Optional[Any] = tax_enc_dec_attention_module["key"]["kernel"] lowerCAmelCase : str = tax_enc_dec_attention_module["out"]["kernel"] lowerCAmelCase : List[str] = tax_enc_dec_attention_module["query"]["kernel"] lowerCAmelCase : str = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization lowerCAmelCase : Tuple = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: lowerCAmelCase : Optional[Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] lowerCAmelCase : Tuple = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: lowerCAmelCase : str = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] lowerCAmelCase : int = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization lowerCAmelCase : Dict = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning lowerCAmelCase : List[str] = flax_model.params["decoder"]["block"][str(SCREAMING_SNAKE_CASE )]["layer"] lowerCAmelCase : str = tax_attention_key lowerCAmelCase : Any = tax_attention_out lowerCAmelCase : str = tax_attention_query lowerCAmelCase : Optional[Any] = tax_attention_value lowerCAmelCase : Union[str, Any] = tax_pre_attention_layer_norm lowerCAmelCase : List[Any] = tax_enc_dec_attention_key lowerCAmelCase : Union[str, Any] = tax_enc_dec_attention_out lowerCAmelCase : int = tax_enc_dec_attention_query lowerCAmelCase : Optional[int] = tax_enc_dec_attention_value lowerCAmelCase : Dict = tax_cross_layer_norm if split_mlp_wi: lowerCAmelCase : Optional[int] = tax_mlp_wi_a lowerCAmelCase : Optional[Any] = tax_mlp_wi_a else: lowerCAmelCase : Optional[Any] = tax_mlp_wi lowerCAmelCase : Dict = tax_mlp_wo lowerCAmelCase : Optional[Any] = txa_mlp_layer_norm lowerCAmelCase : int = flax_model_decoder_layer_block # Decoder Normalization lowerCAmelCase : str = tax_model["target"]["decoder"]["decoder_norm"]["scale"] lowerCAmelCase : Dict = txa_decoder_norm # Only for layer 0: lowerCAmelCase : Union[str, Any] = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T lowerCAmelCase : str = tax_decoder_rel_embedding # Token Embeddings lowerCAmelCase : Tuple = tax_model["target"]["token_embedder"]["embedding"] lowerCAmelCase : Optional[int] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCAmelCase : Optional[Any] = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(SCREAMING_SNAKE_CASE ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path the T5X checkpoint.''' ) parser.add_argument('''--config_name''', default=None, type=str, required=True, help='''Config name of LongT5/T5 model.''') parser.add_argument( '''--flax_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output FLAX model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=[0.48145466, 0.4578275, 0.40821073] , snake_case__=[0.26862954, 0.26130258, 0.27577711] , snake_case__=True , ): """simple docstring""" lowerCAmelCase : int = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase : Dict = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase : str = parent lowerCAmelCase : str = batch_size lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : int = image_size lowerCAmelCase : Tuple = min_resolution lowerCAmelCase : str = max_resolution lowerCAmelCase : Any = do_resize lowerCAmelCase : Optional[int] = size lowerCAmelCase : int = do_center_crop lowerCAmelCase : Tuple = crop_size lowerCAmelCase : Optional[int] = do_normalize lowerCAmelCase : Dict = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : List[str] = do_convert_rgb def lowercase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowercase__ ( self , snake_case__=False , snake_case__=False , snake_case__=False ): """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCAmelCase : Optional[Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCAmelCase : List[str] = [] for i in range(self.batch_size ): lowerCAmelCase , lowerCAmelCase : Union[str, Any] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCAmelCase : int = [torch.from_numpy(snake_case__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Dict =ChineseCLIPImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = ChineseCLIPImageProcessingTester(self , do_center_crop=snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 224, "width": 224} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : List[str] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Any = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =ChineseCLIPImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=snake_case__ ) lowerCAmelCase : str = 3 @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_convert_rgb" ) ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Dict = self.image_processor_tester.prepare_inputs(equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : Dict = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=2 , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Optional[int] = patch_size lowerCAmelCase : Optional[Any] = num_channels lowerCAmelCase : Any = is_training lowerCAmelCase : str = use_labels lowerCAmelCase : int = hidden_size lowerCAmelCase : List[str] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Tuple = hidden_dropout_prob lowerCAmelCase : int = attention_probs_dropout_prob lowerCAmelCase : int = type_sequence_label_size lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : Tuple = scope lowerCAmelCase : str = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase : Any = (image_size // patch_size) ** 2 lowerCAmelCase : Tuple = num_patches + 2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : List[Any] = None if self.use_labels: lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Any = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = DeiTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = DeiTForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCAmelCase : Dict = 1 lowerCAmelCase : List[str] = DeiTForMaskedImageModeling(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : int = self.type_sequence_label_size lowerCAmelCase : Optional[Any] = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCAmelCase : Tuple = 