code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [[float("inf" ) for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(SCREAMING_SNAKE_CASE ): # looping through rows of graph array for i in range(SCREAMING_SNAKE_CASE ): # looping through columns of graph array for j in range(SCREAMING_SNAKE_CASE ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): lowerCAmelCase : Optional[int] = dist[i][k] + dist[k][j] _print_dist(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return dist, v if __name__ == "__main__": lowerCAmelCase__ = int(input('''Enter number of vertices: ''')) lowerCAmelCase__ = int(input('''Enter number of edges: ''')) lowerCAmelCase__ = [[float('''inf''') for i in range(v)] for j in range(v)] for i in range(v): lowerCAmelCase__ = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print('''\nEdge ''', i + 1) lowerCAmelCase__ = int(input('''Enter source:''')) lowerCAmelCase__ = int(input('''Enter destination:''')) lowerCAmelCase__ = float(input('''Enter weight:''')) lowerCAmelCase__ = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = question_encoder lowerCAmelCase : str = generator lowerCAmelCase : Any = self.question_encoder def lowercase__ ( self , snake_case__ ): """simple docstring""" if os.path.isfile(snake_case__ ): raise ValueError(f"""Provided path ({save_directory}) should be a directory, not a file""" ) os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCAmelCase : Tuple = os.path.join(snake_case__ , "question_encoder_tokenizer" ) lowerCAmelCase : Tuple = os.path.join(snake_case__ , "generator_tokenizer" ) self.question_encoder.save_pretrained(snake_case__ ) self.generator.save_pretrained(snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ , **snake_case__ ): """simple docstring""" from ..auto.tokenization_auto import AutoTokenizer lowerCAmelCase : Any = kwargs.pop("config" , snake_case__ ) if config is None: lowerCAmelCase : Dict = RagConfig.from_pretrained(snake_case__ ) lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained( snake_case__ , config=config.question_encoder , subfolder="question_encoder_tokenizer" ) lowerCAmelCase : Any = AutoTokenizer.from_pretrained( snake_case__ , config=config.generator , subfolder="generator_tokenizer" ) return cls(question_encoder=snake_case__ , generator=snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.current_tokenizer(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.generator.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.generator.decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.question_encoder def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.generator def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = "longest" , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" warnings.warn( "`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the " "regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` " "context manager to prepare your targets. See the documentation of your specific tokenizer for more " "details" , snake_case__ , ) if max_length is None: lowerCAmelCase : List[Any] = self.current_tokenizer.model_max_length lowerCAmelCase : str = self( snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , max_length=snake_case__ , padding=snake_case__ , truncation=snake_case__ , **snake_case__ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: lowerCAmelCase : str = self.current_tokenizer.model_max_length lowerCAmelCase : List[Any] = self( text_target=snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , padding=snake_case__ , max_length=snake_case__ , truncation=snake_case__ , **snake_case__ , ) lowerCAmelCase : Optional[int] = labels["input_ids"] return model_inputs
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase__ = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : List[str] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING a : str =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: a : Tuple ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: a : Optional[int] ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) lowerCAmelCase : Union[str, Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "LABEL_0", "score": 0.504}] ) lowerCAmelCase : Dict = text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}] ) lowerCAmelCase : Dict = text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(snake_case__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowerCAmelCase : Optional[Any] = text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "LABEL_0", "score": 0.504}] ) # Legacy behavior lowerCAmelCase : Optional[int] = text_classifier("This is great !" , return_all_scores=snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "LABEL_0", "score": 0.504}] ) lowerCAmelCase : Optional[int] = text_classifier("This is great !" , return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [[{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}]] ) lowerCAmelCase : List[str] = text_classifier(["This is great !", "Something else"] , return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [ [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], [{"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_1", "score": 0.496}], ] , ) lowerCAmelCase : Any = text_classifier(["This is great !", "Something else"] , return_all_scores=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [ {"label": "LABEL_0", "score": 0.504}, {"label": "LABEL_0", "score": 0.504}, ] , ) @require_torch def lowercase__ ( self ): """simple docstring""" import torch lowerCAmelCase : Tuple = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) lowerCAmelCase : Optional[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @require_tf def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) lowerCAmelCase : Any = text_classifier("This is great !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "LABEL_0", "score": 0.504}] ) @slow @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = pipeline("text-classification" ) lowerCAmelCase : List[Any] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCAmelCase : str = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCAmelCase : List[str] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "POSITIVE", "score": 0.988}] ) @slow @require_tf def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = pipeline("text-classification" , framework="tf" ) lowerCAmelCase : List[str] = text_classifier("This is great !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "POSITIVE", "score": 1.0}] ) lowerCAmelCase : List[str] = text_classifier("This is bad !" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) lowerCAmelCase : List[str] = text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": "POSITIVE", "score": 0.988}] ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TextClassificationPipeline(model=snake_case__ , tokenizer=snake_case__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 lowerCAmelCase : List[str] = "HuggingFace is in" lowerCAmelCase : Optional[Any] = text_classifier(snake_case__ ) self.assertEqual(nested_simplify(snake_case__ ) , [{"label": ANY(snake_case__ ), "score": ANY(snake_case__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) lowerCAmelCase : Any = ["HuggingFace is in ", "Paris is in France"] lowerCAmelCase : Tuple = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , [{"label": ANY(snake_case__ ), "score": ANY(snake_case__ )}, {"label": ANY(snake_case__ ), "score": ANY(snake_case__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format lowerCAmelCase : str = text_classifier(snake_case__ , top_k=snake_case__ ) lowerCAmelCase : Dict = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(snake_case__ ) , [[{"label": ANY(snake_case__ ), "score": ANY(snake_case__ )}] * N, [{"label": ANY(snake_case__ ), "score": ANY(snake_case__ )}] * N] , ) lowerCAmelCase : Union[str, Any] = {"text": "HuggingFace is in ", "text_pair": "Paris is in France"} lowerCAmelCase : Union[str, Any] = text_classifier(snake_case__ ) self.assertEqual( nested_simplify(snake_case__ ) , {"label": ANY(snake_case__ ), "score": ANY(snake_case__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. lowerCAmelCase : Union[str, Any] = [["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(snake_case__ ): text_classifier(snake_case__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility lowerCAmelCase : List[str] = text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(snake_case__ ) , [{"label": ANY(snake_case__ ), "score": ANY(snake_case__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
681
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if collection == []: return [] # get some information about the collection lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = max(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = min(SCREAMING_SNAKE_CASE ) # create the counting array lowerCAmelCase : List[str] = coll_max + 1 - coll_min lowerCAmelCase : Union[str, Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCAmelCase : Optional[Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , SCREAMING_SNAKE_CASE ) ): lowerCAmelCase : Union[str, Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return "".join([chr(SCREAMING_SNAKE_CASE ) for i in counting_sort([ord(SCREAMING_SNAKE_CASE ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def a__ ( SCREAMING_SNAKE_CASE : bytes , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = f"""{sampling_rate}""" lowerCAmelCase : str = "1" lowerCAmelCase : int = "f32le" lowerCAmelCase : List[str] = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase : Any = ffmpeg_process.communicate(SCREAMING_SNAKE_CASE ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error lowerCAmelCase : Union[str, Any] = output_stream[0] lowerCAmelCase : Tuple = np.frombuffer(SCREAMING_SNAKE_CASE , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : str = "f32le" , ): '''simple docstring''' lowerCAmelCase : List[Any] = f"""{sampling_rate}""" lowerCAmelCase : Tuple = "1" if format_for_conversion == "s16le": lowerCAmelCase : List[Any] = 2 elif format_for_conversion == "f32le": lowerCAmelCase : List[str] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) lowerCAmelCase : Union[str, Any] = platform.system() if system == "Linux": lowerCAmelCase : Any = "alsa" lowerCAmelCase : Optional[int] = "default" elif system == "Darwin": lowerCAmelCase : Union[str, Any] = "avfoundation" lowerCAmelCase : int = ":0" elif system == "Windows": lowerCAmelCase : Any = "dshow" lowerCAmelCase : Optional[Any] = "default" lowerCAmelCase : Any = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] lowerCAmelCase : int = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase : Optional[Any] = _ffmpeg_stream(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for item in iterator: yield item def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : Optional[int] = None , SCREAMING_SNAKE_CASE : Optional[Union[Tuple[float, float], float]] = None , SCREAMING_SNAKE_CASE : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: lowerCAmelCase : Tuple = stream_chunk_s else: lowerCAmelCase : int = chunk_length_s lowerCAmelCase : Union[str, Any] = ffmpeg_microphone(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , format_for_conversion=SCREAMING_SNAKE_CASE ) if format_for_conversion == "s16le": lowerCAmelCase : List[Any] = np.intaa lowerCAmelCase : Dict = 2 elif format_for_conversion == "f32le": lowerCAmelCase : Optional[Any] = np.floataa lowerCAmelCase : Optional[Any] = 4 else: raise ValueError(f"""Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`""" ) if stride_length_s is None: lowerCAmelCase : Dict = chunk_length_s / 6 lowerCAmelCase : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(SCREAMING_SNAKE_CASE , (int, float) ): lowerCAmelCase : str = [stride_length_s, stride_length_s] lowerCAmelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase : Union[str, Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase : str = datetime.datetime.now() lowerCAmelCase : Optional[Any] = datetime.timedelta(seconds=SCREAMING_SNAKE_CASE ) for item in chunk_bytes_iter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , stride=(stride_left, stride_right) , stream=SCREAMING_SNAKE_CASE ): # Put everything back in numpy scale lowerCAmelCase : str = np.frombuffer(item["raw"] , dtype=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) lowerCAmelCase : Union[str, Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 1_0 * delta: # We're late !! SKIP continue yield item def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple[int, int] , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : Optional[Any] = B"" lowerCAmelCase , lowerCAmelCase : List[Any] = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"""Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}""" ) lowerCAmelCase : Any = 0 for raw in iterator: acc += raw if stream and len(SCREAMING_SNAKE_CASE ) < chunk_len: lowerCAmelCase : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(SCREAMING_SNAKE_CASE ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase : str = (_stride_left, stride_right) lowerCAmelCase : str = {"raw": acc[:chunk_len], "stride": stride} if stream: lowerCAmelCase : int = False yield item lowerCAmelCase : Dict = stride_left lowerCAmelCase : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(SCREAMING_SNAKE_CASE ) > stride_left: lowerCAmelCase : int = {"raw": acc, "stride": (_stride_left, 0)} if stream: lowerCAmelCase : str = False yield item def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = 2**2_4 # 16Mo try: with subprocess.Popen(SCREAMING_SNAKE_CASE , stdout=subprocess.PIPE , bufsize=SCREAMING_SNAKE_CASE ) as ffmpeg_process: while True: lowerCAmelCase : Optional[Any] = ffmpeg_process.stdout.read(SCREAMING_SNAKE_CASE ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase__ = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' for attribute in key.split("." ): lowerCAmelCase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowerCAmelCase : Tuple = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : str = value elif weight_type == "weight_g": lowerCAmelCase : Tuple = value elif weight_type == "weight_v": lowerCAmelCase : Optional[Any] = value elif weight_type == "bias": lowerCAmelCase : Any = value else: lowerCAmelCase : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : List[Any] = [] lowerCAmelCase : List[Any] = fairseq_model.state_dict() lowerCAmelCase : int = hf_model.feature_extractor lowerCAmelCase : Tuple = hf_model.adapter for name, value in fairseq_dict.items(): lowerCAmelCase : Tuple = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase : int = True elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase : Optional[int] = True if "*" in mapped_key: lowerCAmelCase : Tuple = name.split(SCREAMING_SNAKE_CASE )[0].split("." )[-2] lowerCAmelCase : Union[str, Any] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowerCAmelCase : Optional[Any] = "weight_g" elif "weight_v" in name: lowerCAmelCase : Any = "weight_v" elif "bias" in name: lowerCAmelCase : List[Any] = "bias" elif "weight" in name: lowerCAmelCase : Tuple = "weight" else: lowerCAmelCase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = full_name.split("conv_layers." )[-1] lowerCAmelCase : Dict = name.split("." ) lowerCAmelCase : Tuple = int(items[0] ) lowerCAmelCase : Tuple = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : List[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Tuple = full_name.split("adaptor." )[-1] lowerCAmelCase : Any = name.split("." ) if items[1].isdigit(): lowerCAmelCase : str = int(items[1] ) else: lowerCAmelCase : Any = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" lowerCAmelCase : int = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" lowerCAmelCase : Union[str, Any] = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" lowerCAmelCase : Any = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" lowerCAmelCase : Union[str, Any] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" lowerCAmelCase : Optional[Any] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" lowerCAmelCase : Union[str, Any] = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Optional[Any] = emb.weight.shape lowerCAmelCase : Union[str, Any] = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = emb.weight.data return lin_layer @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' lowerCAmelCase : Dict = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : int = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ "config_yaml": config_yaml_path, "data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path, "load_pretrained_decoder_from": None, } , ) lowerCAmelCase : List[str] = model[0].eval() # load feature extractor lowerCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder lowerCAmelCase : Optional[int] = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights lowerCAmelCase : Optional[int] = MBartForCausalLM(SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) lowerCAmelCase : int = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = False lowerCAmelCase : Tuple = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = hf_wavavec.config.to_dict() lowerCAmelCase : int = tokenizer.pad_token_id lowerCAmelCase : Any = tokenizer.bos_token_id lowerCAmelCase : List[str] = tokenizer.eos_token_id lowerCAmelCase : str = "mbart50" lowerCAmelCase : Optional[int] = "wav2vec2" lowerCAmelCase : Optional[Any] = tokenizer.eos_token_id lowerCAmelCase : List[str] = 2_5_0_0_0_4 lowerCAmelCase : List[Any] = tokenizer.eos_token_id lowerCAmelCase : Tuple = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250_004, type=int, help='''`decoder_start_token_id` of model config''') lowerCAmelCase__ = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) lowerCAmelCase : str = AutoTokenizer.from_pretrained("google/mt5-small" ) lowerCAmelCase : Tuple = tokenizer("Hello there" , return_tensors="tf" ).input_ids lowerCAmelCase : Any = tokenizer("Hi I am" , return_tensors="tf" ).input_ids lowerCAmelCase : List[str] = model(snake_case__ , labels=snake_case__ ).loss lowerCAmelCase : Union[str, Any] = -tf.math.reduce_mean(snake_case__ ).numpy() lowerCAmelCase : Dict = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
1
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase__ = getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int = 8 , SCREAMING_SNAKE_CASE : int = 1_0_2_4 , SCREAMING_SNAKE_CASE : Any="val" , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : str=False , SCREAMING_SNAKE_CASE : Dict="summarization" , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : int=1 , SCREAMING_SNAKE_CASE : Dict = None , SCREAMING_SNAKE_CASE : int="" , **SCREAMING_SNAKE_CASE : List[str] , ): '''simple docstring''' lowerCAmelCase : Any = str(SCREAMING_SNAKE_CASE ) assert local_rank is not None torch.distributed.init_process_group(backend="nccl" , rank=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = Path(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE ).cuda() if fpaa: lowerCAmelCase : Union[str, Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # update config with task specific params lowerCAmelCase : Optional[Any] = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCAmelCase : int = num_return_sequences lowerCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCAmelCase : Dict = tokenizer.model_max_length if prefix is None: lowerCAmelCase : List[Any] = prefix or getattr(model.config , "prefix" , "" ) or "" lowerCAmelCase : str = SeqaSeqDataset( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_target_length=1_0_2_4 , type_path=SCREAMING_SNAKE_CASE , n_obs=SCREAMING_SNAKE_CASE , prefix=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCAmelCase : Dict = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE , distributed=SCREAMING_SNAKE_CASE , add_extra_examples=SCREAMING_SNAKE_CASE , shuffle=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE , collate_fn=ds.collate_fn ) lowerCAmelCase : int = [] for batch in tqdm(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = model.generate( input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=SCREAMING_SNAKE_CASE , num_beams=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Dict = tokenizer.batch_decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = batch["ids"] if num_return_sequences > 1: lowerCAmelCase : Tuple = chunks(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(SCREAMING_SNAKE_CASE ): results.append({"pred": pred, "id": ids[i].item()} ) save_json(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return results, sampler.num_replicas def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = argparse.ArgumentParser( epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" ) parser.add_argument("--data_dir" , type=SCREAMING_SNAKE_CASE , help="like cnn_dm/test.source" ) parser.add_argument( "--model_name" , type=SCREAMING_SNAKE_CASE , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , ) parser.add_argument("--save_dir" , type=SCREAMING_SNAKE_CASE , help="where to save" , default="tmp_gen" ) parser.add_argument("--max_source_length" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE ) parser.add_argument( "--type_path" , type=SCREAMING_SNAKE_CASE , default="test" , help="which subset to evaluate typically train/val/test" ) parser.add_argument("--task" , type=SCREAMING_SNAKE_CASE , default="summarization" , help="used for task_specific_params + metrics" ) parser.add_argument("--bs" , type=SCREAMING_SNAKE_CASE , default=8 , required=SCREAMING_SNAKE_CASE , help="batch size" ) parser.add_argument( "--local_rank" , type=SCREAMING_SNAKE_CASE , default=-1 , required=SCREAMING_SNAKE_CASE , help="should be passed by distributed.launch" ) parser.add_argument( "--n_obs" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="How many observations. Defaults to all." ) parser.add_argument( "--num_return_sequences" , type=SCREAMING_SNAKE_CASE , default=1 , required=SCREAMING_SNAKE_CASE , help="How many sequences to return" ) parser.add_argument( "--sync_timeout" , type=SCREAMING_SNAKE_CASE , default=6_0_0 , required=SCREAMING_SNAKE_CASE , help="How long should master process wait for other processes to finish." , ) parser.add_argument("--src_lang" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE ) parser.add_argument("--tgt_lang" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE ) parser.add_argument( "--prefix" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="will be added to the begininng of src examples" ) parser.add_argument("--fp16" , action="store_true" ) parser.add_argument("--debug" , action="store_true" ) lowerCAmelCase : Optional[Any] = time.time() lowerCAmelCase , lowerCAmelCase : Union[str, Any] = parser.parse_known_args() lowerCAmelCase : Optional[Any] = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) lowerCAmelCase : Optional[Any] = Path(args.save_dir + "_tmp" ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) # this handles locking. lowerCAmelCase : Optional[int] = list(json_save_dir.glob("rank_*.json" ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCAmelCase : int = {} if args.src_lang is not None: lowerCAmelCase : int = args.src_lang if args.tgt_lang is not None: lowerCAmelCase : Any = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : List[str] = eval_data_dir( args.data_dir , SCREAMING_SNAKE_CASE , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) if args.local_rank <= 0: lowerCAmelCase : int = Path(args.save_dir ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = gather_results_from_each_node(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , args.sync_timeout ) lowerCAmelCase : List[Any] = combine_partial_results(SCREAMING_SNAKE_CASE ) if args.num_return_sequences > 1: lowerCAmelCase : Optional[int] = save_dir.joinpath("pseudolabel_results.json" ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return lowerCAmelCase : Any = Path(args.data_dir ).joinpath(args.type_path + ".target" ) with open(SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase : Any = [x.rstrip() for x in f.readlines()][: len(SCREAMING_SNAKE_CASE )] # Calculate metrics, save metrics, and save _generations.txt lowerCAmelCase : Optional[Any] = "translation" in args.task lowerCAmelCase : List[str] = calculate_bleu if calc_bleu else calculate_rouge lowerCAmelCase : Optional[Any] = "bleu" if calc_bleu else "rouge" lowerCAmelCase : Dict = score_fn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = time.time() - start_time lowerCAmelCase : Optional[int] = round(runtime / metrics["n_obs"] , 4 ) lowerCAmelCase : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCAmelCase : Any = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) write_txt_file(SCREAMING_SNAKE_CASE , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(SCREAMING_SNAKE_CASE , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Tuple = [] for partial_result in partial_results: records.extend(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x["id"] ) lowerCAmelCase : Dict = [x["pred"] for x in records] return preds def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : int = time.time() logger.info("waiting for all nodes to finish" ) lowerCAmelCase : List[str] = None while (time.time() - start_wait) < timeout: lowerCAmelCase : Union[str, Any] = list(save_dir.glob("rank_*.json" ) ) if len(SCREAMING_SNAKE_CASE ) < num_replicas: continue try: # make sure all json files are fully saved lowerCAmelCase : Dict = lmap(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return json_data except JSONDecodeError: continue else: raise TimeoutError("Rank 0 gave up on waiting for other processes" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
