code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase ): """simple docstring""" a : List[str] =["torch", "scipy"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["torch", "scipy"] )
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=1 / 255 , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , snake_case__=True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} lowerCAmelCase : Optional[int] = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Optional[int] = min_resolution lowerCAmelCase : Optional[Any] = max_resolution lowerCAmelCase : List[Any] = do_resize lowerCAmelCase : Tuple = size lowerCAmelCase : Optional[int] = do_rescale lowerCAmelCase : Optional[int] = rescale_factor lowerCAmelCase : Any = do_normalize lowerCAmelCase : List[Any] = image_mean lowerCAmelCase : Optional[Any] = image_std lowerCAmelCase : List[str] = do_pad def lowercase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def lowercase__ ( self , snake_case__ , snake_case__=False ): """simple docstring""" if not batched: lowerCAmelCase : Optional[Any] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCAmelCase : str = image.size else: lowerCAmelCase : Optional[int] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Union[str, Any] = int(self.size["shortest_edge"] * h / w ) lowerCAmelCase : Any = self.size["shortest_edge"] elif w > h: lowerCAmelCase : Union[str, Any] = self.size["shortest_edge"] lowerCAmelCase : Optional[int] = int(self.size["shortest_edge"] * w / h ) else: lowerCAmelCase : str = self.size["shortest_edge"] lowerCAmelCase : Any = self.size["shortest_edge"] else: lowerCAmelCase : Optional[Any] = [] for image in image_inputs: lowerCAmelCase : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Optional[Any] = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCAmelCase : List[Any] = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Dict =DetrImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = DetrImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_rescale" ) ) self.assertTrue(hasattr(snake_case__ , "rescale_factor" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) lowerCAmelCase : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase : Optional[Any] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : int = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) lowerCAmelCase : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCAmelCase : int = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : int = image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCAmelCase : int = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCAmelCase : Tuple = json.loads(f.read() ) lowerCAmelCase : Dict = {"image_id": 39_769, "annotations": target} # encode them lowerCAmelCase : List[str] = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50" ) lowerCAmelCase : Tuple = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCAmelCase : Tuple = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area lowerCAmelCase : Tuple = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCAmelCase : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCAmelCase : List[str] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : str = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCAmelCase : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCAmelCase : str = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size lowerCAmelCase : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCAmelCase : Optional[int] = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCAmelCase : Union[str, Any] = json.loads(f.read() ) lowerCAmelCase : Any = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} lowerCAmelCase : List[Any] = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCAmelCase : Dict = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50-panoptic" ) lowerCAmelCase : Any = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCAmelCase : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCAmelCase : Dict = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area lowerCAmelCase : Union[str, Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCAmelCase : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCAmelCase : Any = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : int = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCAmelCase : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCAmelCase : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks lowerCAmelCase : str = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size lowerCAmelCase : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCAmelCase : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] =["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , snake_case__ = True , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Tuple = size if size is not None else {"height": 384, "width": 384} lowerCAmelCase : Dict = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Optional[int] = do_resize lowerCAmelCase : Optional[Any] = size lowerCAmelCase : Union[str, Any] = resample lowerCAmelCase : List[Any] = do_rescale lowerCAmelCase : Dict = rescale_factor lowerCAmelCase : str = do_normalize lowerCAmelCase : Any = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase : Any = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase : Optional[int] = do_convert_rgb def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) lowerCAmelCase : Optional[int] = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : List[str] = resample if resample is not None else self.resample lowerCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase : str = size if size is not None else self.size lowerCAmelCase : Optional[int] = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Dict = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase : int = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase : Tuple = [to_numpy_array(snake_case__ ) for image in images] if do_resize: lowerCAmelCase : int = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: lowerCAmelCase : str = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: lowerCAmelCase : Tuple = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] lowerCAmelCase : Any = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowerCAmelCase : Dict = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) return encoded_outputs
701
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
0
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str =["image_processor", "tokenizer"] a : Dict ="BlipImageProcessor" a : Any =("BertTokenizer", "BertTokenizerFast") def __init__( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = False super().__init__(snake_case__ , snake_case__ ) lowerCAmelCase : int = self.image_processor def __call__( self , snake_case__ = None , snake_case__ = None , snake_case__ = True , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = None , **snake_case__ , ): """simple docstring""" if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: lowerCAmelCase : str = self.tokenizer lowerCAmelCase : Dict = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) return text_encoding # add pixel_values lowerCAmelCase : List[Any] = self.image_processor(snake_case__ , return_tensors=snake_case__ ) if text is not None: lowerCAmelCase : Optional[int] = self.tokenizer( text=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_token_type_ids=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) else: lowerCAmelCase : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(snake_case__ ) return encoding_image_processor def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.tokenizer.model_input_names lowerCAmelCase : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
702
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
0