1 lowerCAmelCase : Optional[Any] = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : int = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) a : str =( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) a : Tuple =False a : Optional[Any] =False a : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = DeiTModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" lowerCAmelCase : str = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowerCAmelCase , lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Optional[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase : Optional[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase : Optional[Any] = model(**snake_case__ ).loss loss.backward() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase : List[Any] = False lowerCAmelCase : Optional[int] = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowerCAmelCase : str = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() lowerCAmelCase : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) lowerCAmelCase : int = model(**snake_case__ ).loss loss.backward() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[str] = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): lowerCAmelCase : List[Any] = problem_type["title"] lowerCAmelCase : Dict = problem_type["num_labels"] lowerCAmelCase : Optional[Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase : Any = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: lowerCAmelCase : Optional[Any] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowerCAmelCase : Tuple = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: lowerCAmelCase : Union[str, Any] = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Tuple = DeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( snake_case__ ) lowerCAmelCase : Tuple = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(**snake_case__ ) # verify the logits lowerCAmelCase : List[str] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Optional[Any] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) lowerCAmelCase : Optional[int] = self.default_image_processor lowerCAmelCase : Optional[int] = prepare_img() lowerCAmelCase : str = image_processor(images=snake_case__ , return_tensors="pt" ) lowerCAmelCase : str = inputs.pixel_values.to(snake_case__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase : Any = model(snake_case__ )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="luke" def __init__( self , snake_case__=50_267 , snake_case__=500_000 , snake_case__=768 , snake_case__=256 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=None , snake_case__=1 , snake_case__=0 , snake_case__=2 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : int = vocab_size lowerCAmelCase : Optional[int] = entity_vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = entity_emb_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Dict = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : Optional[int] = use_entity_aware_attention lowerCAmelCase : List[Any] = classifier_dropout
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCAmelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[str] =field( default=lowercase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) a : Optional[str] =field( default=lowercase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(lowercase )} , ) a : Optional[str] =field( default=lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] =field( default=lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Optional[str] =field( default=lowercase , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] =field( default=lowercase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) a : Optional[str] =field( default=lowercase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : Optional[str] =field( default=lowercase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) a : Optional[str] =field( default=lowercase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) a : bool =field( default=lowercase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) a : bool =field( default=lowercase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) a : bool =field(default=lowercase , metadata={"help": "Whether ot not to use whole word mask."} ) a : float =field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) a : float =field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) a : int =field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) a : int =field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) a : bool =field( default=lowercase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def a__ ( SCREAMING_SNAKE_CASE : DataTrainingArguments , SCREAMING_SNAKE_CASE : PreTrainedTokenizer , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[str] = None , ): '''simple docstring''' def _dataset(SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , ref_path=SCREAMING_SNAKE_CASE , ) return LineByLineTextDataset(tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size ) else: return TextDataset( tokenizer=SCREAMING_SNAKE_CASE , file_path=SCREAMING_SNAKE_CASE , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=SCREAMING_SNAKE_CASE , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(SCREAMING_SNAKE_CASE ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: lowerCAmelCase : int = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: lowerCAmelCase : Tuple = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: lowerCAmelCase : str = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) lowerCAmelCase : Union[str, Any] = AutoModelWithLMHead.from_config(SCREAMING_SNAKE_CASE ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: lowerCAmelCase : List[Any] = tokenizer.max_len # Our input block size will be the max possible for the model else: lowerCAmelCase : int = min(data_args.block_size , tokenizer.max_len ) # Get datasets lowerCAmelCase : Optional[int] = ( get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) lowerCAmelCase : Tuple = ( get_dataset(SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE , evaluate=SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": lowerCAmelCase : int = DataCollatorForPermutationLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: lowerCAmelCase : str = DataCollatorForWholeWordMask( tokenizer=SCREAMING_SNAKE_CASE , mlm_probability=data_args.mlm_probability ) else: lowerCAmelCase : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=SCREAMING_SNAKE_CASE , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer lowerCAmelCase : Optional[Any] = Trainer( model=SCREAMING_SNAKE_CASE , args=SCREAMING_SNAKE_CASE , data_collator=SCREAMING_SNAKE_CASE , train_dataset=SCREAMING_SNAKE_CASE , eval_dataset=SCREAMING_SNAKE_CASE , prediction_loss_only=SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: lowerCAmelCase : Any = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=SCREAMING_SNAKE_CASE ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : List[str] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase : Dict = trainer.evaluate() lowerCAmelCase : Optional[int] = math.exp(eval_output["eval_loss"] ) lowerCAmelCase : Dict = {"perplexity": perplexity} lowerCAmelCase : Optional[int] = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(SCREAMING_SNAKE_CASE ) return results def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' main() if __name__ == "__main__": main()
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase__ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' lowerCAmelCase__ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' lowerCAmelCase__ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=True , snake_case__=False ): """simple docstring""" if rouge_types is None: lowerCAmelCase : int = ["rouge1", "rouge2", "rougeL", "rougeLsum"] lowerCAmelCase : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=snake_case__ , use_stemmer=snake_case__ ) if use_aggregator: lowerCAmelCase : Any = scoring.BootstrapAggregator() else: lowerCAmelCase : Optional[int] = [] for ref, pred in zip(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = scorer.score(snake_case__ , snake_case__ ) if use_aggregator: aggregator.add_scores(snake_case__ ) else: scores.append(snake_case__ ) if use_aggregator: lowerCAmelCase : Optional[int] = aggregator.aggregate() else: lowerCAmelCase : Dict = {} for key in scores[0]: lowerCAmelCase : Union[str, Any] = [score[key] for score in scores] return result
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase : Optional[Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE ): return None lowerCAmelCase : Optional[int] = sorted_collection[point] if current_item == item: return point else: if point < left: lowerCAmelCase : int = left lowerCAmelCase : Tuple = point elif point > right: lowerCAmelCase : str = right lowerCAmelCase : Dict = point else: if item < current_item: lowerCAmelCase : str = point - 1 else: lowerCAmelCase : str = point + 1 return None def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCAmelCase : Union[str, Any] = left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(SCREAMING_SNAKE_CASE ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif point > right: return interpolation_search_by_recursion(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , point - 1 ) else: return interpolation_search_by_recursion( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , point + 1 , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if collection != sorted(SCREAMING_SNAKE_CASE ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys lowerCAmelCase__ = 0 if debug == 1: lowerCAmelCase__ = [10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('''Sequence must be ascending sorted to apply interpolation search''') lowerCAmelCase__ = 67 lowerCAmelCase__ = interpolation_search(collection, target) if result is not None: print(F"{target} found at positions: {result}") else: print('''Not found''')
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" from math import ceil def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_1 ): '''simple docstring''' lowerCAmelCase : int = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase : Optional[int] = 2 * i + 1 lowerCAmelCase : Optional[int] = 2 * i lowerCAmelCase : str = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: lowerCAmelCase__ = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Optional[int] = False elif args.student_type == "gpt2": lowerCAmelCase : Union[str, Any] = False def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Any = False def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=SCREAMING_SNAKE_CASE , choices=["distilbert", "roberta", "gpt2"] , required=SCREAMING_SNAKE_CASE , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=SCREAMING_SNAKE_CASE , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=SCREAMING_SNAKE_CASE , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=SCREAMING_SNAKE_CASE , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=SCREAMING_SNAKE_CASE , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=SCREAMING_SNAKE_CASE , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=SCREAMING_SNAKE_CASE , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=SCREAMING_SNAKE_CASE , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=SCREAMING_SNAKE_CASE , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=5_0 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=SCREAMING_SNAKE_CASE , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=SCREAMING_SNAKE_CASE , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=SCREAMING_SNAKE_CASE , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=SCREAMING_SNAKE_CASE , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=SCREAMING_SNAKE_CASE , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=SCREAMING_SNAKE_CASE , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=5_6 , help="Random seed" ) parser.add_argument("--log_interval" , type=SCREAMING_SNAKE_CASE , default=5_0_0 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=SCREAMING_SNAKE_CASE , default=4_0_0_0 , help="Checkpoint interval." ) lowerCAmelCase : List[str] = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE ) set_seed(SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = MODEL_CLASSES[args.student_type] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase : Optional[Any] = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) lowerCAmelCase : List[Any] = special_tok_ids lowerCAmelCase : List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , "rb" ) as fp: lowerCAmelCase : List[Any] = pickle.load(SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , "rb" ) as fp: lowerCAmelCase : List[str] = pickle.