681
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowerCAmelCase__ = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowerCAmelCase__ = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if "://" in dataset_path: lowerCAmelCase : Dict = dataset_path.split("://" )[1] return dataset_path def a__ ( SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def a__ ( SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = not is_remote_filesystem(SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) ) else: fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' if hasattr(fsspec.asyn , "reset_lock" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Dict = None lowerCAmelCase : Any = threading.Lock()
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=10 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , snake_case__=None , ): """simple docstring""" lowerCAmelCase : List[str] = size if size is not None else {"shortest_edge": 18} lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCAmelCase : List[str] = parent lowerCAmelCase : int = batch_size lowerCAmelCase : Any = num_channels lowerCAmelCase : int = num_frames lowerCAmelCase : List[str] = image_size lowerCAmelCase : List[Any] = min_resolution lowerCAmelCase : Optional[int] = max_resolution lowerCAmelCase : str = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Dict = do_normalize lowerCAmelCase : List[str] = image_mean lowerCAmelCase : Dict = image_std lowerCAmelCase : List[Any] = crop_size def lowercase__ ( self ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =VivitImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = VivitImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "do_center_crop" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos lowerCAmelCase : Optional[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for video in video_inputs: self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input lowerCAmelCase : List[Any] = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : Tuple = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for video in video_inputs: self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input lowerCAmelCase : int = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : Optional[int] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Optional[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for video in video_inputs: self.assertIsInstance(snake_case__ , snake_case__ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input lowerCAmelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCAmelCase : str = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return x + 2 class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "x = 3" lowerCAmelCase : Union[str, Any] = {} lowerCAmelCase : Union[str, Any] = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3} ) lowerCAmelCase : Dict = "x = y" lowerCAmelCase : Any = {"y": 5} lowerCAmelCase : Any = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 5, "y": 5} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "y = add_two(x)" lowerCAmelCase : int = {"x": 3} lowerCAmelCase : str = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) # Won't work without the tool with CaptureStdout() as out: lowerCAmelCase : Optional[int] = evaluate(snake_case__ , {} , state=snake_case__ ) assert result is None assert "tried to execute add_two" in out.out def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "x = 3" lowerCAmelCase : str = {} lowerCAmelCase : Tuple = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "test_dict = {'x': x, 'y': add_two(x)}" lowerCAmelCase : Any = {"x": 3} lowerCAmelCase : Any = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) self.assertDictEqual(snake_case__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "x = 3\ny = 5" lowerCAmelCase : int = {} lowerCAmelCase : int = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "y": 5} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "text = f'This is x: {x}.'" lowerCAmelCase : List[Any] = {"x": 3} lowerCAmelCase : Any = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(snake_case__ , {"x": 3, "text": "This is x: 3."} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "if x <= 3:\n y = 2\nelse:\n y = 5" lowerCAmelCase : Any = {"x": 3} lowerCAmelCase : Tuple = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(snake_case__ , {"x": 3, "y": 2} ) lowerCAmelCase : Union[str, Any] = {"x": 8} lowerCAmelCase : List[Any] = evaluate(snake_case__ , {} , state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ , {"x": 8, "y": 5} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "test_list = [x, add_two(x)]" lowerCAmelCase : List[str] = {"x": 3} lowerCAmelCase : Tuple = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) self.assertListEqual(snake_case__ , [3, 5] ) self.assertDictEqual(snake_case__ , {"x": 3, "test_list": [3, 5]} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = "y = x" lowerCAmelCase : Union[str, Any] = {"x": 3} lowerCAmelCase : Optional[Any] = evaluate(snake_case__ , {} , state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ , {"x": 3, "y": 3} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "test_list = [x, add_two(x)]\ntest_list[1]" lowerCAmelCase : Optional[Any] = {"x": 3} lowerCAmelCase : Tuple = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "test_list": [3, 5]} ) lowerCAmelCase : Dict = "test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']" lowerCAmelCase : Any = {"x": 3} lowerCAmelCase : int = evaluate(snake_case__ , {"add_two": add_two} , state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ , {"x": 3, "test_dict": {"x": 3, "y": 5}} ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "x = 0\nfor i in range(3):\n x = i" lowerCAmelCase : Optional[Any] = {} lowerCAmelCase : str = evaluate(snake_case__ , {"range": range} , state=snake_case__ ) assert result == 2 self.assertDictEqual(snake_case__ , {"x": 2, "i": 2} )
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase__ = HfArgumentParser(InitializationArguments) lowerCAmelCase__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase__ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None ): """simple docstring""" super().__init__() lowerCAmelCase : Dict = pad_token_id lowerCAmelCase : int = max_length lowerCAmelCase : List[str] = vocab lowerCAmelCase : Tuple = merges lowerCAmelCase : Optional[Any] = BytePairTokenizer(snake_case__ , snake_case__ , sequence_length=snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = [" ".join(snake_case__ ) for m in tokenizer.bpe_ranks.keys()] lowerCAmelCase : Optional[int] = tokenizer.get_vocab() return cls(snake_case__ , snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = GPTaTokenizer.from_pretrained(snake_case__ , *snake_case__ , **snake_case__ ) return cls.from_tokenizer(snake_case__ , *snake_case__ , **snake_case__ ) @classmethod def lowercase__ ( cls , snake_case__ ): """simple docstring""" return cls(**snake_case__ ) def lowercase__ ( self ): """simple docstring""" return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Any = self.tf_tokenizer(snake_case__ ) lowerCAmelCase : Union[str, Any] = tf.ones_like(snake_case__ ) if self.pad_token_id is not None: # pad the tokens up to max length lowerCAmelCase : str = max_length if max_length is not None else self.max_length if max_length is not None: lowerCAmelCase , lowerCAmelCase : str = pad_model_inputs( snake_case__ , max_seq_length=snake_case__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/efficientnet-b7''': '''https://huggingface.co/google/efficientnet-b7/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="efficientnet" def __init__( self , snake_case__ = 3 , snake_case__ = 600 , snake_case__ = 2.0 , snake_case__ = 3.1 , snake_case__ = 8 , snake_case__ = [3, 3, 5, 3, 5, 5, 3] , snake_case__ = [32, 16, 24, 40, 80, 112, 192] , snake_case__ = [16, 24, 40, 80, 112, 192, 320] , snake_case__ = [] , snake_case__ = [1, 2, 2, 2, 1, 2, 1] , snake_case__ = [1, 2, 2, 3, 3, 4, 1] , snake_case__ = [1, 6, 6, 6, 6, 6, 6] , snake_case__ = 0.25 , snake_case__ = "swish" , snake_case__ = 2_560 , snake_case__ = "mean" , snake_case__ = 0.02 , snake_case__ = 0.001 , snake_case__ = 0.99 , snake_case__ = 0.5 , snake_case__ = 0.2 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : str = num_channels lowerCAmelCase : Dict = image_size lowerCAmelCase : Optional[int] = width_coefficient lowerCAmelCase : Optional[Any] = depth_coefficient lowerCAmelCase : Tuple = depth_divisor lowerCAmelCase : Any = kernel_sizes lowerCAmelCase : Optional[int] = in_channels lowerCAmelCase : List[Any] = out_channels lowerCAmelCase : int = depthwise_padding lowerCAmelCase : Union[str, Any] = strides lowerCAmelCase : Union[str, Any] = num_block_repeats lowerCAmelCase : Optional[Any] = expand_ratios lowerCAmelCase : int = squeeze_expansion_ratio lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : Optional[Any] = hidden_dim lowerCAmelCase : Tuple = pooling_type lowerCAmelCase : str = initializer_range lowerCAmelCase : Union[str, Any] = batch_norm_eps lowerCAmelCase : Dict = batch_norm_momentum lowerCAmelCase : str = dropout_rate lowerCAmelCase : Dict = drop_connect_rate lowerCAmelCase : Optional[int] = sum(snake_case__ ) * 4 class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Tuple =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-5
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("google/mt5-small" ) lowerCAmelCase : List[str] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowerCAmelCase : List[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowerCAmelCase : Any = shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) lowerCAmelCase : Any = model(snake_case__ , decoder_input_ids=snake_case__ ).logits lowerCAmelCase : Dict = optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() lowerCAmelCase : Dict = -(labels.shape[-1] * loss.item()) lowerCAmelCase : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if n == 1 or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return 0 elif n == 2: return 1 else: lowerCAmelCase : Optional[int] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : int = 0 lowerCAmelCase : Optional[Any] = 2 while digits < n: index += 1 lowerCAmelCase : Optional[int] = len(str(fibonacci(SCREAMING_SNAKE_CASE ) ) ) return index def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return fibonacci_digits_index(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a__ ( ): '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1_0_2_4 ) print("Key files generation successful." ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' print("Generating prime p..." ) lowerCAmelCase : Tuple = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE ) print("Generating prime q..." ) lowerCAmelCase : List[Any] = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: lowerCAmelCase : List[str] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) lowerCAmelCase : str = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) lowerCAmelCase : Optional[Any] = (n, e) lowerCAmelCase : List[str] = (n, d) return (public_key, private_key) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() lowerCAmelCase , lowerCAmelCase : int = generate_key(SCREAMING_SNAKE_CASE ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = set_counts lowerCAmelCase : Optional[Any] = max(snake_case__ ) lowerCAmelCase : Any = len(snake_case__ ) lowerCAmelCase : int = [1] * num_sets lowerCAmelCase : Optional[Any] = list(range(snake_case__ ) ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.get_parent(snake_case__ ) lowerCAmelCase : List[Any] = self.get_parent(snake_case__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = src_parent lowerCAmelCase : Union[str, Any] = self.set_counts[src_parent] lowerCAmelCase : Optional[int] = max(self.max_set , snake_case__ ) return True def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase : Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase : int = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase : List[str] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase : int = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase : Any = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase : str = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase : Dict = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase : Union[str, Any] = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase : Optional[int] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase : List[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase : Union[str, Any] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase : List[Any] = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase : Dict = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase : Union[str, Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase : Dict = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase : List[str] = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase : Dict = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase : Dict = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase : str = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase : List[str] = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase : List[str] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase : List[Any] = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase : List[Any] = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase : Union[str, Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase : Any = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase : int = key.split("." ) lowerCAmelCase , lowerCAmelCase : Dict = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase : str = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase : int = val[:dim, :] lowerCAmelCase : str = val[dim : dim * 2, :] lowerCAmelCase : Any = val[-dim:, :] else: lowerCAmelCase : Optional[int] = val[:dim] lowerCAmelCase : Any = val[dim : dim * 2] lowerCAmelCase : Any = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase : List[str] = key.split("." ) lowerCAmelCase : Any = int(key_split[3] ) lowerCAmelCase : int = config.text_config.hidden_size if "weight" in key: lowerCAmelCase : List[Any] = val[:dim, :] lowerCAmelCase : Optional[int] = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : List[str] = val[:dim] lowerCAmelCase : str = val[dim : dim * 2] lowerCAmelCase : Optional[int] = val[-dim:] else: lowerCAmelCase : Dict = rename_key(SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase : Dict = val.squeeze_() else: lowerCAmelCase : Optional[int] = val return orig_state_dict def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : str = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE : Dict=False ): '''simple docstring''' lowerCAmelCase : List[str] = GroupViTConfig() lowerCAmelCase : Dict = GroupViTModel(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : Any = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Any = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE ) == 0) # verify result lowerCAmelCase : Optional[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Optional[int] = processor(text=["a photo of a cat", "a photo of a dog"] , images=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase : Any = model(**SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase : Tuple = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase : List[Any] = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print("Successfully saved processor and model to" , SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(SCREAMING_SNAKE_CASE , organization="nielsr" ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization="nielsr" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowerCAmelCase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[Any] = SwinConfig() lowerCAmelCase : List[str] = swin_name.split("_" ) lowerCAmelCase : Any = name_split[1] lowerCAmelCase : str = int(name_split[4] ) lowerCAmelCase : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": lowerCAmelCase : Union[str, Any] = 9_6 lowerCAmelCase : List[Any] = (2, 2, 6, 2) lowerCAmelCase : Any = (3, 6, 1_2, 2_4) elif model_size == "small": lowerCAmelCase : Optional[int] = 9_6 lowerCAmelCase : Any = (2, 2, 1_8, 2) lowerCAmelCase : Union[str, Any] = (3, 6, 1_2, 2_4) elif model_size == "base": lowerCAmelCase : int = 1_2_8 lowerCAmelCase : List[str] = (2, 2, 1_8, 2) lowerCAmelCase : List[Any] = (4, 8, 1_6, 3_2) else: lowerCAmelCase : Dict = 1_9_2 lowerCAmelCase : Optional[int] = (2, 2, 1_8, 2) lowerCAmelCase : List[str] = (6, 1_2, 2_4, 4_8) if "in22k" in swin_name: lowerCAmelCase : str = 2_1_8_4_1 else: lowerCAmelCase : Tuple = 1_0_0_0 lowerCAmelCase : Optional[Any] = "huggingface/label-files" lowerCAmelCase : Optional[int] = "imagenet-1k-id2label.json" lowerCAmelCase : str = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : List[str] = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase : Union[str, Any] = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : List[Any] = img_size lowerCAmelCase : Union[str, Any] = num_classes lowerCAmelCase : int = embed_dim lowerCAmelCase : str = depths lowerCAmelCase : Tuple = num_heads lowerCAmelCase : str = window_size return config def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if "patch_embed.proj" in name: lowerCAmelCase : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase : Union[str, Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCAmelCase : Any = "encoder." + name if "attn.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCAmelCase : Tuple = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCAmelCase : Any = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase : List[str] = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase : Dict = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace("mlp.fc2" , "output.dense" ) if name == "norm.weight": lowerCAmelCase : Any = "layernorm.weight" if name == "norm.bias": lowerCAmelCase : Union[str, Any] = "layernorm.bias" if "head" in name: lowerCAmelCase : Any = name.replace("head" , "classifier" ) else: lowerCAmelCase : Optional[int] = "swin." + name return name def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "mask" in key: continue elif "qkv" in key: lowerCAmelCase : str = key.split("." ) lowerCAmelCase : str = int(key_split[1] ) lowerCAmelCase : List[str] = int(key_split[3] ) lowerCAmelCase : Optional[int] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Any = val[:dim, :] lowerCAmelCase : Tuple = val[ dim : dim * 2, : ] lowerCAmelCase : List[Any] = val[-dim:, :] else: lowerCAmelCase : int = val[ :dim ] lowerCAmelCase : List[Any] = val[ dim : dim * 2 ] lowerCAmelCase : Union[str, Any] = val[ -dim: ] else: lowerCAmelCase : Optional[int] = val return orig_state_dict def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = timm.create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() lowerCAmelCase : str = get_swin_config(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = SwinForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : Optional[Any] = convert_state_dict(timm_model.state_dict() , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Dict = AutoImageProcessor.from_pretrained("microsoft/{}".format(swin_name.replace("_" , "-" ) ) ) lowerCAmelCase : Tuple = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) lowerCAmelCase : int = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="pt" ) lowerCAmelCase : Dict = timm_model(inputs["pixel_values"] ) lowerCAmelCase : Dict = model(**SCREAMING_SNAKE_CASE ).logits assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) print(f"""Saving model {swin_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swin_name''', default='''swin_tiny_patch4_window7_224''', type=str, help='''Name of the Swin timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCAmelCase__ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCAmelCase__ = trt.Logger(trt.Logger.WARNING) lowerCAmelCase__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCAmelCase__ = parser.parse_args() if args.tokenizer_name: lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCAmelCase__ = args.per_device_eval_batch_size lowerCAmelCase__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCAmelCase__ = True lowerCAmelCase__ = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCAmelCase__ = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCAmelCase__ = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCAmelCase__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCAmelCase__ = [network.get_input(i) for i in range(network.num_inputs)] lowerCAmelCase__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCAmelCase__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCAmelCase__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCAmelCase__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = np.asarray(inputs["input_ids"] , dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time lowerCAmelCase : Dict = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : str = time.time() lowerCAmelCase : Optional[Any] = end_time - start_time lowerCAmelCase : Optional[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCAmelCase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCAmelCase__ = raw_datasets['''validation'''].column_names lowerCAmelCase__ = '''question''' if '''question''' in column_names else column_names[0] lowerCAmelCase__ = '''context''' if '''context''' in column_names else column_names[1] lowerCAmelCase__ = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCAmelCase__ = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCAmelCase__ = min(args.max_seq_length, tokenizer.model_max_length) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : str = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : Optional[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Dict = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : List[Any] = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : Optional[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples lowerCAmelCase__ = raw_datasets['''validation'''] # Validation Feature Creation lowerCAmelCase__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCAmelCase__ = default_data_collator lowerCAmelCase__ = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCAmelCase__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]="eval" ): '''simple docstring''' lowerCAmelCase : int = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : List[str] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[str] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] lowerCAmelCase : Union[str, Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. lowerCAmelCase__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCAmelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCAmelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCAmelCase__ = cuda.mem_alloc(h_outputa.nbytes) lowerCAmelCase__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCAmelCase__ = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F" Num examples = {len(eval_dataset)}") logger.info(F" Batch size = {args.per_device_eval_batch_size}") lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 0 lowerCAmelCase__ = timeit.default_timer() lowerCAmelCase__ = None for step, batch in enumerate(eval_dataloader): lowerCAmelCase__ ,lowerCAmelCase__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCAmelCase__ ,lowerCAmelCase__ = outputs lowerCAmelCase__ = torch.tensor(start_logits) lowerCAmelCase__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCAmelCase__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowerCAmelCase__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowerCAmelCase__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCAmelCase__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowerCAmelCase__ = nested_truncate(all_preds, len(eval_dataset)) lowerCAmelCase__ = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_000)) logger.info('''Total Number of Inference = %d''', niter) lowerCAmelCase__ = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCAmelCase__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"Evaluation metrics: {eval_metric}")