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def a__ ( SCREAMING_SNAKE_CASE : Optional[Any]="" ): '''simple docstring''' lowerCAmelCase : Dict = tempfile.mkdtemp() return os.path.join(SCREAMING_SNAKE_CASE , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Optional[Any] = AgentAudio(snake_case__ ) lowerCAmelCase : Optional[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case__ ) ) # Ensure that the file contains the same value as the original tensor lowerCAmelCase : Union[str, Any] = sf.read(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , torch.tensor(snake_case__ ) , atol=1e-4 ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 lowerCAmelCase : Optional[Any] = get_new_path(suffix=".wav" ) sf.write(snake_case__ , snake_case__ , 16_000 ) lowerCAmelCase : List[str] = AgentAudio(snake_case__ ) self.assertTrue(torch.allclose(snake_case__ , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case__ ) @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = torch.randint(0 , 256 , (64, 64, 3) ) lowerCAmelCase : Tuple = AgentImage(snake_case__ ) lowerCAmelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case__ , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowerCAmelCase : str = Image.open(snake_case__ ) lowerCAmelCase : List[str] = AgentImage(snake_case__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" lowerCAmelCase : List[str] = Image.open(snake_case__ ) lowerCAmelCase : Tuple = AgentImage(snake_case__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case__ ) ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "Hey!" lowerCAmelCase : Union[str, Any] = AgentText(snake_case__ ) self.assertEqual(snake_case__ , agent_type.to_string() ) self.assertEqual(snake_case__ , agent_type.to_raw() ) self.assertEqual(snake_case__ , snake_case__ )
703
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Any ="luke" def __init__( self , snake_case__=50_267 , snake_case__=500_000 , snake_case__=768 , snake_case__=256 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=None , snake_case__=1 , snake_case__=0 , snake_case__=2 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : int = vocab_size lowerCAmelCase : Optional[int] = entity_vocab_size lowerCAmelCase : Optional[int] = hidden_size lowerCAmelCase : Optional[Any] = entity_emb_size lowerCAmelCase : Optional[int] = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[Any] = hidden_act lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase : Tuple = max_position_embeddings lowerCAmelCase : Dict = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : Optional[int] = use_entity_aware_attention lowerCAmelCase : List[Any] = classifier_dropout
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : str ="roberta-prelayernorm" def __init__( self , snake_case__=50_265 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Optional[int] = num_attention_heads lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Any = intermediate_size lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Any = max_position_embeddings lowerCAmelCase : Any = type_vocab_size lowerCAmelCase : Tuple = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : Any = use_cache lowerCAmelCase : Optional[int] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
705
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for char in word: lowerCAmelCase : Optional[int] = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Any = set() for token in tokens: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = list(SCREAMING_SNAKE_CASE ) return word_list def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : set() ): '''simple docstring''' if not chinese_word_set: return bert_tokens lowerCAmelCase : str = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) lowerCAmelCase : List[Any] = bert_tokens lowerCAmelCase : List[Any] = 0, len(SCREAMING_SNAKE_CASE ) while start < end: lowerCAmelCase : List[str] = True if is_chinese(bert_word[start] ): lowerCAmelCase : Dict = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): lowerCAmelCase : Union[str, Any] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCAmelCase : Union[str, Any] = "##" + bert_word[j] lowerCAmelCase : Dict = start + i lowerCAmelCase : str = False break if single_word: start += 1 return bert_word def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : LTP , SCREAMING_SNAKE_CASE : BertTokenizer ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 1_0_0 ): lowerCAmelCase : str = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=["cws"] ).cws lowerCAmelCase : List[Any] = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 1_0_0 ): lowerCAmelCase : List[str] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=5_1_2 ) bert_res.extend(res["input_ids"] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = [] for id in input_ids: lowerCAmelCase : List[str] = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": lowerCAmelCase : Optional[Any] = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: lowerCAmelCase : Optional[Any] = f.readlines() lowerCAmelCase : Tuple = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device lowerCAmelCase : Tuple = BertTokenizer.from_pretrained(args.bert ) lowerCAmelCase : List[str] = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , "w" , encoding="utf-8" ) as f: lowerCAmelCase : Dict = [json.dumps(SCREAMING_SNAKE_CASE ) + "\n" for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) lowerCAmelCase__ = parser.parse_args() main(args)
706
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =StableDiffusionPanoramaPipeline a : str =TEXT_TO_IMAGE_PARAMS a : str =TEXT_TO_IMAGE_BATCH_PARAMS a : Tuple =TEXT_TO_IMAGE_IMAGE_PARAMS a : Optional[int] =TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : int = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) lowerCAmelCase : Any = DDIMScheduler() torch.manual_seed(0 ) lowerCAmelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCAmelCase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowerCAmelCase : Any = CLIPTextModel(snake_case__ ) lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase : Tuple = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Any = torch.manual_seed(snake_case__ ) lowerCAmelCase : Optional[int] = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Any = self.get_dummy_components() lowerCAmelCase : Any = StableDiffusionPanoramaPipeline(**snake_case__ ) lowerCAmelCase : Optional[int] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : List[Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : Union[str, Any] = np.array([0.6186, 0.5374, 0.4915, 0.4135, 0.4114, 0.4563, 0.5128, 0.4977, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.25e-3 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : List[str] = StableDiffusionPanoramaPipeline(**snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = "french fries" lowerCAmelCase : List[str] = sd_pipe(**snake_case__ , negative_prompt=snake_case__ ) lowerCAmelCase : int = output.images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[str] = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : str = self.get_dummy_components() lowerCAmelCase : List[str] = StableDiffusionPanoramaPipeline(**snake_case__ ) lowerCAmelCase : Any = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Optional[int] = sd_pipe(**snake_case__ , view_batch_size=2 ) lowerCAmelCase : Optional[int] = output.images lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array([0.6187, 0.5375, 0.4915, 0.4136, 0.4114, 0.4563, 0.5128, 0.4976, 0.4757] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : Tuple = EulerAncestralDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" ) lowerCAmelCase : Optional[Any] = StableDiffusionPanoramaPipeline(**snake_case__ ) lowerCAmelCase : Dict = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : List[Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[Any] = np.array([0.4024, 0.6510, 0.4901, 0.5378, 0.5813, 0.5622, 0.4795, 0.4467, 0.4952] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : Dict = PNDMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , skip_prk_steps=snake_case__ ) lowerCAmelCase : List[str] = StableDiffusionPanoramaPipeline(**snake_case__ ) lowerCAmelCase : Optional[Any] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Any = sd_pipe(**snake_case__ ).images lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : int = np.array([0.6391, 0.6291, 0.4861, 0.5134, 0.5552, 0.4578, 0.5032, 0.5023, 0.4539] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self , snake_case__=0 ): """simple docstring""" lowerCAmelCase : List[Any] = torch.manual_seed(snake_case__ ) lowerCAmelCase : Tuple = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "stabilityai/stable-diffusion-2-base" lowerCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) lowerCAmelCase : str = StableDiffusionPanoramaPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Dict = self.get_inputs() lowerCAmelCase : Any = pipe(**snake_case__ ).images lowerCAmelCase : str = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowerCAmelCase : Optional[int] = np.array( [ 0.36968392, 0.27025372, 0.32446766, 0.28379387, 0.36363274, 0.30733347, 0.27100027, 0.27054125, 0.25536096, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=snake_case__ ) lowerCAmelCase : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : Tuple = self.get_inputs() lowerCAmelCase : int = pipe(**snake_case__ ).images lowerCAmelCase : Any = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2_048, 3) lowerCAmelCase : List[str] = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = 0 def callback_fn(snake_case__ , snake_case__ , snake_case__ ) -> None: lowerCAmelCase : str = True nonlocal number_of_steps number_of_steps += 1 if step == 1: lowerCAmelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase : str = latents[0, -3:, -3:, -1] lowerCAmelCase : Tuple = np.array( [ 0.18681869, 0.33907816, 0.5361276, 0.14432865, -0.02856611, -0.73941123, 0.23397987, 0.47322682, -0.37823164, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: lowerCAmelCase : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) lowerCAmelCase : str = latents[0, -3:, -3:, -1] lowerCAmelCase : str = np.array( [ 0.18539645, 0.33987248, 0.5378559, 0.14437142, -0.02455261, -0.7338317, 0.23990755, 0.47356272, -0.3786505, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 lowerCAmelCase : Any = False lowerCAmelCase : str = "stabilityai/stable-diffusion-2-base" lowerCAmelCase : Optional[Any] = DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) lowerCAmelCase : str = StableDiffusionPanoramaPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) lowerCAmelCase : Dict = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() lowerCAmelCase : str = self.get_inputs() pipe(**snake_case__ , callback=snake_case__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def lowercase__ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase : int = "stabilityai/stable-diffusion-2-base" lowerCAmelCase : Tuple = DDIMScheduler.from_pretrained(snake_case__ , subfolder="scheduler" ) lowerCAmelCase : int = StableDiffusionPanoramaPipeline.from_pretrained(snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ ) lowerCAmelCase : Tuple = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCAmelCase : int = self.get_inputs() lowerCAmelCase : int = pipe(**snake_case__ ) lowerCAmelCase : List[str] = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
707
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
0
from __future__ import annotations lowerCAmelCase__ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] lowerCAmelCase__ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def a__ ( SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : Tuple = [] lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : float = -1 for j in range(i + 1 , SCREAMING_SNAKE_CASE ): if arr[i] < arr[j]: lowerCAmelCase : int = arr[j] break result.append(SCREAMING_SNAKE_CASE ) return result def a__ ( SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] for i, outer in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : float = -1 for inner in arr[i + 1 :]: if outer < inner: lowerCAmelCase : List[str] = inner break result.append(SCREAMING_SNAKE_CASE ) return result def a__ ( SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : Tuple = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : list[float] = [] lowerCAmelCase : list[float] = [-1] * arr_size for index in reversed(range(SCREAMING_SNAKE_CASE ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: lowerCAmelCase : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) lowerCAmelCase__ = ( '''from __main__ import arr, next_greatest_element_slow, ''' '''next_greatest_element_fast, next_greatest_element''' ) print( '''next_greatest_element_slow():''', timeit('''next_greatest_element_slow(arr)''', setup=setup), ) print( '''next_greatest_element_fast():''', timeit('''next_greatest_element_fast(arr)''', setup=setup), ) print( ''' next_greatest_element():''', timeit('''next_greatest_element(arr)''', setup=setup), )
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self , snake_case__ ): """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCAmelCase : List[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : List[Any] = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "sgugger/tiny-distilbert-classification" lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , only_pretrain_model=snake_case__ , ) lowerCAmelCase : Any = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : Dict = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : List[Any] = TensorFlowBenchmark(snake_case__ , [config] ) lowerCAmelCase : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "sshleifer/tiny-gpt2" lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : str = TensorFlowBenchmark(snake_case__ , [config] ) lowerCAmelCase : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : str = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : Tuple = TensorFlowBenchmark(snake_case__ , [config] ) lowerCAmelCase : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "patrickvonplaten/t5-tiny-random" lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ ) lowerCAmelCase : Dict = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=snake_case__ , ) lowerCAmelCase : Any = TensorFlowBenchmark(snake_case__ , configs=[config] ) lowerCAmelCase : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices("GPU" ) ) == 0 , "Cannot do xla on CPU." ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" lowerCAmelCase : Union[str, Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=snake_case__ , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case__ , save_to_csv=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(snake_case__ , "inf_time.csv" ) , inference_memory_csv_file=os.path.join(snake_case__ , "inf_mem.csv" ) , env_info_csv_file=os.path.join(snake_case__ , "env.csv" ) , multi_process=snake_case__ , ) lowerCAmelCase : Optional[Any] = TensorFlowBenchmark(snake_case__ ) benchmark.run() self.assertTrue(Path(os.path.join(snake_case__ , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(snake_case__ , "env.csv" ) ).exists() ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(snake_case__ ): self.assertTrue(hasattr(snake_case__ , "sequential" ) ) self.assertTrue(hasattr(snake_case__ , "cumulative" ) ) self.assertTrue(hasattr(snake_case__ , "current" ) ) self.assertTrue(hasattr(snake_case__ , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=snake_case__ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(snake_case__ , "log.txt" ) , log_print=snake_case__ , trace_memory_line_by_line=snake_case__ , eager_mode=snake_case__ , multi_process=snake_case__ , ) lowerCAmelCase : Optional[int] = TensorFlowBenchmark(snake_case__ ) lowerCAmelCase : str = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(snake_case__ , "log.txt" ) ).exists() )
709
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
0
"""simple docstring""" import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : str =JukeboxTokenizer a : str ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def lowercase__ ( self ): """simple docstring""" import torch lowerCAmelCase : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) lowerCAmelCase : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off lowerCAmelCase : Dict = [ torch.tensor([[ 0, 0, 0, 7_169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), torch.tensor([[0, 0, 0, 1_069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowercase__ ( self ): """simple docstring""" import torch lowerCAmelCase : Optional[int] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) lowerCAmelCase : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off lowerCAmelCase : Any = [ torch.tensor([[ 0, 0, 0, 1_069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1_069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
711
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