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = np.maximum(SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase : Tuple = 0.0 # do not predict special tokens lowerCAmelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = LmSeqsDataset(params=SCREAMING_SNAKE_CASE , data=SCREAMING_SNAKE_CASE ) logger.info("Data loader created." ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) lowerCAmelCase : Optional[Any] = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase : str = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) lowerCAmelCase : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : int = student_model_class(SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # lowerCAmelCase : Any = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase : Tuple = Distiller( params=SCREAMING_SNAKE_CASE , dataset=SCREAMING_SNAKE_CASE , token_probs=SCREAMING_SNAKE_CASE , student=SCREAMING_SNAKE_CASE , teacher=SCREAMING_SNAKE_CASE ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
681
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
1
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowerCAmelCase__ = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=False , SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCAmelCase : List[Any] = cached_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) lowerCAmelCase : Optional[int] = config_class.from_json_file(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = True lowerCAmelCase : Optional[Any] = True print(f"""Building TensorFlow model from configuration: {config}""" ) lowerCAmelCase : str = model_class(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCAmelCase : List[Any] = cached_file( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCAmelCase : Tuple = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if compare_with_pt_model: lowerCAmelCase : List[str] = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE ) # build the network lowerCAmelCase : Any = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" ) lowerCAmelCase : List[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE , state_dict=SCREAMING_SNAKE_CASE ) with torch.no_grad(): lowerCAmelCase : Dict = pt_model(**pt_model.dummy_inputs ) lowerCAmelCase : List[Any] = pto[0].numpy() lowerCAmelCase : List[str] = tfo[0].numpy() lowerCAmelCase : List[str] = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(SCREAMING_SNAKE_CASE , save_format="h5" ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any=False , ): '''simple docstring''' if args_model_type is None: lowerCAmelCase : Tuple = list(MODEL_CLASSES.keys() ) else: lowerCAmelCase : int = [args_model_type] for j, model_type in enumerate(SCREAMING_SNAKE_CASE , start=1 ): print("=" * 1_0_0 ) print(f""" Converting model type {j}/{len(SCREAMING_SNAKE_CASE )}: {model_type}""" ) print("=" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCAmelCase : List[str] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCAmelCase : Union[str, Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , start=1 ): print("-" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue lowerCAmelCase : Tuple = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}""" ) print("-" * 1_0_0 ) if config_shortcut_name in aws_config_map: lowerCAmelCase : Dict = cached_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: lowerCAmelCase : Any = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCAmelCase : List[str] = cached_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: lowerCAmelCase : List[str] = model_shortcut_name if os.path.isfile(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = "converted_model" convert_pt_checkpoint_to_tf( model_type=SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE , config_file=SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(SCREAMING_SNAKE_CASE ) os.remove(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') lowerCAmelCase__ = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments lowerCAmelCase__ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[float] =field( default=0.0 , metadata={"help": "The label smoothing epsilon to apply (if not zero)."} ) a : bool =field(default=lowercase , metadata={"help": "Whether to SortishSamler or not."} ) a : bool =field( default=lowercase , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) a : bool =field(default=lowercase , metadata={"help": "whether to use adafactor"} ) a : Optional[float] =field( default=lowercase , metadata={"help": "Encoder layer dropout probability. Goes into model.config."} ) a : Optional[float] =field( default=lowercase , metadata={"help": "Decoder layer dropout probability. Goes into model.config."} ) a : Optional[float] =field(default=lowercase , metadata={"help": "Dropout probability. Goes into model.config."} ) a : Optional[float] =field( default=lowercase , metadata={"help": "Attention dropout probability. Goes into model.config."} ) a : Optional[str] =field( default="linear" , metadata={"help": f"""Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}"""} , )