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = list(s_dict.keys() ) for key in keys: lowerCAmelCase : int = r".*/layers_(\d+)" lowerCAmelCase : List[Any] = key if re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Any = re.sub(r"layers_(\d+)" , r"block/\1/layer" , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = r"(encoder|decoder)\/" if re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = re.match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).groups() if groups[0] == "encoder": lowerCAmelCase : Optional[int] = re.sub(r"/mlp/" , r"/1/mlp/" , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = re.sub(r"/pre_mlp_layer_norm/" , r"/1/layer_norm/" , SCREAMING_SNAKE_CASE ) elif groups[0] == "decoder": lowerCAmelCase : Union[str, Any] = re.sub(r"/mlp/" , r"/2/mlp/" , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = re.sub(r"/pre_mlp_layer_norm/" , r"/2/layer_norm/" , SCREAMING_SNAKE_CASE ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase : Optional[Any] = new_key.replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f"""{key} -> {new_key}""" ) lowerCAmelCase : Tuple = s_dict.pop(SCREAMING_SNAKE_CASE ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase : str = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase : str = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase : int = s_dict[key].shape[0] lowerCAmelCase : Dict = s_dict[key] for idx in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" , "nested fstring" )}""" ) s_dict.pop(SCREAMING_SNAKE_CASE ) return s_dict lowerCAmelCase__ = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' import regex as re with open(SCREAMING_SNAKE_CASE , "r" ) as f: lowerCAmelCase : List[Any] = f.read() lowerCAmelCase : Any = re.findall(r"(.*) = ([0-9.]*)" , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase : Tuple = float(SCREAMING_SNAKE_CASE ) if "." in value else int(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = re.findall(r"(.*activations) = \(\'(.*)\',\)" , SCREAMING_SNAKE_CASE )[0] lowerCAmelCase : List[Any] = str(activation[1] ) lowerCAmelCase : List[Any] = num_experts lowerCAmelCase : str = SwitchTransformersConfig(**SCREAMING_SNAKE_CASE ) return config def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : Dict="./" , SCREAMING_SNAKE_CASE : List[Any]=8 ): '''simple docstring''' print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) lowerCAmelCase : Dict = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE ) if gin_file is not None: lowerCAmelCase : Dict = convert_gin_to_config(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : List[Any] = SwitchTransformersConfig.from_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SwitchTransformersForConditionalGeneration(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = flax_params["target"] lowerCAmelCase : Dict = flatten_dict(SCREAMING_SNAKE_CASE , sep="/" ) lowerCAmelCase : Any = rename_keys(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = unflatten_dict(SCREAMING_SNAKE_CASE , sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') lowerCAmelCase__ = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
681
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
1
"""simple docstring""" import requests lowerCAmelCase__ = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["articles"] , 1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
681
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
1
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( enum.Enum ): """simple docstring""" a : Optional[int] ="all_checks" a : Union[str, Any] ="basic_checks" a : str ="no_checks" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : Any=None ): '''simple docstring''' if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedDownloadedFile(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase : str = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCAmelCase : Optional[int] = " for " + verification_name if verification_name is not None else "" if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingChecksumError( f"""Checksums didn't match{for_verification_name}:\n""" f"""{bad_urls}\n""" "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Optional[dict] , SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise ExpectedMoreSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) if len(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) > 0: raise UnexpectedSplits(str(set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase : Tuple = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(SCREAMING_SNAKE_CASE ) > 0: raise NonMatchingSplitsSizesError(str(SCREAMING_SNAKE_CASE ) ) logger.info("All the splits matched successfully." ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = True ): '''simple docstring''' if record_checksum: lowerCAmelCase : Union[str, Any] = shaaaa() with open(SCREAMING_SNAKE_CASE , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B"" ): m.update(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = m.hexdigest() else: lowerCAmelCase : int = None return {"num_bytes": os.path.getsize(SCREAMING_SNAKE_CASE ), "checksum": checksum} def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
681
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
1
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME lowerCAmelCase__ = ['''small''', '''medium''', '''large'''] lowerCAmelCase__ = '''lm_head.decoder.weight''' lowerCAmelCase__ = '''lm_head.weight''' def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = torch.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = d.pop(SCREAMING_SNAKE_CASE ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) lowerCAmelCase__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: lowerCAmelCase__ = os.path.join(args.dialogpt_path, F"{MODEL}_ft.pkl") lowerCAmelCase__ = F"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
1
"""simple docstring""" from __future__ import annotations from cmath import sqrt def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase : Union[str, Any] = b * b - 4 * a * c lowerCAmelCase : Optional[Any] = (-b + sqrt(SCREAMING_SNAKE_CASE )) / (2 * a) lowerCAmelCase : List[str] = (-b - sqrt(SCREAMING_SNAKE_CASE )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Dict = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
681
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
1
"""simple docstring""" import collections import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(r'''^\s*else:''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : Dict = f.readlines() lowerCAmelCase : Union[str, Any] = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] lowerCAmelCase : Any = re.findall(r"\[([^\]]+)\]" , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase : Dict = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : List[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : List[Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : List[str] = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Any = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : Optional[int] = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : Optional[int] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase : str = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE : Optional[int] ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Tuple = [] for key in import_dict_objects.keys(): lowerCAmelCase : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Any = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) lowerCAmelCase : List[str] = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: lowerCAmelCase : Any = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Union[str, Any] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError("\n\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase : List[Any] = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Dict = short_path.replace(os.path.sep , "." ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : int = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def a__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import lowerCAmelCase : List[Any] = direct_transformers_import(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , "r" ) as f: lowerCAmelCase : str = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Optional[Any] = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
681
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
1
"""simple docstring""" import numpy as np lowerCAmelCase__ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : List[str] = np.array(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Tuple = np.where(letter == self.SQUARE ) lowerCAmelCase : Any = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.SQUARE[indexa - 1, indexa - 1] return letter def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = message.lower() lowerCAmelCase : int = message.replace(" " , "" ) lowerCAmelCase : Union[str, Any] = message.replace("j" , "i" ) lowerCAmelCase : int = np.empty((2, len(snake_case__ )) ) for letter_index in range(len(snake_case__ ) ): lowerCAmelCase : Tuple = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase : int = numbers[0] lowerCAmelCase : Tuple = numbers[1] lowerCAmelCase : str = first_step.reshape(2 * len(snake_case__ ) ) lowerCAmelCase : Optional[Any] = "" for numbers_index in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = int(second_step[numbers_index * 2] ) lowerCAmelCase : Any = int(second_step[(numbers_index * 2) + 1] ) lowerCAmelCase : Any = self.numbers_to_letter(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = encoded_message + letter return encoded_message def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = message.lower() message.replace(" " , "" ) lowerCAmelCase : Optional[int] = np.empty(2 * len(snake_case__ ) ) for letter_index in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase : Dict = numbers[0] lowerCAmelCase : str = numbers[1] lowerCAmelCase : Union[str, Any] = first_step.reshape((2, len(snake_case__ )) ) lowerCAmelCase : Any = "" for numbers_index in range(len(snake_case__ ) ): lowerCAmelCase : List[str] = int(second_step[0, numbers_index] ) lowerCAmelCase : Union[str, Any] = int(second_step[1, numbers_index] ) lowerCAmelCase : Dict = self.numbers_to_letter(snake_case__ , snake_case__ ) lowerCAmelCase : int = decoded_message + letter return decoded_message
681
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' return price * (1 + tax_rate) if __name__ == "__main__": print(F"{price_plus_tax(100, 0.25) = }") print(F"{price_plus_tax(125.50, 0.05) = }")
681
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
1
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCAmelCase__ = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} lowerCAmelCase__ = '''>>zh<<''' lowerCAmelCase__ = '''Helsinki-NLP/''' if is_torch_available(): lowerCAmelCase__ = '''pt''' elif is_tf_available(): lowerCAmelCase__ = '''tf''' else: lowerCAmelCase__ = '''jax''' @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =MarianTokenizer a : Union[str, Any] =False a : str =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : int = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : Optional[int] = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES["vocab"] ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES["source_spm"] ) copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES["target_spm"] ) lowerCAmelCase : Optional[int] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return ( "This is a test", "This is a test", ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = "</s>" lowerCAmelCase : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "</s>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(snake_case__ ) , 9 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = MarianTokenizer.from_pretrained(f"""{ORG_NAME}opus-mt-en-de""" ) lowerCAmelCase : List[Any] = en_de_tokenizer(["I am a small frog"] , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) lowerCAmelCase : Any = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(snake_case__ , batch.input_ids[0] ) lowerCAmelCase : Dict = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(snake_case__ ) lowerCAmelCase : List[Any] = [x.name for x in Path(snake_case__ ).glob("*" )] self.assertIn("source.spm" , snake_case__ ) MarianTokenizer.from_pretrained(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Dict = tok( ["I am a small frog" * 1_000, "I am a small frog"] , padding=snake_case__ , truncation=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_tokenizer() lowerCAmelCase : Tuple = tok(["I am a tiny frog", "I am a small frog"] , padding=snake_case__ , return_tensors=snake_case__ ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = {"input_ids": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs" ) lowerCAmelCase : Union[str, Any] = "Tämä on testi" lowerCAmelCase : Optional[int] = "This is a test" lowerCAmelCase : Optional[int] = [76, 7, 2_047, 2] lowerCAmelCase : List[str] = [69, 12, 11, 940, 2] lowerCAmelCase : str = tokenizer(snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Any = tokenizer(text_target=snake_case__ ).input_ids self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ )
681
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
1
"""simple docstring""" import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( '''The `image_to_image.py` script is outdated. Please use directly `from diffusers import''' ''' StableDiffusionImg2ImgPipeline` instead.''' )
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" def a__ ( ): '''simple docstring''' return 1 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int = 2_0_0 ): '''simple docstring''' return two_pound(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution(int(input().strip())))
681
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''}, '''tokenizer_file''': { '''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json''' }, } lowerCAmelCase__ = { '''google/pegasus-xsum''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple =PegasusTokenizer a : Any =["input_ids", "attention_mask"] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<pad>" , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<mask_2>" , snake_case__="<mask_1>" , snake_case__=None , snake_case__=103 , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Dict = offset if additional_special_tokens is not None: if not isinstance(snake_case__ , snake_case__ ): raise TypeError( f"""additional_special_tokens should be of type {type(snake_case__ )}, but is""" f""" {type(snake_case__ )}""" ) lowerCAmelCase : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(snake_case__ ) , self.offset - 1 ) ] if len(set(snake_case__ ) ) != len(snake_case__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) lowerCAmelCase : Tuple = additional_special_tokens_extended else: lowerCAmelCase : Optional[int] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( snake_case__ , tokenizer_file=snake_case__ , pad_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , mask_token=snake_case__ , mask_token_sent=snake_case__ , offset=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase : Any = vocab_file lowerCAmelCase : Optional[int] = False if not self.vocab_file else True def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(snake_case__ ) elif token_ids_a is None: return self._special_token_mask(snake_case__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowercase__ ( self , snake_case__ , snake_case__=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
681
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCAmelCase__ = {'''configuration_swin''': ['''SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SwinConfig''', '''SwinOnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SwinForImageClassification''', '''SwinForMaskedImageModeling''', '''SwinModel''', '''SwinPreTrainedModel''', '''SwinBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSwinForImageClassification''', '''TFSwinForMaskedImageModeling''', '''TFSwinModel''', '''TFSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
1
"""simple docstring""" from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
681
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="pegasus" a : str =["past_key_values"] a : Dict ={"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=50_265 , snake_case__=1_024 , snake_case__=12 , snake_case__=4_096 , snake_case__=16 , snake_case__=12 , snake_case__=4_096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=True , snake_case__=True , snake_case__="gelu" , snake_case__=1_024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0 , snake_case__=False , snake_case__=0 , snake_case__=1 , snake_case__=1 , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = vocab_size lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : List[str] = d_model lowerCAmelCase : List[str] = encoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Dict = encoder_attention_heads lowerCAmelCase : Any = decoder_ffn_dim lowerCAmelCase : Optional[int] = decoder_layers lowerCAmelCase : Dict = decoder_attention_heads lowerCAmelCase : Dict = dropout lowerCAmelCase : Optional[Any] = attention_dropout lowerCAmelCase : str = activation_dropout lowerCAmelCase : Tuple = activation_function lowerCAmelCase : Union[str, Any] = init_std lowerCAmelCase : Optional[int] = encoder_layerdrop lowerCAmelCase : List[Any] = decoder_layerdrop lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : int = encoder_layers lowerCAmelCase : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) @property def lowercase__ ( self ): """simple docstring""" return self.encoder_attention_heads @property def lowercase__ ( self ): """simple docstring""" return self.d_model
681
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
1