import collections import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(r'''^\s*else:''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None lowerCAmelCase : List[str] = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : Dict = f.readlines() lowerCAmelCase : Union[str, Any] = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : Union[str, Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : str = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] lowerCAmelCase : Any = re.findall(r"\[([^\]]+)\]" , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase : Dict = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : List[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Any = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : List[Any] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) lowerCAmelCase : List[str] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : List[str] = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Any = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase : Optional[Any] = lines[line_index] lowerCAmelCase : Optional[int] = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : Optional[int] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : List[str] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Optional[int] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase : str = lines[line_index] lowerCAmelCase : Tuple = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : str = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE : Optional[int] ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Tuple = [] for key in import_dict_objects.keys(): lowerCAmelCase : List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : str = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : Any = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) lowerCAmelCase : List[str] = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: lowerCAmelCase : Any = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Union[str, Any] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError("\n\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase : List[Any] = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Dict = short_path.replace(os.path.sep , "." ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : int = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def a__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import lowerCAmelCase : List[Any] = direct_transformers_import(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , "r" ) as f: lowerCAmelCase : str = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Optional[Any] = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
712
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
0
"""simple docstring""" import heapq def a__ ( SCREAMING_SNAKE_CASE : dict ): '''simple docstring''' lowerCAmelCase : list[list] = [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(SCREAMING_SNAKE_CASE , [-1 * len(SCREAMING_SNAKE_CASE ), (key, value)] ) # chosen_vertices = set of chosen vertices lowerCAmelCase : Optional[int] = set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices lowerCAmelCase : Optional[Any] = heapq.heappop(SCREAMING_SNAKE_CASE )[1][0] chosen_vertices.add(SCREAMING_SNAKE_CASE ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: lowerCAmelCase : List[Any] = elem[1][1].index(SCREAMING_SNAKE_CASE ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(SCREAMING_SNAKE_CASE ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(F"Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}")
713
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
0
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : tuple[int, int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = position lowerCAmelCase : Union[str, Any] = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCAmelCase : List[str] = [] for position in positions: lowerCAmelCase : Union[str, Any] = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def a__ ( SCREAMING_SNAKE_CASE : list[list[int]] , SCREAMING_SNAKE_CASE : tuple[int, int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowerCAmelCase : Any = position if board[y][x] == 0: lowerCAmelCase : int = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowerCAmelCase : Optional[Any] = 0 return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Optional[Any] = f"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCAmelCase : int = model_type_to_module_name(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = importlib.import_module(f""".{module_name}""" , "transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE , "__name__" , SCREAMING_SNAKE_CASE ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCAmelCase : Optional[Any] = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None def a__ ( SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : str , ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = get_file_from_repo( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , cache_dir=SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE , resume_download=SCREAMING_SNAKE_CASE , proxies=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE , local_files_only=SCREAMING_SNAKE_CASE , ) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def lowercase__ ( cls , snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = kwargs.pop("config" , snake_case__ ) lowerCAmelCase : Optional[Any] = kwargs.pop("trust_remote_code" , snake_case__ ) lowerCAmelCase : Dict = True lowerCAmelCase : Optional[Any] = FeatureExtractionMixin.get_feature_extractor_dict(snake_case__ , **snake_case__ ) lowerCAmelCase : Any = config_dict.get("feature_extractor_type" , snake_case__ ) lowerCAmelCase : Tuple = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowerCAmelCase : Tuple = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : int = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.feature_extractor_type`` lowerCAmelCase : Optional[Any] = getattr(snake_case__ , "feature_extractor_type" , snake_case__ ) if hasattr(snake_case__ , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: lowerCAmelCase : Optional[Any] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: lowerCAmelCase : Dict = feature_extractor_class_from_name(snake_case__ ) lowerCAmelCase : Tuple = feature_extractor_auto_map is not None lowerCAmelCase : Optional[int] = feature_extractor_class is not None or type(snake_case__ ) in FEATURE_EXTRACTOR_MAPPING lowerCAmelCase : Dict = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: lowerCAmelCase : Any = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) lowerCAmelCase : str = kwargs.pop("code_revision" , snake_case__ ) if os.path.isdir(snake_case__ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(snake_case__ ) in FEATURE_EXTRACTOR_MAPPING: lowerCAmelCase : Union[str, Any] = FEATURE_EXTRACTOR_MAPPING[type(snake_case__ )] return feature_extractor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( f"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ f"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(snake_case__ , snake_case__ )
715
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
716
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
0
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @staticmethod @abstractmethod def lowercase__ ( snake_case__ ): """simple docstring""" raise NotImplementedError() @abstractmethod def lowercase__ ( self ): """simple docstring""" raise NotImplementedError()
718
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
0
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ = 16 , snake_case__ = 88 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = 32 , snake_case__ = None , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = "geglu" , snake_case__ = None , ): """simple docstring""" super().__init__() lowerCAmelCase : Union[str, Any] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case__ , attention_head_dim=snake_case__ , in_channels=snake_case__ , num_layers=snake_case__ , dropout=snake_case__ , norm_num_groups=snake_case__ , cross_attention_dim=snake_case__ , attention_bias=snake_case__ , sample_size=snake_case__ , num_vector_embeds=snake_case__ , activation_fn=snake_case__ , num_embeds_ada_norm=snake_case__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCAmelCase : Optional[int] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCAmelCase : str = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCAmelCase : str = [1, 0] def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[int] = hidden_states lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Union[str, Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCAmelCase : Any = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCAmelCase : Union[str, Any] = self.transformer_index_for_condition[i] lowerCAmelCase : Any = self.transformers[transformer_index]( snake_case__ , encoder_hidden_states=snake_case__ , timestep=snake_case__ , cross_attention_kwargs=snake_case__ , return_dict=snake_case__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCAmelCase : Any = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCAmelCase : str = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case__ )