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowerCAmelCase__ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowerCAmelCase__ = [ord(letter) for letter in string.ascii_lowercase] lowerCAmelCase__ = {ord(char) for char in VALID_CHARS} lowerCAmelCase__ = ["the", "be", "to", "of", "and", "in", "that", "have"] def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : tuple[int, ...] ): '''simple docstring''' lowerCAmelCase : str = "" lowerCAmelCase : int lowerCAmelCase : int lowerCAmelCase : int for keychar, cipherchar in zip(cycle(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(SCREAMING_SNAKE_CASE ) return decoded def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' lowerCAmelCase : list[str] = [] for key in product(SCREAMING_SNAKE_CASE , repeat=3 ): lowerCAmelCase : int = try_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if encoded is not None: possibles.append(SCREAMING_SNAKE_CASE ) return possibles def a__ ( SCREAMING_SNAKE_CASE : list[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return [possible for possible in possibles if common_word in possible.lower()] def a__ ( SCREAMING_SNAKE_CASE : str = "p059_cipher.txt" ): '''simple docstring''' lowerCAmelCase : list[int] lowerCAmelCase : list[str] lowerCAmelCase : str lowerCAmelCase : str lowerCAmelCase : str = Path(SCREAMING_SNAKE_CASE ).parent.joinpath(SCREAMING_SNAKE_CASE ).read_text(encoding="utf-8" ) lowerCAmelCase : List[str] = [int(SCREAMING_SNAKE_CASE ) for number in data.strip().split("," )] lowerCAmelCase : List[str] = filter_valid_chars(SCREAMING_SNAKE_CASE ) for common_word in COMMON_WORDS: lowerCAmelCase : Dict = filter_common_word(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) == 1: break lowerCAmelCase : Tuple = possibles[0] return sum(ord(SCREAMING_SNAKE_CASE ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
1
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None ): '''simple docstring''' assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase : str = nn.Parameter(SCREAMING_SNAKE_CASE ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase : List[str] = nn.Parameter(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = np.asarray(weights[0] ) lowerCAmelCase : Any = np.asarray(weights[1] ) lowerCAmelCase : Dict = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = np.asarray(weights[0] ) lowerCAmelCase : Tuple = np.asarray(weights[1] ) lowerCAmelCase : Union[str, Any] = np.asarray(weights[2] ) lowerCAmelCase : str = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).view(-1 , SCREAMING_SNAKE_CASE ).contiguous().transpose(0 , 1 ) , ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : Any = weights[0][0][0] lowerCAmelCase : List[str] = np.asarray(layer_norm_a[0] ) lowerCAmelCase : Dict = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # lsh weights + output lowerCAmelCase : Tuple = weights[0][1] if len(SCREAMING_SNAKE_CASE ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE , torch_block.attention , SCREAMING_SNAKE_CASE ) # intermediate weighs lowerCAmelCase : List[str] = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE ) == 4: lowerCAmelCase : Optional[int] = intermediate_weights[2] # layernorm 2 lowerCAmelCase : int = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate dense lowerCAmelCase : Dict = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase : List[str] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # intermediate out lowerCAmelCase : int = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase : Any = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = torch_model.reformer # word embeds lowerCAmelCase : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase : List[str] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase : List[Any] = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # output layer norm lowerCAmelCase : int = np.asarray(weights[7][0] ) lowerCAmelCase : Optional[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE ) , torch.tensor(SCREAMING_SNAKE_CASE ) , ) # output embeddings lowerCAmelCase : str = np.asarray(weights[9][0] ) lowerCAmelCase : List[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE ) , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Optional[int] = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase : Optional[int] = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , "rb" ) as f: lowerCAmelCase : int = pickle.load(SCREAMING_SNAKE_CASE )["weights"] set_model_weights_in_torch(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
681
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
1
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def a__ ( ): '''simple docstring''' lowerCAmelCase : int = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase : Any = False # source code of `config_class` lowerCAmelCase : Dict = inspect.getsource(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase , lowerCAmelCase : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase : Optional[int] = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase : int = True break lowerCAmelCase : Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Any = "\n".join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="bloom" a : Tuple =["past_key_values"] a : Optional[Any] ={ "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , snake_case__=250_880 , snake_case__=64 , snake_case__=2 , snake_case__=8 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=0.0 , snake_case__=0.0 , snake_case__=1 , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase : Any = kwargs.pop("n_embed" , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_size if n_embed is None else n_embed lowerCAmelCase : Dict = n_layer lowerCAmelCase : Optional[Any] = n_head lowerCAmelCase : Any = layer_norm_epsilon lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = pretraining_tp lowerCAmelCase : str = apply_residual_connection_post_layernorm lowerCAmelCase : Optional[int] = hidden_dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = bos_token_id lowerCAmelCase : Optional[int] = eos_token_id lowerCAmelCase : Optional[int] = slow_but_exact super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =version.parse("1.12" ) def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None , snake_case__ = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , "pad_token_id" , snake_case__ ): # TODO: how to do that better? lowerCAmelCase : Union[str, Any] = 0 @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(snake_case__ , direction="inputs" , inverted_values_shape=snake_case__ ) lowerCAmelCase : List[Any] = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase : Any = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase__ ( self ): """simple docstring""" return self._config.n_layer @property def lowercase__ ( self ): """simple docstring""" return self._config.n_head @property def lowercase__ ( self ): """simple docstring""" return 1e-3 def lowercase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : int = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase : Any = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase , lowerCAmelCase : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase : int = seqlen + 2 lowerCAmelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads lowerCAmelCase : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase : int = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase : Optional[int] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] lowerCAmelCase : Union[str, Any] = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase : List[Any] = ordered_inputs["attention_mask"].dtype lowerCAmelCase : Optional[int] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self ): """simple docstring""" return 13
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] =["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Tuple = size if size is not None else {"height": 384, "width": 384} lowerCAmelCase : Dict = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Union[str, Any] = resample lowerCAmelCase : List[Any] = do_rescale lowerCAmelCase : Dict = rescale_factor lowerCAmelCase : str = do_normalize lowerCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase : Optional[int] = do_convert_rgb def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowerCAmelCase : Optional[int] = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : List[str] = resample if resample is not None else self.resample lowerCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : str = size if size is not None else self.size lowerCAmelCase : Optional[int] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Dict = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : int = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : Tuple = [to_numpy_array(snake_case__ ) for image in images] if do_resize: lowerCAmelCase : int = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: lowerCAmelCase : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: lowerCAmelCase : Tuple = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] lowerCAmelCase : Any = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowerCAmelCase : Dict = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) return encoded_outputs
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =StableDiffusionXLImgaImgPipeline a : Optional[int] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a : int =PipelineTesterMixin.required_optional_params - {"latents"} a : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a : Optional[int] =IMAGE_TO_IMAGE_IMAGE_PARAMS a : List[Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCAmelCase : Optional[int] = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=32 , ) lowerCAmelCase : Optional[Any] = CLIPTextModel(snake_case__ ) lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTextModelWithProjection(snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) lowerCAmelCase : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : int = image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : str = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : str = self.get_dummy_components() lowerCAmelCase : List[str] = StableDiffusionXLImgaImgPipeline(**snake_case__ ) lowerCAmelCase : List[str] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**snake_case__ ) lowerCAmelCase : str = sd_pipe.to(snake_case__ ) lowerCAmelCase : Dict = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Tuple = 3 * ["this is a negative prompt"] lowerCAmelCase : Tuple = negative_prompt lowerCAmelCase : Optional[Any] = 3 * [inputs["prompt"]] lowerCAmelCase : Tuple = sd_pipe(**snake_case__ ) lowerCAmelCase : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : str = 3 * ["this is a negative prompt"] lowerCAmelCase : List[Any] = 3 * [inputs.pop("prompt" )] ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) : Tuple = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) lowerCAmelCase : List[Any] = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self , snake_case__ , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : Dict = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_inputs(snake_case__ ) lowerCAmelCase : Dict = pipe(**snake_case__ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : List[Any] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge lowerCAmelCase__ = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] lowerCAmelCase__ = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bootstrap_aggregation=SCREAMING_SNAKE_CASE , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bootstrap_aggregation=SCREAMING_SNAKE_CASE , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = "rougeLsum" lowerCAmelCase : List[str] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] lowerCAmelCase : Any = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=[k] )[k] assert score > score_no_sep def a__ ( ): '''simple docstring''' lowerCAmelCase : int = ["rouge1", "rouge2", "rougeL"] lowerCAmelCase : Tuple = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE , rouge_keys=SCREAMING_SNAKE_CASE ) assert score_sep == score_no_sep def a__ ( ): '''simple docstring''' lowerCAmelCase : str = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowerCAmelCase : List[Any] = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE ) == calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , newline_sep=SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowerCAmelCase : Dict = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowerCAmelCase : int = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rouge_keys=["rougeLsum"] , newline_sep=SCREAMING_SNAKE_CASE )["rougeLsum"] lowerCAmelCase : Tuple = calculate_rouge(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowerCAmelCase : Dict = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=SCREAMING_SNAKE_CASE ) assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if number < 0: raise ValueError("number must not be negative" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" import cmath import math def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' lowerCAmelCase : Optional[int] = math.radians(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = math.radians(SCREAMING_SNAKE_CASE ) # Convert voltage and current to rectangular form lowerCAmelCase : Optional[int] = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = cmath.rect(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowerCAmelCase__ = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowerCAmelCase__ = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' lowerCAmelCase__ = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' def remove_articles(SCREAMING_SNAKE_CASE : Optional[Any] ): lowerCAmelCase : int = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(SCREAMING_SNAKE_CASE , " " , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE : List[str] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE : Optional[Any] ): lowerCAmelCase : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return int(normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : List[str] = [any(compute_exact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )] return (sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE )) * 1_0_0 def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Optional[int] = [rgram for rgrams in rgramslist for rgram in rgrams] lowerCAmelCase : List[str] = Counter(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = Counter(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = Counter() for sgram, scount in sgramcounter.items(): lowerCAmelCase : Union[str, Any] = scount * numref lowerCAmelCase : Dict = Counter(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = Counter() for cgram, ccount in cgramcounter.items(): lowerCAmelCase : Optional[Any] = ccount * numref # KEEP lowerCAmelCase : Optional[Any] = sgramcounter_rep & cgramcounter_rep lowerCAmelCase : List[str] = keepgramcounter_rep & rgramcounter lowerCAmelCase : List[Any] = sgramcounter_rep & rgramcounter lowerCAmelCase : str = 0 lowerCAmelCase : List[str] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase : Optional[Any] = 1 lowerCAmelCase : int = 1 if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Union[str, Any] = keeptmpscorea / len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) lowerCAmelCase : Optional[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) lowerCAmelCase : List[str] = 0 if keepscore_precision > 0 or keepscore_recall > 0: lowerCAmelCase : Any = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION lowerCAmelCase : Any = sgramcounter_rep - cgramcounter_rep lowerCAmelCase : Optional[Any] = delgramcounter_rep - rgramcounter lowerCAmelCase : Union[str, Any] = sgramcounter_rep - rgramcounter lowerCAmelCase : str = 0 lowerCAmelCase : Union[str, Any] = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase : Any = 1 if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : List[str] = deltmpscorea / len(SCREAMING_SNAKE_CASE ) # ADDITION lowerCAmelCase : Union[str, Any] = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = set(SCREAMING_SNAKE_CASE ) & set(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. lowerCAmelCase : List[str] = 1 lowerCAmelCase : str = 1 if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : str = addtmpscore / len(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : str = addtmpscore / len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = 0 if addscore_precision > 0 or addscore_recall > 0: lowerCAmelCase : List[Any] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = ssent.split(" " ) lowerCAmelCase : Dict = csent.split(" " ) lowerCAmelCase : List[str] = [] lowerCAmelCase : List[str] = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : Dict = [] lowerCAmelCase : Any = [] lowerCAmelCase : int = [] lowerCAmelCase : List[Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[str] = [] for rsent in rsents: lowerCAmelCase : int = rsent.split(" " ) lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = [] ragramslist.append(SCREAMING_SNAKE_CASE ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): if i < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : int = ragrams[i] + " " + ragrams[i + 1] ragrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 2: lowerCAmelCase : Union[str, Any] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 3: lowerCAmelCase : Optional[int] = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(SCREAMING_SNAKE_CASE ) ragramslist.append(SCREAMING_SNAKE_CASE ) ragramslist.append(SCREAMING_SNAKE_CASE ) ragramslist.append(SCREAMING_SNAKE_CASE ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): if i < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[Any] = sagrams[i] + " " + sagrams[i + 1] sagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 2: lowerCAmelCase : Tuple = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 3: lowerCAmelCase : int = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(SCREAMING_SNAKE_CASE ) for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ): if i < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : str = cagrams[i] + " " + cagrams[i + 1] cagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 