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np lowerCAmelCase__ = re.compile(r'''\b(a|an|the)\b''', re.UNICODE) lowerCAmelCase__ = None def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=SCREAMING_SNAKE_CASE , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=SCREAMING_SNAKE_CASE , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Any = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase : List[str] = bool(qa["answers"]["text"] ) return qid_to_has_ans def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' def remove_articles(SCREAMING_SNAKE_CASE : Optional[Any] ): return ARTICLES_REGEX.sub(" " , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE : str ): lowerCAmelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if not s: return [] return normalize_answer(SCREAMING_SNAKE_CASE ).split() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return int(normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Dict = get_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = get_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = collections.Counter(SCREAMING_SNAKE_CASE ) & collections.Counter(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = sum(common.values() ) if len(SCREAMING_SNAKE_CASE ) == 0 or len(SCREAMING_SNAKE_CASE ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowerCAmelCase : Optional[Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = (2 * precision * recall) / (precision + recall) return fa def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : List[str] = {} lowerCAmelCase : List[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowerCAmelCase : int = qa["id"] lowerCAmelCase : Optional[Any] = [t for t in qa["answers"]["text"] if normalize_answer(SCREAMING_SNAKE_CASE )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowerCAmelCase : Tuple = [""] if qid not in preds: print(f"""Missing prediction for {qid}""" ) continue lowerCAmelCase : Optional[Any] = preds[qid] # Take max over all gold answers lowerCAmelCase : int = max(compute_exact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for a in gold_answers ) lowerCAmelCase : Union[str, Any] = max(compute_fa(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for a in gold_answers ) return exact_scores, fa_scores def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Tuple = {} for qid, s in scores.items(): lowerCAmelCase : int = na_probs[qid] > na_prob_thresh if pred_na: lowerCAmelCase : str = float(not qid_to_has_ans[qid] ) else: lowerCAmelCase : Any = s return new_scores def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any]=None ): '''simple docstring''' if not qid_list: lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for k in new_eval: lowerCAmelCase : Optional[Any] = new_eval[k] def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' plt.step(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , color="b" , alpha=0.2 , where="post" ) plt.fill_between(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(SCREAMING_SNAKE_CASE ) plt.savefig(SCREAMING_SNAKE_CASE ) plt.clf() def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None ): '''simple docstring''' lowerCAmelCase : int = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : na_probs[k] ) lowerCAmelCase : str = 0.0 lowerCAmelCase : Optional[Any] = 1.0 lowerCAmelCase : Optional[int] = 0.0 lowerCAmelCase : int = [1.0] lowerCAmelCase : int = [0.0] lowerCAmelCase : Any = 0.0 for i, qid in enumerate(SCREAMING_SNAKE_CASE ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowerCAmelCase : Optional[int] = true_pos / float(i + 1 ) lowerCAmelCase : List[Any] = true_pos / float(SCREAMING_SNAKE_CASE ) if i == len(SCREAMING_SNAKE_CASE ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(SCREAMING_SNAKE_CASE ) recalls.append(SCREAMING_SNAKE_CASE ) if out_image: plot_pr_curve(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return {"ap": 100.0 * avg_prec} def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if out_image_dir and not os.path.exists(SCREAMING_SNAKE_CASE ): os.makedirs(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowerCAmelCase : Optional[int] = make_precision_recall_eval( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , out_image=os.path.join(SCREAMING_SNAKE_CASE , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) lowerCAmelCase : int = make_precision_recall_eval( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , out_image=os.path.join(SCREAMING_SNAKE_CASE , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) lowerCAmelCase : Union[str, Any] = {k: float(SCREAMING_SNAKE_CASE ) for k, v in qid_to_has_ans.items()} lowerCAmelCase : Tuple = make_precision_recall_eval( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , out_image=os.path.join(SCREAMING_SNAKE_CASE , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pr_exact" ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pr_f1" ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "pr_oracle" ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if not qid_list: return lowerCAmelCase : Tuple = [na_probs[k] for k in qid_list] lowerCAmelCase : List[str] = np.ones_like(SCREAMING_SNAKE_CASE ) / float(len(SCREAMING_SNAKE_CASE ) ) plt.hist(SCREAMING_SNAKE_CASE , weights=SCREAMING_SNAKE_CASE , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(SCREAMING_SNAKE_CASE , f"""na_prob_hist_{name}.png""" ) ) plt.clf() def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Optional[Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowerCAmelCase : List[str] = num_no_ans lowerCAmelCase : List[str] = cur_score lowerCAmelCase : Any = 0.0 lowerCAmelCase : Optional[int] = sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : na_probs[k] ) for i, qid in enumerate(SCREAMING_SNAKE_CASE ): if qid not in scores: continue if qid_to_has_ans[qid]: lowerCAmelCase : str = scores[qid] else: if preds[qid]: lowerCAmelCase : List[str] = -1 else: lowerCAmelCase : List[Any] = 0 cur_score += diff if cur_score > best_score: lowerCAmelCase : List[str] = cur_score lowerCAmelCase : List[Any] = na_probs[qid] return 100.0 * best_score / len(SCREAMING_SNAKE_CASE ), best_thresh def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[Any] = find_best_thresh(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = find_best_thresh(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = best_exact lowerCAmelCase : Dict = exact_thresh lowerCAmelCase : Any = best_fa lowerCAmelCase : Optional[int] = fa_thresh def a__ ( ): '''simple docstring''' with open(OPTS.data_file ) as f: lowerCAmelCase : Tuple = json.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = dataset_json["data"] with open(OPTS.pred_file ) as f: lowerCAmelCase : Any = json.load(SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowerCAmelCase : Tuple = json.load(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Tuple = {k: 0.0 for k in preds} lowerCAmelCase : Union[str, Any] = make_qid_to_has_ans(SCREAMING_SNAKE_CASE ) # maps qid to True/False lowerCAmelCase : int = [k for k, v in qid_to_has_ans.items() if v] lowerCAmelCase : Dict = [k for k, v in qid_to_has_ans.items() if not v] lowerCAmelCase , lowerCAmelCase : List[Any] = get_raw_scores(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = apply_no_ans_threshold(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) lowerCAmelCase : Any = apply_no_ans_threshold(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.na_prob_thresh ) lowerCAmelCase : List[Any] = make_eval_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if has_ans_qids: lowerCAmelCase : Optional[int] = make_eval_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , qid_list=SCREAMING_SNAKE_CASE ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "HasAns" ) if no_ans_qids: lowerCAmelCase : int = make_eval_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , qid_list=SCREAMING_SNAKE_CASE ) merge_eval(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.out_image_dir ) histogram_na_prob(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: print(json.dumps(SCREAMING_SNAKE_CASE , indent=2 ) ) if __name__ == "__main__": lowerCAmelCase__ = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use('''Agg''') import matplotlib.pyplot as plt main()
681
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
1
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(SCREAMING_SNAKE_CASE ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowerCAmelCase__ = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowerCAmelCase__ = logging.WARNING def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = os.getenv("DATASETS_VERBOSITY" , SCREAMING_SNAKE_CASE ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def a__ ( ): '''simple docstring''' return __name__.split("." )[0] def a__ ( ): '''simple docstring''' return logging.getLogger(_get_library_name() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def a__ ( SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' if name is None: lowerCAmelCase : Optional[int] = _get_library_name() return logging.getLogger(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return _get_library_root_logger().getEffectiveLevel() def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _get_library_root_logger().setLevel(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' return set_verbosity(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = False def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase : str = args[0] if args else None def __iter__( self ): """simple docstring""" return iter(self._iterator ) def __getattr__( self , snake_case__ ): """simple docstring""" def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): """simple docstring""" return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return lowerCAmelCase__ = True class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __call__( self , *snake_case__ , snake_case__=False , **snake_case__ ): """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCAmelCase__ = _tqdm_cls() def a__ ( ): '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : List[str] = True def a__ ( ): '''simple docstring''' global _tqdm_active lowerCAmelCase : int = False
681
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : Any = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] lowerCAmelCase : List[Any] = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowerCAmelCase : int = "fp16" self.assertFalse(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] lowerCAmelCase : str = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] lowerCAmelCase : Dict = "fp16" self.assertTrue(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] lowerCAmelCase : str = "fp16" self.assertFalse(is_safetensors_compatible(snake_case__ , variant=snake_case__ ) )
681
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
1
"""simple docstring""" from random import randint, random def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : int = 5 , ): '''simple docstring''' lowerCAmelCase : List[str] = [[-1] * number_of_cells] # Create a highway without any car lowerCAmelCase : Dict = 0 lowerCAmelCase : Any = max(SCREAMING_SNAKE_CASE , 0 ) while i < number_of_cells: lowerCAmelCase : int = ( randint(0 , SCREAMING_SNAKE_CASE ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = 0 lowerCAmelCase : Tuple = highway_now[car_index + 1 :] for cell in range(len(SCREAMING_SNAKE_CASE ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(SCREAMING_SNAKE_CASE , -1 ) def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) # Beforce calculations, the highway is empty lowerCAmelCase : Tuple = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowerCAmelCase : Dict = min(highway_now[car_index] + 1 , SCREAMING_SNAKE_CASE ) # Number of empty cell before the next car lowerCAmelCase : Any = get_distance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) - 1 # We can't have the car causing an accident lowerCAmelCase : str = min(next_highway[car_index] , SCREAMING_SNAKE_CASE ) if random() < probability: # Randomly, a driver will slow down lowerCAmelCase : str = max(next_highway[car_index] - 1 , 0 ) return next_highway def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = len(highway[0] ) for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = update(highway[i] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [-1] * number_of_cells for car_index in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowerCAmelCase : List[str] = (car_index + speed) % number_of_cells # Commit the change of position lowerCAmelCase : Optional[Any] = speed highway.append(SCREAMING_SNAKE_CASE ) return highway if __name__ == "__main__": import doctest doctest.testmod()
681
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
1
"""simple docstring""" from collections.abc import Sequence def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] = None ): '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty" ) lowerCAmelCase : Any = nums[0] for i in range(1 , len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase : Dict = nums[i] lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE_ , ans + num , SCREAMING_SNAKE_CASE_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase__ = int(input('''Enter number of elements : ''').strip()) lowerCAmelCase__ = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = {'''vocab_file''': '''prophetnet.tokenizer'''} lowerCAmelCase__ = { '''vocab_file''': { '''microsoft/xprophetnet-large-wiki100-cased''': ( '''https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer''' ), } } lowerCAmelCase__ = { '''microsoft/xprophetnet-large-wiki100-cased''': {'''do_lower_case''': False}, } lowerCAmelCase__ = { '''microsoft/xprophetnet-large-wiki100-cased''': 512, } def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : str = collections.OrderedDict() with open(__A , "r" , encoding="utf-8" ) as reader: lowerCAmelCase : Union[str, Any] = reader.readlines() for index, token in enumerate(__A ): lowerCAmelCase : Union[str, Any] = token.rstrip("\n" ) lowerCAmelCase : Tuple = index return vocab class SCREAMING_SNAKE_CASE__ ( _snake_case ): """simple docstring""" a : Optional[int] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : List[Any] =["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__="[SEP]" , snake_case__="[SEP]" , snake_case__="[SEP]" , snake_case__="[UNK]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase__ , ) try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) lowerCAmelCase : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCAmelCase : List[str] = {"[PAD]": 0, "[CLS]": 1, "[SEP]": 2, "[UNK]": 3, "[MASK]": 4} for i in range(10 ): lowerCAmelCase : str = f"""[unused{i}]""" lowerCAmelCase : int = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCAmelCase : Union[str, Any] = 12 lowerCAmelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(lowerCAmelCase__ ) def __getstate__( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.__dict__.copy() lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = d try: import sentencepiece as spm except ImportError: logger.warning( "You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece" " pip install sentencepiece" ) raise # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase : List[Any] = {} lowerCAmelCase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return ([0] * len(lowerCAmelCase__ )) + [1] return ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Dict = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowercase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase : Any = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowercase__ ( self , snake_case__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = "".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , " " ).strip() return out_string def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : int = os.path.join( lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , "wb" ) as fi: lowerCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
701
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def a__ ( SCREAMING_SNAKE_CASE : Tuple = 8 ): '''simple docstring''' lowerCAmelCase : Tuple = ascii_letters + digits + punctuation return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' i -= len(_SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = i // 3 lowerCAmelCase : Dict = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase : List[Any] = ( chars_incl + random(_SCREAMING_SNAKE_CASE , quotient + remainder ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) + random(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Optional[int] = list(_SCREAMING_SNAKE_CASE ) shuffle(_SCREAMING_SNAKE_CASE ) return "".join(_SCREAMING_SNAKE_CASE ) # random is a generalised function for letters, characters and numbers def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' return "".join(secrets.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' pass # Put your code here... def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] = 8 ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase : List[str] = any(char in ascii_uppercase for char in password ) lowerCAmelCase : int = any(char in ascii_lowercase for char in password ) lowerCAmelCase : Tuple = any(char in digits for char in password ) lowerCAmelCase : Dict = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = int(input("Please indicate the max length of your password: " ).strip() ) lowerCAmelCase : Optional[Any] = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(_SCREAMING_SNAKE_CASE ) ) print( "Alternative Password generated:" , alternative_password_generator(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
702
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
0
"""simple docstring""" from __future__ import annotations from collections import deque class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(A_ ) self.set_fail_transitions() def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = 0 for character in keyword: lowerCAmelCase : Optional[int] = self.find_next_state(A_ , A_ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowerCAmelCase : List[str] = len(self.adlist ) - 1 else: lowerCAmelCase : Any = next_state self.adlist[current_state]["output"].append(A_ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = deque() for node in self.adlist[0]["next_states"]: q.append(A_ ) lowerCAmelCase : List[str] = 0 while q: lowerCAmelCase : List[Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(A_ ) lowerCAmelCase : Union[str, Any] = self.adlist[r]["fail_state"] while ( self.find_next_state(A_ , self.adlist[child]["value"] ) is None and state != 0 ): lowerCAmelCase : Any = self.adlist[state]["fail_state"] lowerCAmelCase : List[str] = self.find_next_state( A_ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: lowerCAmelCase : int = 0 lowerCAmelCase : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = {} # returns a dict with keywords and list of its occurrences lowerCAmelCase : str = 0 for i in range(len(A_ ) ): while ( self.find_next_state(A_ , string[i] ) is None and current_state != 0 ): lowerCAmelCase : Optional[Any] = self.adlist[current_state]["fail_state"] lowerCAmelCase : List[str] = self.find_next_state(A_ , string[i] ) if next_state is None: lowerCAmelCase : Union[str, Any] = 0 else: lowerCAmelCase : str = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowerCAmelCase : List[Any] = [] result[key].append(i - len(A_ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
703
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
0
"""simple docstring""" lowerCAmelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): lowerCAmelCase : Union[str, Any] = f"""a bytes-like object is required, not \'{data.__class__.__name__}\'""" raise TypeError(_lowercase ) lowerCAmelCase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) lowerCAmelCase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later lowerCAmelCase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: lowerCAmelCase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): lowerCAmelCase : int = ( 'argument should be a bytes-like object or ASCII string, ' f"""not \'{encoded_data.__class__.__name__}\'""" ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: lowerCAmelCase : Optional[int] = encoded_data.decode("utf-8" ) except UnicodeDecodeError: raise ValueError("base64 encoded data should only contain ASCII characters" ) lowerCAmelCase : Optional[int] = encoded_data.count("=" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one lowerCAmelCase : str = encoded_data[:-padding] lowerCAmelCase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: lowerCAmelCase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) lowerCAmelCase : List[str] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def a__ ( SCREAMING_SNAKE_CASE : int = 2_0_0_0_0_0_0 ): '''simple docstring''' lowerCAmelCase : list[int] = [0] lowerCAmelCase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase : int = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase : int = 0 # an estimate of b, using the quadratic formula lowerCAmelCase : float # the largest integer less than b_estimate lowerCAmelCase : int # the largest integer less than b_estimate lowerCAmelCase : int # the triangle number corresponding to b_floor lowerCAmelCase : int # the triangle number corresponding to b_ceil lowerCAmelCase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase : int = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase : Optional[int] = floor(_A ) lowerCAmelCase : Tuple = ceil(_A ) lowerCAmelCase : str = triangle_numbers[b_floor] lowerCAmelCase : List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase : List[str] = triangle_b_first_guess * triangle_a lowerCAmelCase : Any = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase : List[Any] = triangle_b_second_guess * triangle_a lowerCAmelCase : Union[str, Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
705
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
0
"""simple docstring""" lowerCAmelCase__ = {'''a''': ['''c''', '''b'''], '''b''': ['''d''', '''e'''], '''c''': [], '''d''': [], '''e''': []} lowerCAmelCase__ = ['''a''', '''b''', '''c''', '''d''', '''e'''] def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Optional[int] = start # add current to visited visited.append(lowerCamelCase_ ) lowerCAmelCase : Optional[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCAmelCase : Optional[int] = topological_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # if all neighbors visited add current to sort sort.append(lowerCamelCase_ ) # if all vertices haven't been visited select a new one to visit if len(lowerCamelCase_ ) != len(lowerCamelCase_ ): for vertice in vertices: if vertice not in visited: lowerCAmelCase : Optional[int] = topological_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # return sort return sort if __name__ == "__main__": lowerCAmelCase__ = topological_sort('''a''', [], []) print(sort)
706
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__ = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } lowerCAmelCase__ = { "xlnet-base-cased": None, "xlnet-large-cased": None, } lowerCAmelCase__ = "▁" # Segments (not really needed) lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 lowerCAmelCase__ = 3 lowerCAmelCase__ = 4 class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase_ ): """simple docstring""" a : List[str] =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Union[str, Any] ='left' a : Dict =XLNetTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<sep>" , snake_case__="<pad>" , snake_case__="<cls>" , snake_case__="<mask>" , snake_case__=["<eop>", "<eod>"] , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Dict = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( vocab_file=_lowercase , tokenizer_file=_lowercase , do_lower_case=_lowercase , remove_space=_lowercase , keep_accents=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , pad_token=_lowercase , cls_token=_lowercase , mask_token=_lowercase , additional_special_tokens=_lowercase , **_lowercase , ) lowerCAmelCase : Optional[int] = 3 lowerCAmelCase : List[str] = do_lower_case lowerCAmelCase : Tuple = remove_space lowerCAmelCase : List[Any] = keep_accents lowerCAmelCase : int = vocab_file lowerCAmelCase : List[Any] = False if not self.vocab_file else True def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : str = [self.sep_token_id] lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : int = [self.sep_token_id] lowerCAmelCase : str = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Any = os.path.join( _lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ): copyfile(self.vocab_file , _lowercase ) return (out_vocab_file,)
707
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
0
def a__ ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int = 0 , SCREAMING_SNAKE_CASE : int = 0 ): '''simple docstring''' lowerCAmelCase : List[Any] = right or len(__A ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__A , __A , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0
"""simple docstring""" from queue import PriorityQueue from typing import Any import numpy as np def a__ ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : set , SCREAMING_SNAKE_CASE : set , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : PriorityQueue , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue lowerCAmelCase : Optional[Any] = cst_fwd.get(__lowerCAmelCase , np.inf ) lowerCAmelCase : int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) lowerCAmelCase : Dict = new_cost_f lowerCAmelCase : List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: lowerCAmelCase : Any = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' lowerCAmelCase : Any = -1 lowerCAmelCase : str = set() lowerCAmelCase : str = set() lowerCAmelCase : str = {source: 0} lowerCAmelCase : List[Any] = {destination: 0} lowerCAmelCase : Dict = {source: None} lowerCAmelCase : Optional[Any] = {destination: None} lowerCAmelCase : int = PriorityQueue() lowerCAmelCase : Tuple = PriorityQueue() lowerCAmelCase : List[str] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): lowerCAmelCase , lowerCAmelCase : int = queue_forward.get() visited_forward.add(__lowerCAmelCase ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = queue_backward.get() visited_backward.add(__lowerCAmelCase ) lowerCAmelCase : Optional[int] = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) lowerCAmelCase : Tuple = pass_and_relaxation( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: lowerCAmelCase : Dict = shortest_distance return shortest_path_distance lowerCAmelCase__ = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } lowerCAmelCase__ = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Optional[Any] = credit_card_number lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Optional[Any] = len(_lowerCAmelCase ) - 2 for i in range(_lowerCAmelCase , -1 , -2 ): # double the value of every second digit lowerCAmelCase : str = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 lowerCAmelCase : Optional[int] = cc_number[:i] + str(_lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Any = f"""{credit_card_number} is an invalid credit card number because""" if not credit_card_number.isdigit(): print(f"""{error_message} it has nonnumerical characters.""" ) return False if not 1_3 <= len(_lowerCAmelCase ) <= 1_6: print(f"""{error_message} of its length.""" ) return False if not validate_initial_digits(_lowerCAmelCase ): print(f"""{error_message} of its first two digits.""" ) return False if not luhn_validation(_lowerCAmelCase ): print(f"""{error_message} it fails the Luhn check.""" ) return False print(f"""{credit_card_number} is a valid credit card number.""" ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number('''4111111111111111''') validate_credit_card_number('''32323''')