719
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : Optional[Any] = 13 lowerCAmelCase : Optional[Any] = 7 lowerCAmelCase : Any = True lowerCAmelCase : Optional[int] = True lowerCAmelCase : int = True lowerCAmelCase : Dict = True lowerCAmelCase : Optional[Any] = True lowerCAmelCase : str = False lowerCAmelCase : Union[str, Any] = False lowerCAmelCase : Optional[int] = False lowerCAmelCase : Union[str, Any] = 2 lowerCAmelCase : str = 99 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Union[str, Any] = 32 lowerCAmelCase : str = 2 lowerCAmelCase : Dict = 4 lowerCAmelCase : str = 0.1 lowerCAmelCase : Optional[Any] = 0.1 lowerCAmelCase : List[str] = 512 lowerCAmelCase : List[str] = 16 lowerCAmelCase : List[Any] = 2 lowerCAmelCase : Tuple = 0.02 lowerCAmelCase : List[str] = 3 lowerCAmelCase : Dict = 4 lowerCAmelCase : Any = "last" lowerCAmelCase : List[Any] = True lowerCAmelCase : str = None lowerCAmelCase : List[str] = 0 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowerCAmelCase : Optional[Any] = None if self.use_input_lengths: lowerCAmelCase : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowerCAmelCase : Dict = None if self.use_token_type_ids: lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowerCAmelCase : Tuple = None lowerCAmelCase : List[Any] = None lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowerCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase : Dict = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = TFFlaubertModel(config=snake_case__ ) lowerCAmelCase : Tuple = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCAmelCase : Dict = model(snake_case__ ) lowerCAmelCase : int = [input_ids, input_mask] lowerCAmelCase : Dict = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFFlaubertWithLMHeadModel(snake_case__ ) lowerCAmelCase : Tuple = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = TFFlaubertForQuestionAnsweringSimple(snake_case__ ) lowerCAmelCase : Dict = {"input_ids": input_ids, "lengths": input_lengths} lowerCAmelCase : str = model(snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : List[Any] = TFFlaubertForSequenceClassification(snake_case__ ) lowerCAmelCase : int = {"input_ids": input_ids, "lengths": input_lengths} lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Optional[int] = self.num_labels lowerCAmelCase : Any = TFFlaubertForTokenClassification(config=snake_case__ ) lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" lowerCAmelCase : Dict = self.num_choices lowerCAmelCase : Dict = TFFlaubertForMultipleChoice(config=snake_case__ ) lowerCAmelCase : Dict = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : str = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase : Union[str, Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCAmelCase : List[str] = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( lowerCAmelCase ) : Optional[int] = config_and_inputs lowerCAmelCase : str = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Tuple =( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a : List[Any] =( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a : List[Any] =( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a : str =False a : List[str] =False def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = TFFlaubertModelTester(self ) lowerCAmelCase : Any = ConfigTester(self , config_class=snake_case__ , emb_dim=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : List[Any] = TFFlaubertModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) lowerCAmelCase : str = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowerCAmelCase : Dict = model(snake_case__ )[0] lowerCAmelCase : List[Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , snake_case__ ) # compare the actual values for a slice. lowerCAmelCase : str = tf.convert_to_tensor( [ [ [-1.8768773, -1.566555, 0.27072418], [-1.6920038, -0.5873505, 1.9329599], [-2.9563985, -1.6993835, 1.7972052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
720
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
0
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase__ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' lowerCAmelCase__ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' lowerCAmelCase__ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=True , snake_case__=False ): """simple docstring""" if rouge_types is None: lowerCAmelCase : int = ["rouge1", "rouge2", "rougeL", "rougeLsum"] lowerCAmelCase : Optional[Any] = rouge_scorer.RougeScorer(rouge_types=snake_case__ , use_stemmer=snake_case__ ) if use_aggregator: lowerCAmelCase : Any = scoring.BootstrapAggregator() else: lowerCAmelCase : Optional[int] = [] for ref, pred in zip(snake_case__ , snake_case__ ): lowerCAmelCase : List[Any] = scorer.score(snake_case__ , snake_case__ ) if use_aggregator: aggregator.add_scores(snake_case__ ) else: scores.append(snake_case__ ) if use_aggregator: lowerCAmelCase : Optional[int] = aggregator.aggregate() else: lowerCAmelCase : Dict = {} for key in scores[0]: lowerCAmelCase : Union[str, Any] = [score[key] for score in scores] return result
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.2 , snake_case__=0.2 ): """simple docstring""" lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : Any = bp_numa lowerCAmelCase : Optional[Any] = bp_numa lowerCAmelCase : Tuple = conva_get[:2] lowerCAmelCase : Dict = conva_get[2] lowerCAmelCase : Optional[int] = size_pa lowerCAmelCase : List[str] = rate_w lowerCAmelCase : List[Any] = rate_t lowerCAmelCase : Any = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] lowerCAmelCase : Optional[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) lowerCAmelCase : List[Any] = -2 * np.random.rand(self.conva[1] ) + 1 lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 lowerCAmelCase : Union[str, Any] = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(snake_case__ , "wb" ) as f: pickle.dump(snake_case__ , snake_case__ ) print(f"""Model saved: {save_path}""" ) @classmethod def lowercase__ ( cls , snake_case__ ): """simple docstring""" with open(snake_case__ , "rb" ) as f: lowerCAmelCase : Union[str, Any] = pickle.load(snake_case__ ) # noqa: S301 lowerCAmelCase : Optional[Any] = model_dic.get("conv1" ) conv_get.append(model_dic.get("step_conv1" ) ) lowerCAmelCase : Any = model_dic.get("size_pooling1" ) lowerCAmelCase : List[Any] = model_dic.get("num_bp1" ) lowerCAmelCase : Optional[int] = model_dic.get("num_bp2" ) lowerCAmelCase : Optional[Any] = model_dic.get("num_bp3" ) lowerCAmelCase : Tuple = model_dic.get("rate_weight" ) lowerCAmelCase : Any = model_dic.get("rate_thre" ) # create model instance lowerCAmelCase : Any = CNN(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # modify model parameter lowerCAmelCase : Any = model_dic.get("w_conv1" ) lowerCAmelCase : Tuple = model_dic.get("wkj" ) lowerCAmelCase : List[Any] = model_dic.get("vji" ) lowerCAmelCase : int = model_dic.get("thre_conv1" ) lowerCAmelCase : List[Any] = model_dic.get("thre_bp2" ) lowerCAmelCase : Union[str, Any] = model_dic.get("thre_bp3" ) return conv_ins def lowercase__ ( self , snake_case__ ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def lowercase__ ( self , snake_case__ ): """simple docstring""" return round(snake_case__ , 3 ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = convs[0] lowerCAmelCase : int = convs[1] lowerCAmelCase : Optional[Any] = np.shape(snake_case__ )[0] # get the data slice of original image data, data_focus lowerCAmelCase : Any = [] for i_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): for j_focus in range(0 , size_data - size_conv + 1 , snake_case__ ): lowerCAmelCase : List[Any] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(snake_case__ ) # calculate the feature map of every single kernel, and