2: lowerCAmelCase : List[str] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(SCREAMING_SNAKE_CASE ) if i < len(SCREAMING_SNAKE_CASE ) - 3: lowerCAmelCase : List[Any] = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(SCREAMING_SNAKE_CASE ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : List[str] = SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Any = SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Optional[Any] = SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) : Union[str, Any] = SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 lowerCAmelCase : int = sum([delascore, delascore, delascore, delascore] ) / 4 lowerCAmelCase : Optional[int] = sum([addascore, addascore, addascore, addascore] ) / 4 lowerCAmelCase : List[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "13a" , SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if lowercase: lowerCAmelCase : Any = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: lowerCAmelCase : str = sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE )()(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Dict = sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": lowerCAmelCase : Optional[Any] = sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE , return_str=SCREAMING_SNAKE_CASE , escape=SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": lowerCAmelCase : List[str] = sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE , return_str=SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Optional[int] = sentence if not return_str: lowerCAmelCase : str = normalized_sent.split() return normalized_sent def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not (len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )): raise ValueError("Sources length must match predictions and references lengths." ) lowerCAmelCase : Union[str, Any] = 0 for src, pred, refs in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE ) , normalize(SCREAMING_SNAKE_CASE ) , [normalize(SCREAMING_SNAKE_CASE ) for sent in refs] ) lowerCAmelCase : List[Any] = sari_score / len(SCREAMING_SNAKE_CASE ) return 1_0_0 * sari_score def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int="exp" , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : int=False , SCREAMING_SNAKE_CASE : Optional[Any]=False , ): '''simple docstring''' lowerCAmelCase : List[str] = len(references[0] ) if any(len(SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) lowerCAmelCase : List[str] = [[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE )] lowerCAmelCase : Tuple = sacrebleu.corpus_bleu( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , smooth_method=SCREAMING_SNAKE_CASE , smooth_value=SCREAMING_SNAKE_CASE , force=SCREAMING_SNAKE_CASE , lowercase=SCREAMING_SNAKE_CASE , use_effective_order=SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = {} result.update({"sari": compute_sari(sources=snake_case__ , predictions=snake_case__ , references=snake_case__ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=snake_case__ , references=snake_case__ )} ) result.update({"exact": compute_em(predictions=snake_case__ , references=snake_case__ )} ) return result
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self , snake_case__ ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase : List[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : List[Any] = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "sgugger/tiny-distilbert-classification" lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , only_pretrain_model=snake_case__ , ) lowerCAmelCase : Any = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : Dict = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : List[Any] = TensorFlowBenchmark(snake_case__ , [config] ) lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "sshleifer/tiny-gpt2" lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : str = TensorFlowBenchmark(snake_case__ , [config] ) lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : str = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : Tuple = TensorFlowBenchmark(snake_case__ , [config] ) lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "patrickvonplaten/t5-tiny-random" lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : Any = TensorFlowBenchmark(snake_case__ , configs=[config] ) lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case__ , save_to_csv=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(snake_case__ , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(snake_case__ , "inf_mem.csv" ) , env_info_csv_file=os.path.join(snake_case__ , "env.csv" ) , multi_process=snake_case__ , ) lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(snake_case__ ) benchmark.run() self.assertTrue(Path(os.path.join(snake_case__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , "env.csv" ) ).exists() ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(snake_case__ ): self.assertTrue(hasattr(snake_case__ , "sequential" ) ) self.assertTrue(hasattr(snake_case__ , "cumulative" ) ) self.assertTrue(hasattr(snake_case__ , "current" ) ) self.assertTrue(hasattr(snake_case__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(snake_case__ , "log.txt" ) , log_print=snake_case__ , trace_memory_line_by_line=snake_case__ , eager_mode=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : Optional[int] = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(snake_case__ , "log.txt" ) ).exists() )
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [0] * len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = [1] * len(SCREAMING_SNAKE_CASE ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(SCREAMING_SNAKE_CASE ) while queue: lowerCAmelCase : List[Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: lowerCAmelCase : Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(SCREAMING_SNAKE_CASE ) print(max(SCREAMING_SNAKE_CASE ) ) # Adjacency list of Graph lowerCAmelCase__ = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1