711
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
from functools import lru_cache def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : int = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__lowerCAmelCase ) if n > 1: factors.add(__lowerCAmelCase ) return factors @lru_cache def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return len(unique_prime_factors(__lowerCAmelCase ) ) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' return len(set(__lowerCAmelCase ) ) in (0, 1) def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : List[Any] = 2 while True: # Increment each value of a generated range lowerCAmelCase : Tuple = [base + i for i in range(__lowerCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. lowerCAmelCase : str = [upf_len(__lowerCAmelCase ) for x in group] checker.append(__lowerCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(__lowerCAmelCase ): return group # Increment our base variable by 1 base += 1 def a__ ( SCREAMING_SNAKE_CASE : Tuple = 4 ): '''simple docstring''' lowerCAmelCase : Dict = run(__lowerCAmelCase ) return results[0] if len(__lowerCAmelCase ) else None if __name__ == "__main__": print(solution())
712
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
0
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Any =MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = ObjectDetectionPipeline(model=snake_case__ , image_processor=snake_case__ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(snake_case__ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case__ , { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } , ) import datasets lowerCAmelCase : Union[str, Any] = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowerCAmelCase : int = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowerCAmelCase : Tuple = object_detector(snake_case__ , threshold=0.0 ) self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case__ ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case__ , { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "hf-internal-testing/tiny-detr-mobilenetsv3" lowerCAmelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = AutoFeatureExtractor.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = ObjectDetectionPipeline(model=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) lowerCAmelCase : str = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = "facebook/detr-resnet-50" lowerCAmelCase : Tuple = AutoModelForObjectDetection.from_pretrained(snake_case__ ) lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(snake_case__ ) lowerCAmelCase : Union[str, Any] = ObjectDetectionPipeline(model=snake_case__ , feature_extractor=snake_case__ ) lowerCAmelCase : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "facebook/detr-resnet-50" lowerCAmelCase : Tuple = pipeline("object-detection" , model=snake_case__ ) lowerCAmelCase : Dict = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase : Optional[int] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = 0.9985 lowerCAmelCase : Any = "facebook/detr-resnet-50" lowerCAmelCase : Optional[int] = pipeline("object-detection" , model=snake_case__ ) lowerCAmelCase : Optional[int] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=snake_case__ ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = "Narsil/layoutlmv3-finetuned-funsd" lowerCAmelCase : Union[str, Any] = 0.9993 lowerCAmelCase : Optional[Any] = pipeline("object-detection" , model=snake_case__ , threshold=snake_case__ ) lowerCAmelCase : Union[str, Any] = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
713
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
0
"""simple docstring""" import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path / "cache" lowerCAmelCase : Union[str, Any] = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : List[str] = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : int = {"text": "string"} lowerCAmelCase : int = features.copy() if features else default_expected_features lowerCAmelCase : str = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Union[str, Any] = TextDatasetReader(lowerCAmelCase__ , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tmp_path / "cache" lowerCAmelCase : Optional[int] = {"text": "string"} lowerCAmelCase : Any = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ , split=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase : Any = text_path elif issubclass(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase : Optional[int] = [text_path] lowerCAmelCase : Tuple = tmp_path / "cache" lowerCAmelCase : str = {"text": "string"} lowerCAmelCase : List[Any] = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_dataset(lowerCAmelCase__ , lowerCAmelCase__ ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any]=("train",) ): '''simple docstring''' assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for split in splits: lowerCAmelCase : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = tmp_path / "cache" lowerCAmelCase : Any = {"text": "string"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowerCAmelCase : List[Any] = TextDatasetReader({"train": text_path} , cache_dir=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"text": "string"}, {"text": "int32"}, {"text": "float32"}, ] , ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Optional[Any] = tmp_path / "cache" # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" lowerCAmelCase : Dict = {"text": "string"} lowerCAmelCase : Optional[Any] = features.copy() if features else default_expected_features lowerCAmelCase : Optional[int] = ( Features({feature: Value(lowerCAmelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowerCAmelCase : Dict = TextDatasetReader({"train": text_path} , features=lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if split: lowerCAmelCase : List[Any] = {split: text_path} else: lowerCAmelCase : Tuple = "train" lowerCAmelCase : Optional[Any] = {"train": text_path, "test": text_path} lowerCAmelCase : int = tmp_path / "cache" lowerCAmelCase : int = {"text": "string"} lowerCAmelCase : Dict = TextDatasetReader(lowerCAmelCase__ , cache_dir=lowerCAmelCase__ ).read() _check_text_datasetdict(lowerCAmelCase__ , lowerCAmelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
714
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
0
"""simple docstring""" import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=64 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=2 , snake_case__=2 , snake_case__=2 , snake_case__=2 , snake_case__=4 , snake_case__=1 , ): """simple docstring""" lowerCAmelCase : List[Any] = parent lowerCAmelCase : Tuple = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : List[str] = is_training lowerCAmelCase : Union[str, Any] = use_input_mask lowerCAmelCase : Tuple = use_token_type_ids lowerCAmelCase : Optional[Any] = use_labels lowerCAmelCase : str = vocab_size lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : Dict = intermediate_size lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : List[Any] = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : Union[str, Any] = type_vocab_size lowerCAmelCase : Optional[Any] = type_sequence_label_size lowerCAmelCase : Dict = initializer_range lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : List[str] = num_choices lowerCAmelCase : Optional[Any] = scope lowerCAmelCase : int = q_groups lowerCAmelCase : Union[str, Any] = k_groups lowerCAmelCase : List[str] = v_groups lowerCAmelCase : Union[str, Any] = post_attention_groups lowerCAmelCase : List[Any] = intermediate_groups lowerCAmelCase : int = output_groups def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : int = None if self.use_input_mask: lowerCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : int = None lowerCAmelCase : Dict = None lowerCAmelCase : List[Any] = None if self.use_labels: lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Tuple = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self ): """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = SqueezeBertModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase : Tuple = model(_UpperCamelCase , _UpperCamelCase ) lowerCAmelCase : Dict = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = SqueezeBertForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase : List[str] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : int = SqueezeBertForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.num_labels lowerCAmelCase : Optional[int] = SqueezeBertForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase : Optional[int] = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : int = self.num_labels lowerCAmelCase : str = SqueezeBertForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase : str = model(_UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.num_choices lowerCAmelCase : Tuple = SqueezeBertForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() lowerCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase : Optional[int] = model( _UpperCamelCase , attention_mask=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() (lowerCAmelCase) : List[str] = config_and_inputs lowerCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" a : str =( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) a : Union[str, Any] =( { "feature-extraction": SqueezeBertModel, "fill-mask": SqueezeBertForMaskedLM, "question-answering": SqueezeBertForQuestionAnswering, "text-classification": SqueezeBertForSequenceClassification, "token-classification": SqueezeBertForTokenClassification, "zero-shot": SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) a : Any =False a : Tuple =True a : int =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = SqueezeBertModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=_UpperCamelCase , dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*_UpperCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*_UpperCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*_UpperCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*_UpperCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*_UpperCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*_UpperCamelCase ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Tuple = SqueezeBertModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_sentencepiece @require_tokenizers @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" ) lowerCAmelCase : Any = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] ) lowerCAmelCase : int = model(_UpperCamelCase )[0] lowerCAmelCase : List[str] = torch.Size((1, 3) ) self.assertEqual(output.shape , _UpperCamelCase ) lowerCAmelCase : Tuple = torch.tensor([[0.6401, -0.0349, -0.6041]] ) self.assertTrue(torch.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-4 ) )
715
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
0
"""simple docstring""" from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase__ = ['''text''', '''image''', '''audio'''] def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : Dict = [] for input_type in input_types: if input_type == "text": inputs.append("Text input" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(_lowerCamelCase , _lowerCamelCase ): inputs.append(create_inputs(_lowerCamelCase ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Any = [] for output in outputs: if isinstance(_lowerCamelCase , (str, AgentText) ): output_types.append("text" ) elif isinstance(_lowerCamelCase , (Image.Image, AgentImage) ): output_types.append("image" ) elif isinstance(_lowerCamelCase , (torch.Tensor, AgentAudio) ): output_types.append("audio" ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class SCREAMING_SNAKE_CASE__ : """simple docstring""" def lowercase__ ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) lowerCAmelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input , _A ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) lowerCAmelCase : Tuple = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = create_inputs(self.tool.inputs ) lowerCAmelCase : str = self.tool(*_A ) # There is a single output if len(self.tool.outputs ) == 1: lowerCAmelCase : Union[str, Any] = [outputs] self.assertListEqual(output_types(_A ) , self.tool.outputs ) def lowercase__ ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = create_inputs(self.tool.inputs ) lowerCAmelCase : List[Any] = self.tool(*_A ) if not isinstance(_A , _A ): lowerCAmelCase : List[Any] = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) ) for output, output_type in zip(_A , self.tool.outputs ): lowerCAmelCase : Dict = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_A , _A ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = create_inputs(self.tool.inputs ) lowerCAmelCase : int = [] for _input, input_type in zip(_A , self.tool.inputs ): if isinstance(_A , _A ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error lowerCAmelCase : Optional[int] = self.tool(*_A ) if not isinstance(_A , _A ): lowerCAmelCase : Dict = [outputs] self.assertEqual(len(_A ) , len(self.tool.outputs ) )
716
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
0
import torch from diffusers import DDPMParallelScheduler from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( _A ): """simple docstring""" a : Optional[Any] =(DDPMParallelScheduler,) def lowercase__ ( self , **snake_case__ ): """simple docstring""" lowerCAmelCase : int = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def lowercase__ ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : Dict = len(__lowerCamelCase ) lowerCAmelCase : List[Any] = self.dummy_model() lowerCAmelCase : Optional[int] = self.dummy_sample_deter lowerCAmelCase : List[Any] = self.dummy_sample_deter + 0.1 lowerCAmelCase : Dict = self.dummy_sample_deter - 0.1 lowerCAmelCase : Optional[int] = samplea.shape[0] lowerCAmelCase : List[str] = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase : int = torch.arange(__lowerCamelCase )[0:3, None].repeat(1 , __lowerCamelCase ) lowerCAmelCase : Optional[int] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase : List[str] = scheduler.batch_step_no_noise(__lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) ) lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 1153.1833 ) < 1e-2 assert abs(result_mean.item() - 0.5005 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.scheduler_classes[0] lowerCAmelCase : Union[str, Any] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : Any = len(__lowerCamelCase ) lowerCAmelCase : Dict = self.dummy_model() lowerCAmelCase : Optional[int] = self.dummy_sample_deter lowerCAmelCase : Dict = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual lowerCAmelCase : List[str] = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : Tuple = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample lowerCAmelCase : Union[str, Any] = pred_prev_sample lowerCAmelCase : int = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCAmelCase : Optional[int] = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : Union[str, Any] = len(__lowerCamelCase ) lowerCAmelCase : str = self.dummy_model() lowerCAmelCase : Tuple = self.dummy_sample_deter lowerCAmelCase : int = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual lowerCAmelCase : int = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase : List[Any] = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample lowerCAmelCase : List[str] = pred_prev_sample lowerCAmelCase : Optional[Any] = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCAmelCase : Optional[int] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : Dict = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) lowerCAmelCase : Optional[Any] = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: lowerCAmelCase : List[Any] = -1 else: lowerCAmelCase : Optional[int] = timesteps[i + 1] lowerCAmelCase : Optional[Any] = scheduler.previous_timestep(__lowerCamelCase ) lowerCAmelCase : Optional[int] = prev_t.item() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : str = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : Dict = [100, 87, 50, 51, 0] with self.assertRaises(__lowerCamelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config() lowerCAmelCase : Tuple = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : Any = [100, 87, 50, 1, 0] lowerCAmelCase : Optional[Any] = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.scheduler_classes[0] lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : int = scheduler_class(**__lowerCamelCase ) lowerCAmelCase : List[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__lowerCamelCase )
717
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
0
"""simple docstring""" from importlib import import_module from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : str = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase_ , getattr(lowerCamelCase_ , lowerCamelCase_ ) ) lowerCAmelCase : Tuple = module._original_module if isinstance(lowerCamelCase_ , _PatchedModuleObj ) else module class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : str =[] def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[int] = obj lowerCAmelCase : Optional[Any] = target lowerCAmelCase : List[str] = new lowerCAmelCase : str = target.split("." )[0] lowerCAmelCase : Optional[int] = {} lowerCAmelCase : Any = attrs or [] def __enter__( self ): """simple docstring""" lowerCAmelCase : Any = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase_ ) ): try: lowerCAmelCase : Any = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): lowerCAmelCase : List[str] = getattr(self.obj , lowerCamelCase_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase_ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): lowerCAmelCase : List[Any] = obj_attr # patch at top level setattr(self.obj , lowerCamelCase_ , _PatchedModuleObj(lowerCamelCase_ , attrs=self.attrs ) ) lowerCAmelCase : Union[str, Any] = getattr(self.obj , lowerCamelCase_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase_ , lowerCamelCase_ , _PatchedModuleObj(getattr(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , attrs=self.attrs ) ) lowerCAmelCase : Union[str, Any] = getattr(lowerCamelCase_ , lowerCamelCase_ ) # finally set the target attribute setattr(lowerCamelCase_ , lowerCamelCase_ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: lowerCAmelCase : Any = getattr(import_module(".".join(lowerCamelCase_ ) ) , lowerCamelCase_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase_ ) is attr_value: lowerCAmelCase : Any = getattr(self.obj , lowerCamelCase_ ) setattr(self.obj , lowerCamelCase_ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" lowerCAmelCase : Union[str, Any] = globals()['''__builtins__'''][target_attr] setattr(self.obj , lowerCamelCase_ , self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self , *snake_case__ ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , lowerCamelCase_ , self.original.pop(lowerCamelCase_ ) ) def lowercase__ ( self ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def lowercase__ ( self ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
718
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
0
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {name: getattr(transformers, name + '''Fast''') for name in SLOW_TO_FAST_CONVERTERS} def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCAmelCase : str = TOKENIZER_CLASSES else: lowerCAmelCase : str = {tokenizer_name: getattr(_A , tokenizer_name + "Fast" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCAmelCase : List[Any] = TOKENIZER_CLASSES[tokenizer_name] lowerCAmelCase : Optional[int] = True if checkpoint_name is None: lowerCAmelCase : Any = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCAmelCase : str = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCAmelCase : List[Any] = tokenizer_class.from_pretrained(_A , force_download=_A ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCAmelCase , lowerCAmelCase : List[str] = checkpoint.split("/" ) lowerCAmelCase : Dict = os.path.join(_A , _A ) elif add_prefix: lowerCAmelCase : List[str] = checkpoint lowerCAmelCase : Optional[Any] = dump_path else: lowerCAmelCase : List[Any] = None lowerCAmelCase : Union[str, Any] = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCAmelCase : Dict = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCAmelCase : Any = file_path.split(_A )[-1][0] if next_char == "/": lowerCAmelCase : int = os.path.join(_A , _A ) lowerCAmelCase : List[str] = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCAmelCase : Optional[int] = tokenizer.save_pretrained( _A , legacy_format=_A , filename_prefix=_A ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(_A ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output generated fast tokenizer files.''' ) parser.add_argument( '''--tokenizer_name''', default=None, type=str, help=( F"Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will " '''download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--checkpoint_name''', default=None, type=str, help='''Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.''', ) parser.add_argument( '''--force_download''', action='''store_true''', help='''Re-download checkpoints.''', ) lowerCAmelCase__ = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
719
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) lowerCAmelCase : List[Any] = str(bin(SCREAMING_SNAKE_CASE ) ) binary_number += "0" * shift_amount return binary_number def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) lowerCAmelCase : Union[str, Any] = str(bin(SCREAMING_SNAKE_CASE ) )[2:] if shift_amount >= len(SCREAMING_SNAKE_CASE ): return "0b0" lowerCAmelCase : Optional[Any] = binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount] return "0b" + shifted_binary_number def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if number >= 0: # Get binary representation of positive number lowerCAmelCase : List[str] = "0" + str(bin(SCREAMING_SNAKE_CASE ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number lowerCAmelCase : List[Any] = len(bin(SCREAMING_SNAKE_CASE )[3:] ) # Find 2's complement of number lowerCAmelCase : Dict = bin(abs(SCREAMING_SNAKE_CASE ) - (1 << binary_number_length) )[3:] lowerCAmelCase : Optional[Any] = ( "1" + "0" * (binary_number_length - len(SCREAMING_SNAKE_CASE )) + binary_number ) if shift_amount >= len(SCREAMING_SNAKE_CASE ): return "0b" + binary_number[0] * len(SCREAMING_SNAKE_CASE ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(SCREAMING_SNAKE_CASE ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
0