saved as list of matrix lowerCAmelCase : Dict = [] lowerCAmelCase : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(snake_case__ ): lowerCAmelCase : List[str] = [] for i_focus in range(len(snake_case__ ) ): lowerCAmelCase : Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(snake_case__ ) ) lowerCAmelCase : int = np.asmatrix(snake_case__ ).reshape( snake_case__ , snake_case__ ) data_featuremap.append(snake_case__ ) # expanding the data slice to One dimenssion lowerCAmelCase : str = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(snake_case__ ) ) lowerCAmelCase : str = np.asarray(snake_case__ ) return focus_list, data_featuremap def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__="average_pool" ): """simple docstring""" lowerCAmelCase : int = len(featuremaps[0] ) lowerCAmelCase : Optional[int] = int(size_map / size_pooling ) lowerCAmelCase : str = [] for i_map in range(len(snake_case__ ) ): lowerCAmelCase : Optional[int] = featuremaps[i_map] lowerCAmelCase : int = [] for i_focus in range(0 , snake_case__ , snake_case__ ): for j_focus in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : Optional[int] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(snake_case__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(snake_case__ ) ) lowerCAmelCase : str = np.asmatrix(snake_case__ ).reshape(snake_case__ , snake_case__ ) featuremap_pooled.append(snake_case__ ) return featuremap_pooled def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = [] for i in range(len(snake_case__ ) ): lowerCAmelCase : str = np.shape(data[i] ) lowerCAmelCase : Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) lowerCAmelCase : Tuple = data_listed.getA().tolist()[0] data_expanded.extend(snake_case__ ) lowerCAmelCase : List[str] = np.asarray(snake_case__ ) return data_expanded def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = np.asarray(snake_case__ ) lowerCAmelCase : Dict = np.shape(snake_case__ ) lowerCAmelCase : Tuple = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : int = [] lowerCAmelCase : str = 0 for i_map in range(snake_case__ ): lowerCAmelCase : int = np.ones((size_map, size_map) ) for i in range(0 , snake_case__ , snake_case__ ): for j in range(0 , snake_case__ , snake_case__ ): lowerCAmelCase : str = pd_pool[ i_pool ] lowerCAmelCase : List[str] = i_pool + 1 lowerCAmelCase : Tuple = np.multiply( snake_case__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(snake_case__ ) return pd_all def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=bool ): """simple docstring""" print("----------------------Start Training-------------------------" ) print((" - - Shape: Train_Data ", np.shape(snake_case__ )) ) print((" - - Shape: Teach_Data ", np.shape(snake_case__ )) ) lowerCAmelCase : Any = 0 lowerCAmelCase : Dict = [] lowerCAmelCase : Tuple = 10_000 while rp < n_repeat and mse >= error_accuracy: lowerCAmelCase : str = 0 print(f"""-------------Learning Time {rp}--------------""" ) for p in range(len(snake_case__ ) ): # print('------------Learning Image: %d--------------'%p) lowerCAmelCase : Dict = np.asmatrix(datas_train[p] ) lowerCAmelCase : str = np.asarray(datas_teach[p] ) lowerCAmelCase : int = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : Union[str, Any] = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Tuple = np.shape(snake_case__ ) lowerCAmelCase : Optional[int] = self._expand(snake_case__ ) lowerCAmelCase : Optional[int] = data_bp_input lowerCAmelCase : int = np.dot(snake_case__ , self.vji.T ) - self.thre_bpa lowerCAmelCase : Tuple = self.sig(snake_case__ ) lowerCAmelCase : Union[str, Any] = np.dot(snake_case__ , self.wkj.T ) - self.thre_bpa lowerCAmelCase : Optional[Any] = self.sig(snake_case__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- lowerCAmelCase : Union[str, Any] = np.multiply( (data_teach - bp_outa) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.multiply( np.dot(snake_case__ , self.wkj ) , np.multiply(snake_case__ , (1 - bp_outa) ) ) lowerCAmelCase : str = np.dot(snake_case__ , self.vji ) lowerCAmelCase : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) lowerCAmelCase : List[Any] = pd_conva_pooled.T.getA().tolist() lowerCAmelCase : int = self._calculate_gradient_from_pool( snake_case__ , snake_case__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): lowerCAmelCase : List[Any] = self._expand_mat(pd_conva_all[k_conv] ) lowerCAmelCase : Optional[Any] = self.rate_weight * np.dot(snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) lowerCAmelCase : Tuple = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer lowerCAmelCase : Any = self.wkj + pd_k_all.T * bp_outa * self.rate_weight lowerCAmelCase : Dict = self.vji + pd_j_all.T * bp_outa * self.rate_weight lowerCAmelCase : int = self.thre_bpa - pd_k_all * self.rate_thre lowerCAmelCase : Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image lowerCAmelCase : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) lowerCAmelCase : Union[str, Any] = rp + 1 lowerCAmelCase : Dict = error_count / patterns all_mse.append(snake_case__ ) def draw_error(): lowerCAmelCase : List[str] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(snake_case__ , "+-" ) plt.plot(snake_case__ , "r--" ) plt.xlabel("Learning Times" ) plt.ylabel("All_mse" ) plt.grid(snake_case__ , alpha=0.5 ) plt.show() print("------------------Training Complished---------------------" ) print((" - - Training epoch: ", rp, f""" - - Mse: {mse:.6f}""") ) if draw_e: draw_error() return mse def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [] print("-------------------Start Testing-------------------------" ) print((" - - Shape: Test_Data ", np.shape(snake_case__ )) ) for p in range(len(snake_case__ ) ): lowerCAmelCase : str = np.asmatrix(datas_test[p] ) lowerCAmelCase : Optional[int] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : List[str] = self.pooling(snake_case__ , self.size_poolinga ) lowerCAmelCase : Dict = self._expand(snake_case__ ) lowerCAmelCase : Union[str, Any] = data_bp_input lowerCAmelCase : List[str] = bp_outa * self.vji.T - self.thre_bpa lowerCAmelCase : int = self.sig(snake_case__ ) lowerCAmelCase : Tuple = bp_outa * self.wkj.T - self.thre_bpa lowerCAmelCase : Dict = self.sig(snake_case__ ) produce_out.extend(bp_outa.getA().tolist() ) lowerCAmelCase : Union[str, Any] = [list(map(self.do_round , snake_case__ ) ) for each in produce_out] return np.asarray(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = np.asmatrix(snake_case__ ) lowerCAmelCase : Optional[int] = self.convolute( snake_case__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) lowerCAmelCase : str = self.pooling(snake_case__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" import pytest lowerCAmelCase__ = '''__dummy_dataset1__''' lowerCAmelCase__ = ''' import json import os import datasets REPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/" URLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", ] ) ), "langs": datasets.Sequence(datasets.Value("string")), "spans": datasets.Sequence(datasets.Value("string")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: for i, line in enumerate(f): yield i, json.loads(line) ''' @pytest.fixture def a__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def a__ ( ): '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[int] = dataset_loading_script_name lowerCAmelCase : Optional[int] = tmp_path / "datasets" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = script_dir / f"""{script_name}.py""" with open(SCREAMING_SNAKE_CASE , "w" ) as f: f.write(SCREAMING_SNAKE_CASE ) return str(SCREAMING_SNAKE_CASE )
701
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
0