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" a : Tuple =42 class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" @register_to_config def __init__( self , snake_case__ = 32 , snake_case__ = 64 , snake_case__ = 20 , snake_case__ = 768 , snake_case__=77 , snake_case__=4 , snake_case__ = 0.0 , snake_case__ = "silu" , snake_case__ = None , snake_case__ = None , snake_case__ = "linear" , snake_case__ = "prd" , snake_case__ = None , snake_case__ = None , snake_case__ = None , ): """simple docstring""" super().__init__() lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : str = attention_head_dim lowerCAmelCase : Optional[Any] = num_attention_heads * attention_head_dim lowerCAmelCase : List[str] = additional_embeddings lowerCAmelCase : Any = time_embed_dim or inner_dim lowerCAmelCase : Any = embedding_proj_dim or embedding_dim lowerCAmelCase : List[str] = clip_embed_dim or embedding_dim lowerCAmelCase : int = Timesteps(_lowercase , _lowercase , 0 ) lowerCAmelCase : Dict = TimestepEmbedding(_lowercase , _lowercase , out_dim=_lowercase , act_fn=_lowercase ) lowerCAmelCase : Union[str, Any] = nn.Linear(_lowercase , _lowercase ) if embedding_proj_norm_type is None: lowerCAmelCase : List[str] = None elif embedding_proj_norm_type == "layer": lowerCAmelCase : Dict = nn.LayerNorm(_lowercase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) lowerCAmelCase : Any = nn.Linear(_lowercase , _lowercase ) if encoder_hid_proj_type is None: lowerCAmelCase : str = None elif encoder_hid_proj_type == "linear": lowerCAmelCase : List[str] = nn.Linear(_lowercase , _lowercase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) lowerCAmelCase : Any = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _lowercase ) ) if added_emb_type == "prd": lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 , 1 , _lowercase ) ) elif added_emb_type is None: lowerCAmelCase : int = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.""" ) lowerCAmelCase : Tuple = nn.ModuleList( [ BasicTransformerBlock( _lowercase , _lowercase , _lowercase , dropout=_lowercase , activation_fn="gelu" , attention_bias=_lowercase , ) for d in range(_lowercase ) ] ) if norm_in_type == "layer": lowerCAmelCase : Optional[Any] = nn.LayerNorm(_lowercase ) elif norm_in_type is None: lowerCAmelCase : List[str] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) lowerCAmelCase : int = nn.LayerNorm(_lowercase ) lowerCAmelCase : str = nn.Linear(_lowercase , _lowercase ) lowerCAmelCase : Optional[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) lowerCAmelCase : Optional[int] = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , _lowercase , persistent=_lowercase ) lowerCAmelCase : Any = nn.Parameter(torch.zeros(1 , _lowercase ) ) lowerCAmelCase : Dict = nn.Parameter(torch.zeros(1 , _lowercase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = {} def fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ): if hasattr(_lowercase , "set_processor" ): lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , _lowercase , _lowercase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_lowercase , _lowercase , _lowercase ) return processors def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = len(self.attn_processors.keys() ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(_lowercase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ): if hasattr(_lowercase , "set_processor" ): if not isinstance(_lowercase , _lowercase ): module.set_processor(_lowercase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , _lowercase , _lowercase ) for name, module in self.named_children(): fn_recursive_attn_processor(_lowercase , _lowercase , _lowercase ) def lowercase__ ( self ): """simple docstring""" self.set_attn_processor(AttnProcessor() ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Tuple = hidden_states.shape[0] lowerCAmelCase : List[Any] = timestep if not torch.is_tensor(_lowercase ): lowerCAmelCase : Optional[Any] = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_lowercase ) and len(timesteps.shape ) == 0: lowerCAmelCase : str = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCAmelCase : Optional[Any] = timesteps * torch.ones(_lowercase , dtype=timesteps.dtype , device=timesteps.device ) lowerCAmelCase : Tuple = self.time_proj(_lowercase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCAmelCase : List[Any] = timesteps_projected.to(dtype=self.dtype ) lowerCAmelCase : Optional[Any] = self.time_embedding(_lowercase ) if self.embedding_proj_norm is not None: lowerCAmelCase : Optional[Any] = self.embedding_proj_norm(_lowercase ) lowerCAmelCase : List[Any] = self.embedding_proj(_lowercase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCAmelCase : List[Any] = self.encoder_hidden_states_proj(_lowercase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) lowerCAmelCase : Dict = self.proj_in(_lowercase ) lowerCAmelCase : str = self.positional_embedding.to(hidden_states.dtype ) lowerCAmelCase : Any = [] lowerCAmelCase : Optional[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(_lowercase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCAmelCase : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCAmelCase : Dict = hidden_states[:, None, :] lowerCAmelCase : List[str] = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCAmelCase : Optional[int] = self.prd_embedding.to(hidden_states.dtype ).expand(_lowercase , -1 , -1 ) additional_embeds.append(_lowercase ) lowerCAmelCase : List[Any] = torch.cat( _lowercase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCAmelCase : Optional[int] = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCAmelCase : List[Any] = F.pad( _lowercase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCAmelCase : int = hidden_states + positional_embeddings if attention_mask is not None: lowerCAmelCase : Union[str, Any] = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 lowerCAmelCase : Dict = F.pad(_lowercase , (0, self.additional_embeddings) , value=0.0 ) lowerCAmelCase : List[Any] = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCAmelCase : int = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCAmelCase : List[str] = self.norm_in(_lowercase ) for block in self.transformer_blocks: lowerCAmelCase : Optional[Any] = block(_lowercase , attention_mask=_lowercase ) lowerCAmelCase : int = self.norm_out(_lowercase ) if self.prd_embedding is not None: lowerCAmelCase : Dict = hidden_states[:, -1] else: lowerCAmelCase : Tuple = hidden_states[:, additional_embeddings_len:] lowerCAmelCase : List[Any] = self.proj_to_clip_embeddings(_lowercase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_lowercase ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
"""simple docstring""" from jiwer import compute_measures import datasets lowerCAmelCase__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase__ = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCAmelCase__ = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def lowercase__ ( self , snake_case__=None , snake_case__=None , snake_case__=False ): """simple docstring""" if concatenate_texts: return compute_measures(A_ , A_ )["wer"] else: lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 for prediction, reference in zip(A_ , A_ ): lowerCAmelCase : Optional[Any] = compute_measures(A_ , A_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(__SCREAMING_SNAKE_CASE ) == len(__SCREAMING_SNAKE_CASE ), f"""{len(__SCREAMING_SNAKE_CASE )} != {len(__SCREAMING_SNAKE_CASE )}""" dest_layers.load_state_dict(layers_to_copy.state_dict() ) lowerCAmelCase__ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } lowerCAmelCase__ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' try: lowerCAmelCase : Tuple = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f"""no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first""" f""" {n_student}""" ) return list(range(__SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if n_student > n_teacher: raise ValueError(f"""Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}""" ) elif n_teacher == n_student: return list(range(__SCREAMING_SNAKE_CASE ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] = "student" , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : Optional[Any] = None , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Optional[int]=None , **SCREAMING_SNAKE_CASE : Tuple , ): '''simple docstring''' lowerCAmelCase : str = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ).save_pretrained(__SCREAMING_SNAKE_CASE ) # purely for convenience lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(__SCREAMING_SNAKE_CASE ).eval() else: assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ), f"""teacher must be a model or string got type {type(__SCREAMING_SNAKE_CASE )}""" lowerCAmelCase : int = teacher.config.to_diff_dict() try: lowerCAmelCase , lowerCAmelCase : int = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: lowerCAmelCase : Any = teacher_e if d is None: lowerCAmelCase : str = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): lowerCAmelCase , lowerCAmelCase : List[str] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: lowerCAmelCase , lowerCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: lowerCAmelCase : str = teacher_e if d is None: lowerCAmelCase : Optional[int] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(__SCREAMING_SNAKE_CASE ) # Copy weights lowerCAmelCase : Any = teacher.config_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = AutoModelForSeqaSeqLM.from_config(__SCREAMING_SNAKE_CASE ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. lowerCAmelCase : List[Any] = student.load_state_dict(teacher.state_dict() , strict=__SCREAMING_SNAKE_CASE ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save lowerCAmelCase , lowerCAmelCase : Tuple = list(range(__SCREAMING_SNAKE_CASE ) ), list(range(__SCREAMING_SNAKE_CASE ) ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to""" f""" {save_path}""" ) student.save_pretrained(__SCREAMING_SNAKE_CASE ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: lowerCAmelCase : Any = pick_layers_to_copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if d_layers_to_copy is None: lowerCAmelCase : Union[str, Any] = pick_layers_to_copy(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) try: if hasattr( __SCREAMING_SNAKE_CASE , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , __SCREAMING_SNAKE_CASE ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , __SCREAMING_SNAKE_CASE ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , __SCREAMING_SNAKE_CASE ) copy_layers(teacher.decoder.block , student.decoder.block , __SCREAMING_SNAKE_CASE ) logger.info( f"""Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}""" ) lowerCAmelCase : Tuple = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(__SCREAMING_SNAKE_CASE ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
701
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
0
"""simple docstring""" from __future__ import annotations from cmath import sqrt def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if a == 0: raise ValueError("Coefficient \'a\' must not be zero." ) lowerCAmelCase : Dict = b * b - 4 * a * c lowerCAmelCase : Optional[Any] = (-b + sqrt(SCREAMING_SNAKE_CASE )) / (2 * a) lowerCAmelCase : Union[str, Any] = (-b - sqrt(SCREAMING_SNAKE_CASE )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def a__ ( ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : int = quadratic_roots(a=5 , b=6 , c=1 ) print(f"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
702
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
0
"""simple docstring""" import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__A , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__A , "num_attention_heads" ) ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=64 , snake_case__=3 , snake_case__=3 , snake_case__=2 , snake_case__=1 , snake_case__=16 , snake_case__=[128, 256, 384] , snake_case__=[4, 6, 8] , snake_case__=[2, 3, 4] , snake_case__=[16, 16, 16] , snake_case__=0 , snake_case__=[2, 2, 2] , snake_case__=[2, 2, 2] , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=2 , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : List[Any] = image_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : int = kernel_size lowerCAmelCase : Dict = stride lowerCAmelCase : Union[str, Any] = padding lowerCAmelCase : int = hidden_sizes lowerCAmelCase : List[str] = num_attention_heads lowerCAmelCase : int = depths lowerCAmelCase : Optional[Any] = key_dim lowerCAmelCase : Dict = drop_path_rate lowerCAmelCase : Union[str, Any] = patch_size lowerCAmelCase : str = attention_ratio lowerCAmelCase : Union[str, Any] = mlp_ratio lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[Any] = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : Dict = use_labels lowerCAmelCase : List[Any] = num_labels lowerCAmelCase : Dict = initializer_range def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Tuple = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Dict = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = LevitModel(config=__A ) model.to(__A ) model.eval() lowerCAmelCase : Optional[int] = model(__A ) lowerCAmelCase : Optional[int] = (self.image_size, self.image_size) lowerCAmelCase : Any = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase : List[str] = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) lowerCAmelCase : str = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.num_labels lowerCAmelCase : Optional[Any] = LevitForImageClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase : Dict = model(__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.prepare_config_and_inputs() lowerCAmelCase : Dict = config_and_inputs lowerCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a : List[Any] =( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a : int =( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a : Optional[int] =False a : Any =False a : Dict =False a : Dict =False a : Optional[int] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = LevitModelTester(self ) lowerCAmelCase : Optional[Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Levit does not output attentions" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(__A ) lowerCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , __A ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(__A ) model.to(__A ) model.eval() with torch.no_grad(): lowerCAmelCase : List[Any] = model(**self._prepare_for_class(__A , __A ) ) lowerCAmelCase : Optional[Any] = outputs.hidden_states lowerCAmelCase : int = len(self.model_tester.depths ) + 1 self.assertEqual(len(__A ) , __A ) lowerCAmelCase : Dict = (self.model_tester.image_size, self.model_tester.image_size) lowerCAmelCase : str = image_size[0], image_size[1] for _ in range(4 ): lowerCAmelCase : Dict = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) lowerCAmelCase : Union[str, Any] = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = True check_hidden_states_output(__A , __A , __A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(__A , __A , __A ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" lowerCAmelCase : Optional[Any] = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A ) def lowercase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Union[str, Any] = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__A ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue lowerCAmelCase : List[str] = model_class(__A ) model.to(__A ) model.train() lowerCAmelCase : Dict = self._prepare_for_class(__A , __A , return_labels=__A ) lowerCAmelCase : Tuple = model(**__A ).loss loss.backward() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase : str = False lowerCAmelCase : List[str] = True for model_class in self.all_model_classes: if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue lowerCAmelCase : Union[str, Any] = model_class(__A ) model.gradient_checkpointing_enable() model.to(__A ) model.train() lowerCAmelCase : int = self._prepare_for_class(__A , __A , return_labels=__A ) lowerCAmelCase : Tuple = model(**__A ).loss loss.backward() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Tuple = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__A ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): lowerCAmelCase : Optional[Any] = problem_type["title"] lowerCAmelCase : str = problem_type["num_labels"] lowerCAmelCase : int = model_class(__A ) model.to(__A ) model.train() lowerCAmelCase : Optional[int] = self._prepare_for_class(__A , __A , return_labels=__A ) if problem_type["num_labels"] > 1: lowerCAmelCase : Optional[int] = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) lowerCAmelCase : List[Any] = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__A ) as warning_list: lowerCAmelCase : List[str] = model(**__A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase__ ( self ): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = LevitModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __A ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : List[Any] = prepare_img() lowerCAmelCase : Optional[int] = image_processor(images=__A , return_tensors="pt" ).to(__A ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**__A ) # verify the logits lowerCAmelCase : Optional[int] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __A ) lowerCAmelCase : Union[str, Any] = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
703
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
0
"""simple docstring""" import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase__ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =None a : str =BloomTokenizerFast a : Optional[Any] =BloomTokenizerFast a : Optional[int] =True a : Optional[int] =False a : str ="tokenizer_file" a : str ={"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Union[str, Any] = BloomTokenizerFast.from_pretrained("bigscience/tokenizer" ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_rust_tokenizer() lowerCAmelCase : List[str] = ["The quick brown fox</s>", "jumps over the lazy dog</s>"] lowerCAmelCase : Optional[int] = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]] lowerCAmelCase : Optional[int] = tokenizer.batch_encode_plus(snake_case__ )["input_ids"] self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__=6 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowerCAmelCase : Dict = "This is a simple input" lowerCAmelCase : Optional[Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase : List[str] = ("This is a simple input", "This is a pair") lowerCAmelCase : Any = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests try: tokenizer_r.encode(snake_case__ , max_length=snake_case__ ) tokenizer_r.encode_plus(snake_case__ , max_length=snake_case__ ) tokenizer_r.batch_encode_plus(snake_case__ , max_length=snake_case__ ) tokenizer_r.encode(snake_case__ , max_length=snake_case__ ) tokenizer_r.batch_encode_plus(snake_case__ , max_length=snake_case__ ) except ValueError: self.fail("Bloom Tokenizer should be able to deal with padding" ) lowerCAmelCase : str = None # Hotfixing padding = None self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase : List[str] = load_dataset("xnli" , "all_languages" , split="test" , streaming=snake_case__ ) lowerCAmelCase : Optional[Any] = next(iter(snake_case__ ) )["premise"] # pick up one data lowerCAmelCase : Any = list(sample_data.values() ) lowerCAmelCase : List[str] = list(map(tokenizer.encode , snake_case__ ) ) lowerCAmelCase : Optional[Any] = [tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) for x in output_tokens] self.assertListEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : list[list[int]] = [[0 for _ in range(SCREAMING_SNAKE_CASE )] for _ in range(m + 1 )] for i in range(m + 1 ): lowerCAmelCase : Union[str, Any] = 1 for n in range(m + 1 ): for k in range(1 , SCREAMING_SNAKE_CASE ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: lowerCAmelCase__ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: lowerCAmelCase__ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
705
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class SCREAMING_SNAKE_CASE__ ( __a ): """simple docstring""" def __init__( self ): """simple docstring""" self.test() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = 0 lowerCAmelCase : List[Any] = False while not completed: if counter == 1: self.reset() lowerCAmelCase : List[str] = self.advance() if not self.does_advance(a_ ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) lowerCAmelCase : Union[str, Any] = self.update(a_ ) counter += 1 if counter > 10_000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowercase__ ( self ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self , snake_case__ ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self , snake_case__ ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) @abstractmethod def lowercase__ ( self , snake_case__=False ): """simple docstring""" raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class SCREAMING_SNAKE_CASE__ ( __a ): """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" super(a_ , self ).__init__() if not isinstance(a_ , a_ ) or len(a_ ) == 0: raise ValueError(f"""`token_ids` has to be a non-empty list, but is {token_ids}.""" ) if any((not isinstance(a_ , a_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"""Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.""" ) lowerCAmelCase : Optional[int] = token_ids lowerCAmelCase : Dict = len(self.token_ids ) lowerCAmelCase : Union[str, Any] = -1 # the index of the currently fulfilled step lowerCAmelCase : str = False def lowercase__ ( self ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}""" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError(f"""`token_id` has to be an `int`, but is {token_id} of type {type(a_ )}""" ) lowerCAmelCase : Optional[int] = False lowerCAmelCase : List[str] = False lowerCAmelCase : List[Any] = False if self.does_advance(a_ ): self.fulfilled_idx += 1 lowerCAmelCase : List[str] = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase : str = True lowerCAmelCase : Optional[int] = completed else: # failed to make progress. lowerCAmelCase : Union[str, Any] = True self.reset() return stepped, completed, reset def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = False lowerCAmelCase : Dict = 0 def lowercase__ ( self ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def lowercase__ ( self , snake_case__=False ): """simple docstring""" lowerCAmelCase : Dict = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase : List[Any] = self.seqlen lowerCAmelCase : str = self.fulfilled_idx lowerCAmelCase : Union[str, Any] = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=True ): """simple docstring""" lowerCAmelCase : List[str] = max([len(a_ ) for one in nested_token_ids] ) lowerCAmelCase : int = {} for token_ids in nested_token_ids: lowerCAmelCase : List[str] = root for tidx, token_id in enumerate(a_ ): if token_id not in level: lowerCAmelCase : int = {} lowerCAmelCase : List[Any] = level[token_id] if no_subsets and self.has_subsets(a_ , a_ ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f""" {nested_token_ids}.""" ) lowerCAmelCase : int = root def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.trie for current_token in current_seq: lowerCAmelCase : Any = start[current_token] lowerCAmelCase : Any = list(start.keys() ) return next_tokens def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.next_tokens(a_ ) return len(a_ ) == 0 def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = list(root.values() ) if len(a_ ) == 0: return 1 else: return sum([self.count_leaves(a_ ) for nn in next_nodes] ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.count_leaves(a_ ) return len(a_ ) != leaf_count class SCREAMING_SNAKE_CASE__ ( __a ): """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" super(a_ , self ).__init__() if not isinstance(a_ , a_ ) or len(a_ ) == 0: raise ValueError(f"""`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.""" ) if any(not isinstance(a_ , a_ ) for token_ids in nested_token_ids ): raise ValueError(f"""`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.""" ) if any( any((not isinstance(a_ , a_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"""Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.""" ) lowerCAmelCase : Optional[Any] = DisjunctiveTrie(a_ ) lowerCAmelCase : Optional[int] = nested_token_ids lowerCAmelCase : Tuple = self.trie.max_height lowerCAmelCase : List[str] = [] lowerCAmelCase : Union[str, Any] = False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.trie.next_tokens(self.current_seq ) if len(a_ ) == 0: return None else: return token_list def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}""" ) lowerCAmelCase : Optional[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError(f"""`token_id` is supposed to be type `int`, but is {token_id} of type {type(a_ )}""" ) lowerCAmelCase : Any = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Tuple = False if self.does_advance(a_ ): self.current_seq.append(a_ ) lowerCAmelCase : Optional[Any] = True else: lowerCAmelCase : Tuple = True self.reset() lowerCAmelCase : Any = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase : Tuple = completed return stepped, completed, reset def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = False lowerCAmelCase : Tuple = [] def lowercase__ ( self ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowercase__ ( self , snake_case__=False ): """simple docstring""" lowerCAmelCase : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase : Tuple = self.seqlen lowerCAmelCase : List[str] = self.current_seq lowerCAmelCase : List[Any] = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase : Optional[int] = max([c.seqlen for c in constraints] ) lowerCAmelCase : Optional[Any] = len(a_ ) lowerCAmelCase : List[Any] = False self.init_state() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = [] lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Optional[int] = [constraint.copy(stateful=a_ ) for constraint in self.constraints] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase : str = constraint.advance() if isinstance(a_ , a_ ): token_list.append(a_ ) elif isinstance(a_ , a_ ): token_list.extend(a_ ) else: lowerCAmelCase : List[str] = self.inprogress_constraint.advance() if isinstance(a_ , a_ ): token_list.append(a_ ) elif isinstance(a_ , a_ ): token_list.extend(a_ ) if len(a_ ) == 0: return None else: return token_list def lowercase__ ( self , snake_case__ ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase : int = self.add(a_ ) # the entire list of constraints are fulfilled if self.completed: break def lowercase__ ( self , snake_case__ ): """simple docstring""" if not isinstance(a_ , a_ ): raise ValueError(f"""`token_id` should be an `int`, but is `{token_id}`.""" ) lowerCAmelCase : List[str] = False, False if self.completed: lowerCAmelCase : Dict = True lowerCAmelCase : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase : Optional[int] = self.inprogress_constraint.update(a_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a_ ) ) lowerCAmelCase : Union[str, Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase : Dict = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase : Union[str, Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(a_ ): lowerCAmelCase : Any = pending_constraint.update(a_ ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(a_ ) lowerCAmelCase : Optional[Any] = None if not complete and stepped: lowerCAmelCase : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase : Any = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase : List[str] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowercase__ ( self , snake_case__=True ): """simple docstring""" lowerCAmelCase : Dict = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase : List[Any] = [ constraint.copy(stateful=a_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase : Dict = self.inprogress_constraint.copy(stateful=a_ ) lowerCAmelCase : List[str] = [constraint.copy() for constraint in self.pending_constraints] return new_state
706
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class SCREAMING_SNAKE_CASE__ ( TensorFormatter[Mapping, "torch.Tensor", Mapping] ): """simple docstring""" def __init__( self , snake_case__=None , **snake_case__ ): """simple docstring""" super().__init__(features=__lowerCAmelCase ) lowerCAmelCase : Tuple = torch_tensor_kwargs import torch # noqa import torch at initialization def lowercase__ ( self , snake_case__ ): """simple docstring""" import torch if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and column: if all( isinstance(__lowerCAmelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__lowerCAmelCase ) return column def lowercase__ ( self , snake_case__ ): """simple docstring""" import torch if isinstance(__lowerCAmelCase , (str, bytes, type(__lowerCAmelCase )) ): return value elif isinstance(__lowerCAmelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCAmelCase : str = {} if isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): lowerCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(__lowerCAmelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCAmelCase : List[Any] = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCAmelCase , PIL.Image.Image ): lowerCAmelCase : Optional[int] = np.asarray(__lowerCAmelCase ) return torch.tensor(__lowerCAmelCase , **{**default_dtype, **self.torch_tensor_kwargs} ) def lowercase__ ( self , snake_case__ ): """simple docstring""" import torch # support for torch, tf, jax etc. if hasattr(__lowerCAmelCase , "__array__" ) and not isinstance(__lowerCAmelCase , torch.Tensor ): lowerCAmelCase : int = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCAmelCase , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) elif isinstance(__lowerCAmelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCAmelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCAmelCase ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return map_nested(self._recursive_tensorize , __lowerCAmelCase , map_list=__lowerCAmelCase ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.numpy_arrow_extractor().extract_row(__lowerCAmelCase ) lowerCAmelCase : List[Any] = self.python_features_decoder.decode_row(__lowerCAmelCase ) return self.recursive_tensorize(__lowerCAmelCase ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(__lowerCAmelCase ) lowerCAmelCase : List[str] = self.python_features_decoder.decode_column(__lowerCAmelCase , pa_table.column_names[0] ) lowerCAmelCase : Dict = self.recursive_tensorize(__lowerCAmelCase ) lowerCAmelCase : List[str] = self._consolidate(__lowerCAmelCase ) return column def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.numpy_arrow_extractor().extract_batch(__lowerCAmelCase ) lowerCAmelCase : Dict = self.python_features_decoder.decode_batch(__lowerCAmelCase ) lowerCAmelCase : List[str] = self.recursive_tensorize(__lowerCAmelCase ) for column_name in batch: lowerCAmelCase : str = self._consolidate(batch[column_name] ) return batch
707
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = [ ("bert.bert", "visual_bert"), ("bert.cls", "cls"), ("bert.classifier", "cls"), ("token_type_embeddings_visual", "visual_token_type_embeddings"), ("position_embeddings_visual", "visual_position_embeddings"), ("projection", "visual_projection"), ] lowerCAmelCase__ = [ "nlvr2_coco_pre_trained.th", "nlvr2_fine_tuned.th", "nlvr2_pre_trained.th", "vcr_coco_pre_train.th", "vcr_fine_tune.th", "vcr_pre_train.th", "vqa_coco_pre_trained.th", "vqa_fine_tuned.th", "vqa_pre_trained.th", ] def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = torch.load(UpperCAmelCase__ , map_location="cpu" ) return sd def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str]=rename_keys_prefix ): '''simple docstring''' lowerCAmelCase : List[str] = OrderedDict() lowerCAmelCase : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue lowerCAmelCase : Dict = key for name_pair in rename_keys_prefix: lowerCAmelCase : Any = new_key.replace(name_pair[0] , name_pair[1] ) lowerCAmelCase : Dict = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately lowerCAmelCase : str = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( checkpoint_path.split("/" )[-1] in ACCEPTABLE_CHECKPOINTS ), f"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: lowerCAmelCase : List[str] = """pretraining""" if "vcr" in checkpoint_path: lowerCAmelCase : List[Any] = {"""visual_embedding_dim""": 5_1_2} elif "vqa_advanced" in checkpoint_path: lowerCAmelCase : Any = {"""visual_embedding_dim""": 2_0_4_8} elif "vqa" in checkpoint_path: lowerCAmelCase : str = {"""visual_embedding_dim""": 2_0_4_8} elif "nlvr" in checkpoint_path: lowerCAmelCase : List[Any] = {"""visual_embedding_dim""": 1_0_2_4} else: raise NotImplementedError(f"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: lowerCAmelCase : Any = {"""visual_embedding_dim""": 5_1_2} lowerCAmelCase : Dict = """multichoice""" elif "vqa_advanced" in checkpoint_path: lowerCAmelCase : Optional[int] = {"""visual_embedding_dim""": 2_0_4_8} lowerCAmelCase : List[Any] = """vqa_advanced""" elif "vqa" in checkpoint_path: lowerCAmelCase : int = {"""visual_embedding_dim""": 2_0_4_8, """num_labels""": 3_1_2_9} lowerCAmelCase : Tuple = """vqa""" elif "nlvr" in checkpoint_path: lowerCAmelCase : Any = { """visual_embedding_dim""": 1_0_2_4, """num_labels""": 2, } lowerCAmelCase : int = """nlvr""" lowerCAmelCase : List[Any] = VisualBertConfig(**UpperCAmelCase__ ) # Load State Dict lowerCAmelCase : str = load_state_dict(UpperCAmelCase__ ) lowerCAmelCase : str = get_new_dict(UpperCAmelCase__ , UpperCAmelCase__ ) if model_type == "pretraining": lowerCAmelCase : Optional[Any] = VisualBertForPreTraining(UpperCAmelCase__ ) elif model_type == "vqa": lowerCAmelCase : Optional[int] = VisualBertForQuestionAnswering(UpperCAmelCase__ ) elif model_type == "nlvr": lowerCAmelCase : Optional[Any] = VisualBertForVisualReasoning(UpperCAmelCase__ ) elif model_type == "multichoice": lowerCAmelCase : Tuple = VisualBertForMultipleChoice(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) # Save Checkpoints Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) model.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 5_0 ): '''simple docstring''' lowerCAmelCase : Dict = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"{solution() = }")
709
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
0
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = tempfile.mkdtemp() lowerCAmelCase : Dict = 5 # Realm tok lowerCAmelCase : str = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "test", "question", "this", "is", "the", "first", "second", "third", "fourth", "fifth", "record", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCAmelCase : Any = os.path.join(self.tmpdirname , "realm_tokenizer" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) lowerCAmelCase : Union[str, Any] = os.path.join(__lowerCAmelCase , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , "realm_block_records" ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , "realm_tokenizer" ) ) def lowercase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = RealmConfig(num_block_records=self.num_block_records ) return config def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = Dataset.from_dict( { "id": ["0", "1"], "question": ["foo", "bar"], "answers": [["Foo", "Bar"], ["Bar"]], } ) return dataset def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = np.array( [ B"This is the first record", B"This is the second record", B"This is the third record", B"This is the fourth record", B"This is the fifth record", B"This is a longer longer longer record", ] , dtype=__lowerCAmelCase , ) return block_records def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.get_config() lowerCAmelCase : int = self.get_dummy_retriever() lowerCAmelCase : Dict = retriever.tokenizer lowerCAmelCase : Any = np.array([0, 3] , dtype="long" ) lowerCAmelCase : List[str] = tokenizer(["Test question"] ).input_ids lowerCAmelCase : List[str] = tokenizer( ["the fourth"] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids lowerCAmelCase : List[str] = config.reader_seq_len lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors="np" ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(len(__lowerCAmelCase ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "first", "record", "[SEP]"] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["[CLS]", "test", "question", "[SEP]", "this", "is", "the", "fourth", "record", "[SEP]"] , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.get_config() lowerCAmelCase : Dict = self.get_dummy_retriever() lowerCAmelCase : List[str] = retriever.tokenizer lowerCAmelCase : str = np.array([0, 3, 5] , dtype="long" ) lowerCAmelCase : str = tokenizer(["Test question"] ).input_ids lowerCAmelCase : Optional[int] = tokenizer( ["the fourth", "longer longer"] , add_special_tokens=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ).input_ids lowerCAmelCase : Optional[int] = config.reader_seq_len lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = retriever( __lowerCAmelCase , __lowerCAmelCase , answer_ids=__lowerCAmelCase , max_length=__lowerCAmelCase , return_tensors="np" ) self.assertEqual([False, True, True] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __lowerCAmelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) # Test local path lowerCAmelCase : List[str] = retriever.from_pretrained(os.path.join(self.tmpdirname , "realm_block_records" ) ) self.assertEqual(retriever.block_records[0] , B"This is the first record" ) # Test mocked remote path with patch("transformers.models.realm.retrieval_realm.hf_hub_download" ) as mock_hf_hub_download: lowerCAmelCase : Union[str, Any] = os.path.join( os.path.join(self.tmpdirname , "realm_block_records" ) , _REALM_BLOCK_RECORDS_FILENAME ) lowerCAmelCase : List[str] = RealmRetriever.from_pretrained("google/realm-cc-news-pretrained-openqa" ) self.assertEqual(retriever.block_records[0] , B"This is the first record" )
710
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCAmelCase : Dict = str(bin(_snake_case ) )[2:] # remove the leading "0b" lowerCAmelCase : Any = str(bin(_snake_case ) )[2:] # remove the leading "0b" lowerCAmelCase : List[str] = max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int(char_a == "1" and char_b == "1" ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a : int =BarthezTokenizer a : Optional[int] =BarthezTokenizerFast a : Optional[int] =True a : Optional[Any] =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Tuple = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=UpperCamelCase__ ) lowerCAmelCase : str = tokenizer def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = '''<pad>''' lowerCAmelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(UpperCamelCase__ ) , 101_122 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCAmelCase : List[str] = [0, 57, 3_018, 70_307, 91, 2] lowerCAmelCase : Any = self.tokenizer( UpperCamelCase__ , max_length=len(UpperCamelCase__ ) , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , return_tensors="pt" ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCAmelCase : List[Any] = batch.input_ids.tolist()[0] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def lowercase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : int = '''I was born in 92000, and this is falsé.''' lowerCAmelCase : Optional[Any] = tokenizer.tokenize(UpperCamelCase__ ) lowerCAmelCase : Tuple = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase : int = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) lowerCAmelCase : List[str] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase : List[str] = self.get_rust_tokenizer() lowerCAmelCase : Union[str, Any] = tokenizer.encode(UpperCamelCase__ ) lowerCAmelCase : Any = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = {'''input_ids''': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCAmelCase : List[str] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=UpperCamelCase__ , )
712
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
0
"""simple docstring""" from heapq import heappop, heappush import numpy as np def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase : Optional[int] = grid.shape lowerCAmelCase : Union[str, Any] = [-1, 1, 0, 0] lowerCAmelCase : Optional[int] = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = [(0, source)], set() lowerCAmelCase : Dict = np.full((rows, cols) , np.inf ) lowerCAmelCase : Tuple = 0 lowerCAmelCase : int = np.empty((rows, cols) , dtype=__UpperCamelCase ) lowerCAmelCase : int = None while queue: ((lowerCAmelCase) , (lowerCAmelCase)) : Any = heappop(__UpperCamelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCAmelCase : int = [] while (x, y) != source: path.append((x, y) ) lowerCAmelCase , lowerCAmelCase : Tuple = predecessors[x, y] path.append(__UpperCamelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(__UpperCamelCase ) ): lowerCAmelCase , lowerCAmelCase : Any = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCAmelCase : Optional[int] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(__UpperCamelCase , (dist + 1, (nx, ny)) ) lowerCAmelCase : Dict = dist + 1 lowerCAmelCase : List[str] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
713
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
0
"""simple docstring""" import math import random def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase__ = 0.02 def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : int = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(SCREAMING_SNAKE_CASE ): # Forward propagation lowerCAmelCase : Optional[int] = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? lowerCAmelCase : List[Any] = (expected / 1_0_0) - layer_a # Error delta lowerCAmelCase : Optional[int] = layer_1_error * sigmoid_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = int(input('''Expected value: ''')) lowerCAmelCase__ = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
714
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
0
"""simple docstring""" lowerCAmelCase__ = '''Input must be a string of 8 numbers plus letter''' lowerCAmelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase : Any = f"""Expected string as input, found {type(SCREAMING_SNAKE_CASE_ ).__name__}""" raise TypeError(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase : Tuple = spanish_id.replace("-" , "" ).upper() if len(SCREAMING_SNAKE_CASE_ ) != 9: raise ValueError(SCREAMING_SNAKE_CASE_ ) try: lowerCAmelCase : str = int(spanish_id_clean[0:8] ) lowerCAmelCase : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(SCREAMING_SNAKE_CASE_ ) from ex if letter.isdigit(): raise ValueError(SCREAMING_SNAKE_CASE_ ) return letter == LOOKUP_LETTERS[number % 2_3] if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
0
"""simple docstring""" from __future__ import annotations lowerCAmelCase__ = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase : dict[str, str | None] = {} lowerCAmelCase : Dict = source_vertex def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = {self.source_vertex} lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : List[Any] = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase : List[str] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(A_ ) lowerCAmelCase : Dict = vertex queue.append(A_ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase : Any = self.parent.get(A_ ) if target_vertex_parent is None: lowerCAmelCase : List[str] = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(A_ ) return self.shortest_path(A_ ) + f"""->{target_vertex}""" if __name__ == "__main__": lowerCAmelCase__ = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
716
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' for attribute in key.split("." ): lowerCAmelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowerCAmelCase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowerCAmelCase : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : Optional[int] = value elif weight_type == "weight_g": lowerCAmelCase : Union[str, Any] = value elif weight_type == "weight_v": lowerCAmelCase : str = value elif weight_type == "bias": lowerCAmelCase : List[str] = value else: lowerCAmelCase : Dict = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] lowerCAmelCase : Optional[Any] = fairseq_model.state_dict() lowerCAmelCase : Tuple = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase : Optional[int] = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase : Any = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): lowerCAmelCase : List[str] = True if "*" in mapped_key: lowerCAmelCase : str = name.split(SCREAMING_SNAKE_CASE )[0].split("." )[-2] lowerCAmelCase : Optional[Any] = mapped_key.replace("*" , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowerCAmelCase : Optional[Any] = "weight_g" elif "weight_v" in name: lowerCAmelCase : int = "weight_v" elif "weight" in name: lowerCAmelCase : List[Any] = "weight" elif "bias" in name: lowerCAmelCase : List[str] = "bias" else: lowerCAmelCase : List[str] = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = full_name.split("conv_layers." )[-1] lowerCAmelCase : Dict = name.split("." ) lowerCAmelCase : int = int(items[0] ) lowerCAmelCase : List[Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : Union[str, Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase : Tuple = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=True ): '''simple docstring''' if config_path is not None: lowerCAmelCase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Union[str, Any] = HubertConfig() if is_finetuned: if dict_path: lowerCAmelCase : Optional[int] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase : str = target_dict.pad_index lowerCAmelCase : List[str] = target_dict.bos_index lowerCAmelCase : Dict = target_dict.eos_index lowerCAmelCase : Tuple = len(target_dict.symbols ) lowerCAmelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , "vocab.json" ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Dict = True if config.feat_extract_norm == "layer" else False lowerCAmelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Union[str, Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase : str = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
717
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
718
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', } } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } lowerCAmelCase__ = '''▁''' class SCREAMING_SNAKE_CASE__ ( __a ): """simple docstring""" a : Optional[int] =VOCAB_FILES_NAMES a : Any =PRETRAINED_VOCAB_FILES_MAP a : str =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Dict =["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__=100 , snake_case__=None , snake_case__ = None , snake_case__=True , **snake_case__ , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : Tuple = [f"""<extra_id_{i}>""" for i in range(lowerCAmelCase_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens lowerCAmelCase : Union[str, Any] = len(set(filter(lambda snake_case__ : bool("extra_id" in str(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f"""You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to""" " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) lowerCAmelCase : List[str] = legacy lowerCAmelCase : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , extra_ids=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , legacy=lowerCAmelCase_ , **lowerCAmelCase_ , ) lowerCAmelCase : List[Any] = vocab_file lowerCAmelCase : Tuple = extra_ids lowerCAmelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCAmelCase_ ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: lowerCAmelCase : str = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , lowerCAmelCase_ , ) return max_model_length @property def lowercase__ ( self ): """simple docstring""" return self.sp_model.get_piece_size() + self._extra_ids def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCAmelCase_ )) + [1] return ([0] * len(lowerCAmelCase_ )) + [1] + ([0] * len(lowerCAmelCase_ )) + [1] def lowercase__ ( self ): """simple docstring""" return list( set(filter(lambda snake_case__ : bool(re.search(r"<extra_id_\d+>" , lowerCAmelCase_ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self ): """simple docstring""" return [self._convert_token_to_id(lowerCAmelCase_ ) for token in self.get_sentinel_tokens()] def lowercase__ ( self , snake_case__ ): """simple docstring""" if len(lowerCAmelCase_ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"""This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated""" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Any = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : int = self._add_eos_if_not_present(lowerCAmelCase_ ) if token_ids_a is None: return token_ids_a else: lowerCAmelCase : int = self._add_eos_if_not_present(lowerCAmelCase_ ) return token_ids_a + token_ids_a def __getstate__( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.__dict__.copy() lowerCAmelCase : Union[str, Any] = None return state def __setstate__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCAmelCase : int = {} lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase__ ( self , snake_case__ , **snake_case__ ): """simple docstring""" if not self.legacy: lowerCAmelCase : Union[str, Any] = SPIECE_UNDERLINE + text.replace(lowerCAmelCase_ , " " ) return super().tokenize(lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase__ ( self , snake_case__ , **snake_case__ ): """simple docstring""" if not self.legacy: lowerCAmelCase : Any = text.startswith(lowerCAmelCase_ ) if is_first: lowerCAmelCase : Optional[Any] = text[1:] lowerCAmelCase : List[Any] = self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(lowerCAmelCase_ ): lowerCAmelCase : Optional[int] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowercase__ ( self , snake_case__ ): """simple docstring""" if token.startswith("<extra_id_" ): lowerCAmelCase : Optional[Any] = re.match(r"<extra_id_(\d+)>" , lowerCAmelCase_ ) lowerCAmelCase : Union[str, Any] = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(lowerCAmelCase_ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if index < self.sp_model.get_piece_size(): lowerCAmelCase : Union[str, Any] = self.sp_model.IdToPiece(lowerCAmelCase_ ) else: lowerCAmelCase : List[Any] = f"""<extra_id_{self.vocab_size - 1 - index}>""" return token def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : List[str] = "" lowerCAmelCase : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase_ ) + token lowerCAmelCase : int = True lowerCAmelCase : List[Any] = [] else: current_sub_tokens.append(lowerCAmelCase_ ) lowerCAmelCase : Dict = False out_string += self.sp_model.decode(lowerCAmelCase_ ) return out_string.strip() def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Union[str, Any] = os.path.join( lowerCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase_ , "wb" ) as fi: lowerCAmelCase : Any = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase_ ) return (out_vocab_file,)
719
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} class SCREAMING_SNAKE_CASE__ ( __lowercase ): """simple docstring""" a : Tuple ='''llama''' a : Dict =['''past_key_values'''] def __init__( self , snake_case__=32_000 , snake_case__=4_096 , snake_case__=11_008 , snake_case__=32 , snake_case__=32 , snake_case__=None , snake_case__="silu" , snake_case__=2_048 , snake_case__=0.02 , snake_case__=1e-6 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=1 , snake_case__=False , snake_case__=None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Tuple = hidden_size lowerCAmelCase : Any = intermediate_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : int = num_key_value_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : List[Any] = rms_norm_eps lowerCAmelCase : List[Any] = pretraining_tp lowerCAmelCase : str = use_cache lowerCAmelCase : List[str] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , tie_word_embeddings=__a , **__a , ) def lowercase__ ( self ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __a ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f"""got {self.rope_scaling}""" ) lowerCAmelCase : Tuple = self.rope_scaling.get("type" , __a ) lowerCAmelCase : str = self.rope_scaling.get("factor" , __a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(__a , __a ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}""" )
720
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , UpperCAmelCase__ , ) super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__ )
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowerCAmelCase__ = datasets.utils.logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE__ ( datasets.BuilderConfig ): """simple docstring""" a : Optional[int] =1_00_00 a : Union[str, Any] =None a : List[str] =None class SCREAMING_SNAKE_CASE__ ( datasets.ArrowBasedBuilder ): """simple docstring""" a : Union[str, Any] =ParquetConfig def lowercase__ ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowerCAmelCase : Any = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A__ , (str, list, tuple) ): lowerCAmelCase : Dict = data_files if isinstance(A__ , A__ ): lowerCAmelCase : int = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : List[Any] = [dl_manager.iter_files(A__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] lowerCAmelCase : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(A__ , A__ ): lowerCAmelCase : List[str] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase : Optional[int] = [dl_manager.iter_files(A__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A__ ): with open(A__ , "rb" ) as f: lowerCAmelCase : Tuple = datasets.Features.from_arrow_schema(pq.read_schema(A__ ) ) break splits.append(datasets.SplitGenerator(name=A__ , gen_kwargs={"files": files} ) ) return splits def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase : Union[str, Any] = table_cast(A__ , self.info.features.arrow_schema ) return pa_table def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(A__ ) ): with open(A__ , "rb" ) as f: lowerCAmelCase : List[str] = pq.ParquetFile(A__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase : Tuple = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(A__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(A__ )}: {e}""" ) raise
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=32 , snake_case__=3 , snake_case__=4 , snake_case__=[10, 20, 30, 40] , snake_case__=[2, 2, 3, 2] , snake_case__=True , snake_case__=True , snake_case__=37 , snake_case__="gelu" , snake_case__=10 , snake_case__=0.02 , snake_case__=["stage2", "stage3", "stage4"] , snake_case__=[2, 3, 4] , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Tuple = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : Tuple = image_size lowerCAmelCase : List[Any] = num_channels lowerCAmelCase : List[Any] = num_stages lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = is_training lowerCAmelCase : Optional[int] = use_labels lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[int] = num_labels lowerCAmelCase : List[Any] = initializer_range lowerCAmelCase : List[Any] = out_features lowerCAmelCase : Union[str, Any] = out_indices lowerCAmelCase : Optional[int] = scope def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : List[str] = None if self.use_labels: lowerCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = ConvNextModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = ConvNextForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = ConvNextBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None lowerCAmelCase : List[str] = None lowerCAmelCase : List[str] = ConvNextBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = config_and_inputs lowerCAmelCase : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Tuple =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) a : Optional[Any] =( {'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification} if is_torch_available() else {} ) a : Dict =True a : Dict =False a : Optional[Any] =False a : Optional[Any] =False a : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ConvNextModelTester(self ) lowerCAmelCase : Tuple = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ConvNext does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ConvNext does not use feedforward chunking" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : str = [*signature.parameters.keys()] lowerCAmelCase : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : List[str] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Optional[int] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Any = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[int] = ConvNextModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained("facebook/convnext-tiny-224" ) if is_vision_available() else None @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = ConvNextForImageClassification.from_pretrained("facebook/convnext-tiny-224" ).to(snake_case__ ) lowerCAmelCase : Dict = self.default_image_processor lowerCAmelCase : int = prepare_img() lowerCAmelCase : Optional[int] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Dict = model(**snake_case__ ) # verify the logits lowerCAmelCase : Optional[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : List[str] = torch.tensor([-0.0260, -0.4739, 0.1911] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , lowercase ): """simple docstring""" a : Any =(ConvNextBackbone,) if is_torch_available() else () a : Optional[int] =ConvNextConfig a : Union[str, Any] =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = ConvNextModelTester(self )
701
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
0
"""simple docstring""" from __future__ import annotations from math import gcd def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] = 2 , SCREAMING_SNAKE_CASE : List[Any] = 1 , SCREAMING_SNAKE_CASE : Tuple = 3 , ): '''simple docstring''' if num < 2: raise ValueError("The input value cannot be less than 2" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[str] ) -> int: return (pow(lowercase__ , 2 ) + step) % modulus for _ in range(lowercase__ ): # These track the position within the cycle detection logic. lowerCAmelCase : Dict = seed lowerCAmelCase : Optional[Any] = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase : int = rand_fn(lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase : List[str] = rand_fn(lowercase__ , lowercase__ , lowercase__ ) lowerCAmelCase : Any = rand_fn(lowercase__ , lowercase__ , lowercase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase : int = gcd(hare - tortoise , lowercase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase : int = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''num''', type=int, help='''The value to find a divisor of''', ) parser.add_argument( '''--attempts''', type=int, default=3, help='''The number of attempts before giving up''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: lowerCAmelCase__ = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
702
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
0
"""simple docstring""" from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : Dict[Optional[str], Type[Formatter]] = {} lowerCAmelCase__ : Dict[Optional[str], str] = {} lowerCAmelCase__ : Dict[Optional[str], Exception] = {} def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict = None , ): '''simple docstring''' lowerCAmelCase : Tuple = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"""Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowerCAmelCase : Tuple = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"""Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowerCAmelCase : Optional[Any] = format_type def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict = None ): '''simple docstring''' lowerCAmelCase : Tuple = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCAmelCase : Dict = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: lowerCAmelCase__ : Tuple = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: lowerCAmelCase__ : Dict = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: lowerCAmelCase__ : Optional[int] = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def a__ ( SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Dict = get_format_type_from_alias(lowerCAmelCase_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'""" )
703
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" a : Tuple =StableUnCLIPImgaImgPipeline a : Dict =TEXT_GUIDED_IMAGE_VARIATION_PARAMS a : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a : str =frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess a : int =frozenset([] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = 32 lowerCAmelCase : Union[str, Any] = embedder_hidden_size # image encoding components lowerCAmelCase : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowercase__ , projection_dim=lowercase__ , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=lowercase__ ) lowerCAmelCase : Dict = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) lowerCAmelCase : List[str] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) lowerCAmelCase : Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowercase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) ) torch.manual_seed(0 ) lowerCAmelCase : Optional[Any] = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowercase__ , layers_per_block=1 , upcast_attention=lowercase__ , use_linear_projection=lowercase__ , ) torch.manual_seed(0 ) lowerCAmelCase : Tuple = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.00085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowercase__ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase : int = AutoencoderKL() lowerCAmelCase : str = { # image encoding components """feature_extractor""": feature_extractor, """image_encoder""": image_encoder.eval(), # image noising components """image_normalizer""": image_normalizer.eval(), """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder.eval(), """unet""": unet.eval(), """scheduler""": scheduler, """vae""": vae.eval(), } return components def lowercase__ ( self , snake_case__ , snake_case__=0 , snake_case__=True ): """simple docstring""" if str(lowercase__ ).startswith("mps" ): lowerCAmelCase : List[Any] = torch.manual_seed(lowercase__ ) else: lowerCAmelCase : Dict = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) lowerCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) if pil_image: lowerCAmelCase : Tuple = input_image * 0.5 + 0.5 lowerCAmelCase : Optional[int] = input_image.clamp(0 , 1 ) lowerCAmelCase : Dict = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : Tuple = DiffusionPipeline.numpy_to_pil(lowercase__ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Union[str, Any] = self.get_dummy_components() lowerCAmelCase : str = StableUnCLIPImgaImgPipeline(**lowercase__ ) lowerCAmelCase : Dict = sd_pipe.to(lowercase__ ) sd_pipe.set_progress_bar_config(disable=lowercase__ ) lowerCAmelCase : int = self.get_dummy_inputs(lowercase__ ) inputs.update({"image_embeds": None} ) lowerCAmelCase : int = sd_pipe(**lowercase__ ).images lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : Optional[int] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = torch_device in ["""cpu""", """mps"""] self._test_attention_slicing_forward_pass(test_max_difference=lowercase__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowercase__ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowercase__ ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowerCAmelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) lowerCAmelCase : str = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : List[str] = pipe(lowercase__ , "anime turle" , generator=lowercase__ , output_type="np" ) lowerCAmelCase : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) lowerCAmelCase : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) lowerCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase : Dict = pipe(lowercase__ , "anime turle" , generator=lowercase__ , output_type="np" ) lowerCAmelCase : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) lowerCAmelCase : List[str] = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase : str = pipe( lowercase__ , "anime turtle" , num_inference_steps=2 , output_type="np" , ) lowerCAmelCase : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowerCAmelCase__ = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase : str = '''lm_head''' lowerCAmelCase : Union[str, Any] = getattr(a_ , a_ ) if weight_type is not None: lowerCAmelCase : List[Any] = getattr(a_ , a_ ).shape else: lowerCAmelCase : Any = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase : Dict = value elif weight_type == "weight_g": lowerCAmelCase : Tuple = value elif weight_type == "weight_v": lowerCAmelCase : Optional[Any] = value elif weight_type == "bias": lowerCAmelCase : Optional[int] = value else: lowerCAmelCase : str = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = fairseq_model.state_dict() lowerCAmelCase : str = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( a_ , a_ , a_ , a_ , hf_model.config.feat_extract_norm == "group" , ) lowerCAmelCase : str = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase : List[str] = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowerCAmelCase : List[Any] = True if "*" in mapped_key: lowerCAmelCase : Union[str, Any] = name.split(a_ )[0].split("." )[-2] lowerCAmelCase : List[Any] = mapped_key.replace("*" , a_ ) if "weight_g" in name: lowerCAmelCase : List[Any] = '''weight_g''' elif "weight_v" in name: lowerCAmelCase : Union[str, Any] = '''weight_v''' elif "bias" in name: lowerCAmelCase : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase : Dict = '''weight''' else: lowerCAmelCase : Optional[Any] = None set_recursively(a_ , a_ , a_ , a_ , a_ , a_ ) continue if not is_used: unused_weights.append(a_ ) logger.warning(f"""Unused weights: {unused_weights}""" ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = full_name.split("conv_layers." )[-1] lowerCAmelCase : List[str] = name.split("." ) lowerCAmelCase : Dict = int(items[0] ) lowerCAmelCase : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase : int = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase : Optional[int] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(a_ ) @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : List[Any]=True ): '''simple docstring''' if config_path is not None: lowerCAmelCase : Dict = UniSpeechConfig.from_pretrained(a_ ) else: lowerCAmelCase : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase : Any = Dictionary.load_from_json(a_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase : List[str] = target_dict.pad_index lowerCAmelCase : Dict = target_dict.bos_index lowerCAmelCase : Optional[int] = target_dict.eos_index lowerCAmelCase : Any = len(target_dict.symbols ) lowerCAmelCase : List[str] = os.path.join(a_ , "vocab.json" ) if not os.path.isdir(a_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(a_ ) ) return os.makedirs(a_ , exist_ok=a_ ) lowerCAmelCase : str = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase : Optional[int] = 4_2 lowerCAmelCase : Any = 4_3 with open(a_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(a_ , a_ ) lowerCAmelCase : Optional[Any] = WavaVecaPhonemeCTCTokenizer( a_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=a_ , ) lowerCAmelCase : Optional[int] = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=a_ , return_attention_mask=a_ , ) lowerCAmelCase : Dict = WavaVecaProcessor(feature_extractor=a_ , tokenizer=a_ ) processor.save_pretrained(a_ ) lowerCAmelCase : int = UniSpeechForCTC(a_ ) else: lowerCAmelCase : Optional[Any] = UniSpeechForPreTraining(a_ ) if is_finetuned: lowerCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: lowerCAmelCase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase : Union[str, Any] = model[0].eval() recursively_load_weights(a_ , a_ , a_ ) hf_unispeech.save_pretrained(a_ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
705
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="sew" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__=2 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=0 , snake_case__=1 , snake_case__=2 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) lowerCAmelCase : List[str] = hidden_size lowerCAmelCase : List[str] = feat_extract_norm lowerCAmelCase : Dict = feat_extract_activation lowerCAmelCase : int = list(snake_case__ ) lowerCAmelCase : List[Any] = list(snake_case__ ) lowerCAmelCase : List[str] = list(snake_case__ ) lowerCAmelCase : Tuple = conv_bias lowerCAmelCase : Optional[Any] = num_conv_pos_embeddings lowerCAmelCase : str = num_conv_pos_embedding_groups lowerCAmelCase : Dict = len(self.conv_dim ) lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Optional[int] = intermediate_size lowerCAmelCase : Tuple = squeeze_factor lowerCAmelCase : int = hidden_act lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Dict = hidden_dropout lowerCAmelCase : Any = attention_dropout lowerCAmelCase : Optional[int] = activation_dropout lowerCAmelCase : Optional[int] = feat_proj_dropout lowerCAmelCase : List[str] = final_dropout lowerCAmelCase : Any = layerdrop lowerCAmelCase : Dict = layer_norm_eps lowerCAmelCase : Union[str, Any] = initializer_range lowerCAmelCase : List[Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase : Optional[int] = apply_spec_augment lowerCAmelCase : int = mask_time_prob lowerCAmelCase : Dict = mask_time_length lowerCAmelCase : List[Any] = mask_time_min_masks lowerCAmelCase : List[str] = mask_feature_prob lowerCAmelCase : Tuple = mask_feature_length lowerCAmelCase : Optional[Any] = mask_feature_min_masks # ctc loss lowerCAmelCase : int = ctc_loss_reduction lowerCAmelCase : Tuple = ctc_zero_infinity # sequence classification lowerCAmelCase : Optional[Any] = use_weighted_layer_sum lowerCAmelCase : int = classifier_proj_size @property def lowercase__ ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
706
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer lowerCAmelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast lowerCAmelCase__ = TaTokenizerFast lowerCAmelCase__ = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys lowerCAmelCase__ = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
707
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
0
import unittest from knapsack import greedy_knapsack as kp class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = [10, 20, 30, 40, 50, 60] lowerCAmelCase : str = [2, 4, 6, 8, 10, 12] lowerCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(_snake_case , _snake_case , _snake_case ) , 210 ) def lowercase__ ( self ): """simple docstring""" self.assertRaisesRegex(_snake_case , "max_weight must greater than zero." ) def lowercase__ ( self ): """simple docstring""" self.assertRaisesRegex(_snake_case , "Weight can not be negative." ) def lowercase__ ( self ): """simple docstring""" self.assertRaisesRegex(_snake_case , "Profit can not be negative." ) def lowercase__ ( self ): """simple docstring""" self.assertRaisesRegex(_snake_case , "max_weight must greater than zero." ) def lowercase__ ( self ): """simple docstring""" self.assertRaisesRegex( _snake_case , "The length of profit and weight must be same." ) if __name__ == "__main__": unittest.main()
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0