"""simple docstring""" import copy import random from transformers import CLIPTokenizer class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) lowerCAmelCase : Tuple = {} def lowercase__ ( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" lowerCAmelCase : int = super().add_tokens(snake_case__ , *snake_case__ , **snake_case__ ) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" " `placeholder_token` that is not already in the tokenizer." ) def lowercase__ ( self , snake_case__ , *snake_case__ , snake_case__=1 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) else: lowerCAmelCase : Dict = [] for i in range(snake_case__ ): lowerCAmelCase : int = placeholder_token + f"""_{i}""" self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""" ) lowerCAmelCase : int = output def lowercase__ ( self , snake_case__ , snake_case__=False , snake_case__=1.0 ): """simple docstring""" if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Any = [] for i in range(len(snake_case__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowerCAmelCase : Union[str, Any] = self.token_map[placeholder_token] lowerCAmelCase : Optional[Any] = tokens[: 1 + int(len(snake_case__ ) * prop_tokens_to_load )] if vector_shuffle: lowerCAmelCase : List[Any] = copy.copy(snake_case__ ) random.shuffle(snake_case__ ) lowerCAmelCase : Union[str, Any] = text.replace(snake_case__ , " ".join(snake_case__ ) ) return text def __call__( self , snake_case__ , *snake_case__ , snake_case__=False , snake_case__=1.0 , **snake_case__ ): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , ) def lowercase__ ( self , snake_case__ , *snake_case__ , snake_case__=False , snake_case__=1.0 , **snake_case__ ): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , )
702
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if n_term == "": return [] lowerCAmelCase : list = [] for temp in range(int(SCREAMING_SNAKE_CASE ) ): series.append(f"""1/{temp + 1}""" if series else "1" ) return series if __name__ == "__main__": lowerCAmelCase__ : List[str] = input('''Enter the last number (nth term) of the Harmonic Series''') print('''Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n''') print(harmonic_series(nth_term))
703
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
0
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
"""simple docstring""" import string import numpy def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : Union[str, Any] =string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) a : List[str] =numpy.vectorize(lambda lowercase : x % 36 ) a : Union[str, Any] =numpy.vectorize(lowercase ) def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.modulus(snake_case__ ) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key lowerCAmelCase : str = encrypt_key.shape[0] def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.key_string.index(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.key_string[round(snake_case__ )] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase : Optional[Any] = det % len(self.key_string ) lowerCAmelCase : Dict = len(self.key_string ) if greatest_common_divisor(snake_case__ , len(self.key_string ) ) != 1: lowerCAmelCase : str = ( f"""determinant modular {req_l} of encryption key({det}) """ f"""is not co prime w.r.t {req_l}.\nTry another key.""" ) raise ValueError(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = [char for char in text.upper() if char in self.key_string] lowerCAmelCase : int = chars[-1] while len(snake_case__ ) % self.break_key != 0: chars.append(snake_case__ ) return "".join(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.process_text(text.upper() ) lowerCAmelCase : Dict = "" for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ): lowerCAmelCase : Tuple = text[i : i + self.break_key] lowerCAmelCase : Tuple = [self.replace_letters(snake_case__ ) for char in batch] lowerCAmelCase : Dict = numpy.array([vec] ).T lowerCAmelCase : List[str] = self.modulus(self.encrypt_key.dot(snake_case__ ) ).T.tolist()[ 0 ] lowerCAmelCase : int = "".join( self.replace_digits(snake_case__ ) for num in batch_encrypted ) encrypted += encrypted_batch return encrypted def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = round(numpy.linalg.det(self.encrypt_key ) ) if det < 0: lowerCAmelCase : int = det % len(self.key_string ) lowerCAmelCase : Tuple = None for i in range(len(self.key_string ) ): if (det * i) % len(self.key_string ) == 1: lowerCAmelCase : Union[str, Any] = i break lowerCAmelCase : Optional[int] = ( det_inv * numpy.linalg.det(self.encrypt_key ) * numpy.linalg.inv(self.encrypt_key ) ) return self.to_int(self.modulus(snake_case__ ) ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = self.make_decrypt_key() lowerCAmelCase : Tuple = self.process_text(text.upper() ) lowerCAmelCase : List[str] = "" for i in range(0 , len(snake_case__ ) - self.break_key + 1 , self.break_key ): lowerCAmelCase : List[str] = text[i : i + self.break_key] lowerCAmelCase : int = [self.replace_letters(snake_case__ ) for char in batch] lowerCAmelCase : Union[str, Any] = numpy.array([vec] ).T lowerCAmelCase : Optional[Any] = self.modulus(decrypt_key.dot(snake_case__ ) ).T.tolist()[0] lowerCAmelCase : int = "".join( self.replace_digits(snake_case__ ) for num in batch_decrypted ) decrypted += decrypted_batch return decrypted def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = int(input("Enter the order of the encryption key: " ) ) lowerCAmelCase : int = [] print("Enter each row of the encryption key with space separated integers" ) for _ in range(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Dict = [int(SCREAMING_SNAKE_CASE ) for x in input().split()] hill_matrix.append(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = HillCipher(numpy.array(SCREAMING_SNAKE_CASE ) ) print("Would you like to encrypt or decrypt some text? (1 or 2)" ) lowerCAmelCase : int = input("\n1. Encrypt\n2. Decrypt\n" ) if option == "1": lowerCAmelCase : Optional[int] = input("What text would you like to encrypt?: " ) print("Your encrypted text is:" ) print(hc.encrypt(SCREAMING_SNAKE_CASE ) ) elif option == "2": lowerCAmelCase : Union[str, Any] = input("What text would you like to decrypt?: " ) print("Your decrypted text is:" ) print(hc.decrypt(SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
705
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowerCAmelCase : List[str] = 1_9_2 lowerCAmelCase : Union[str, Any] = 7_6_8 lowerCAmelCase : Optional[Any] = 1_2 lowerCAmelCase : Tuple = 3 lowerCAmelCase : Tuple = [8_0_0, 1_3_3_3] lowerCAmelCase : Tuple = False elif yolos_name == "yolos_s_dWr": lowerCAmelCase : Dict = 3_3_0 lowerCAmelCase : List[Any] = 1_4 lowerCAmelCase : Tuple = 6 lowerCAmelCase : Optional[Any] = 1_3_2_0 elif "yolos_s" in yolos_name: lowerCAmelCase : Optional[int] = 3_8_4 lowerCAmelCase : str = 1_5_3_6 lowerCAmelCase : Optional[int] = 1_2 lowerCAmelCase : Union[str, Any] = 6 elif "yolos_b" in yolos_name: lowerCAmelCase : Dict = [8_0_0, 1_3_4_4] lowerCAmelCase : int = 9_1 lowerCAmelCase : Optional[int] = "huggingface/label-files" lowerCAmelCase : List[str] = "coco-detection-id2label.json" lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) lowerCAmelCase : Tuple = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase : Optional[Any] = idalabel lowerCAmelCase : int = {v: k for k, v in idalabel.items()} return config def a__ ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : YolosConfig , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : Any = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase : List[str] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : List[str] = in_proj_bias[: config.hidden_size] lowerCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : List[Any] = in_proj_weight[-config.hidden_size :, :] lowerCAmelCase : Tuple = in_proj_bias[-config.hidden_size :] def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' if "backbone" in name: lowerCAmelCase : str = name.replace("backbone" , "vit" ) if "cls_token" in name: lowerCAmelCase : Any = name.replace("cls_token" , "embeddings.cls_token" ) if "det_token" in name: lowerCAmelCase : Any = name.replace("det_token" , "embeddings.detection_tokens" ) if "mid_pos_embed" in name: lowerCAmelCase : Dict = name.replace("mid_pos_embed" , "encoder.mid_position_embeddings" ) if "pos_embed" in name: lowerCAmelCase : List[str] = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "blocks" in name: lowerCAmelCase : List[Any] = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: lowerCAmelCase : List[Any] = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCAmelCase : int = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCAmelCase : Tuple = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase : Dict = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase : str = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase : Optional[Any] = name.replace("mlp.fc2" , "output.dense" ) if "class_embed" in name: lowerCAmelCase : Any = name.replace("class_embed" , "class_labels_classifier" ) if "bbox_embed" in name: lowerCAmelCase : Any = name.replace("bbox_embed" , "bbox_predictor" ) if "vit.norm" in name: lowerCAmelCase : List[Any] = name.replace("vit.norm" , "vit.layernorm" ) return name def a__ ( SCREAMING_SNAKE_CASE : dict , SCREAMING_SNAKE_CASE : YolosForObjectDetection ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Tuple = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: lowerCAmelCase : Dict = key.split("." ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : int = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : List[str] = val[ dim : dim * 2, : ] lowerCAmelCase : Optional[Any] = val[-dim:, :] else: lowerCAmelCase : Dict = val[:dim] lowerCAmelCase : Union[str, Any] = val[dim : dim * 2] lowerCAmelCase : Tuple = val[-dim:] else: lowerCAmelCase : Any = val return orig_state_dict def a__ ( ): '''simple docstring''' lowerCAmelCase : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : Optional[Any] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : Tuple = get_yolos_config(SCREAMING_SNAKE_CASE ) # load original state_dict lowerCAmelCase : Optional[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] # load 🤗 model lowerCAmelCase : Tuple = YolosForObjectDetection(SCREAMING_SNAKE_CASE ) model.eval() lowerCAmelCase : List[Any] = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # Check outputs on an image, prepared by YolosImageProcessor lowerCAmelCase : Optional[int] = 8_0_0 if yolos_name != "yolos_ti" else 5_1_2 lowerCAmelCase : Dict = YolosImageProcessor(format="coco_detection" , size=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = image_processor(images=prepare_img() , return_tensors="pt" ) lowerCAmelCase : Any = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = outputs.logits, outputs.pred_boxes lowerCAmelCase : List[str] = None, None if yolos_name == "yolos_ti": lowerCAmelCase : Optional[int] = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": lowerCAmelCase : List[str] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) lowerCAmelCase : Tuple = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": lowerCAmelCase : List[Any] = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": lowerCAmelCase : List[Any] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": lowerCAmelCase : Tuple = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(f"""Unknown yolos_name: {yolos_name}""" ) assert torch.allclose(logits[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(f"""Saving model {yolos_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: lowerCAmelCase : Tuple = { "yolos_ti": "yolos-tiny", "yolos_s_200_pre": "yolos-small", "yolos_s_300_pre": "yolos-small-300", "yolos_s_dWr": "yolos-small-dwr", "yolos_base": "yolos-base", } print("Pushing to the hub..." ) lowerCAmelCase : Union[str, Any] = model_mapping[yolos_name] image_processor.push_to_hub(SCREAMING_SNAKE_CASE , organization="hustvl" ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization="hustvl" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCAmelCase__ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
706
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('''9.1.0'''): lowerCAmelCase__ = { '''linear''': PIL.Image.Resampling.BILINEAR, '''bilinear''': PIL.Image.Resampling.BILINEAR, '''bicubic''': PIL.Image.Resampling.BICUBIC, '''lanczos''': PIL.Image.Resampling.LANCZOS, '''nearest''': PIL.Image.Resampling.NEAREST, } else: lowerCAmelCase__ = { '''linear''': PIL.Image.LINEAR, '''bilinear''': PIL.Image.BILINEAR, '''bicubic''': PIL.Image.BICUBIC, '''lanczos''': PIL.Image.LANCZOS, '''nearest''': PIL.Image.NEAREST, } def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : str = (images / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase : Optional[int] = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowerCAmelCase : Union[str, Any] = numpy_to_pil(SCREAMING_SNAKE_CASE ) return images def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' if images.ndim == 3: lowerCAmelCase : List[Any] = images[None, ...] lowerCAmelCase : Any = (images * 2_5_5).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowerCAmelCase : Tuple = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowerCAmelCase : Any = [Image.fromarray(SCREAMING_SNAKE_CASE ) for image in images] return pil_images
707
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
0
import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase__ = 16 lowerCAmelCase__ = 32 def a__ ( SCREAMING_SNAKE_CASE : Accelerator , SCREAMING_SNAKE_CASE : int = 1_6 , SCREAMING_SNAKE_CASE : str = "bert-base-cased" ): '''simple docstring''' lowerCAmelCase : int = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(SCREAMING_SNAKE_CASE : Tuple ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase : str = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase : Union[str, Any] = datasets.map( SCREAMING_SNAKE_CASE , batched=SCREAMING_SNAKE_CASE , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase : int = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(SCREAMING_SNAKE_CASE : Tuple ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(SCREAMING_SNAKE_CASE , padding="max_length" , max_length=1_2_8 , return_tensors="pt" ) return tokenizer.pad(SCREAMING_SNAKE_CASE , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCAmelCase : str = DataLoader( tokenized_datasets["train"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader( tokenized_datasets["validation"] , shuffle=SCREAMING_SNAKE_CASE , collate_fn=SCREAMING_SNAKE_CASE , batch_size=SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' model.eval() lowerCAmelCase : Tuple = 0 for step, batch in enumerate(SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCAmelCase : Union[str, Any] = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : Optional[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCAmelCase : Dict = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=SCREAMING_SNAKE_CASE , references=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : List[str] = metric.compute() return eval_metric["accuracy"] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase : int = config["lr"] lowerCAmelCase : Tuple = int(config["num_epochs"] ) lowerCAmelCase : List[str] = int(config["seed"] ) lowerCAmelCase : int = int(config["batch_size"] ) lowerCAmelCase : List[Any] = args.model_name_or_path set_seed(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = get_dataloaders(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE , return_dict=SCREAMING_SNAKE_CASE ) # Instantiate optimizer lowerCAmelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCAmelCase : int = optimizer_cls(params=model.parameters() , lr=SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: lowerCAmelCase : str = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowerCAmelCase : str = 1 lowerCAmelCase : List[str] = (len(SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCAmelCase : Optional[int] = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=SCREAMING_SNAKE_CASE , ) else: lowerCAmelCase : List[str] = DummyScheduler(SCREAMING_SNAKE_CASE , total_num_steps=SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase : Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over lowerCAmelCase : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = evaluate.load("glue" , "mrpc" ) lowerCAmelCase : Any = num_epochs if args.partial_train_epoch is not None: lowerCAmelCase : Optional[Any] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCAmelCase : int = args.resume_from_checkpoint.split("epoch_" )[1] lowerCAmelCase : Optional[Any] = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCAmelCase : List[str] = int(SCREAMING_SNAKE_CASE ) + 1 lowerCAmelCase : str = evaluation_loop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) accelerator.print("resumed checkpoint performance:" , SCREAMING_SNAKE_CASE ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , "r" ) as f: lowerCAmelCase : str = json.load(SCREAMING_SNAKE_CASE ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCAmelCase : Optional[int] = {} for epoch in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Union[str, Any] = model(**SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = outputs.loss lowerCAmelCase : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCAmelCase : Optional[int] = f"""epoch_{epoch}""" lowerCAmelCase : Optional[Any] = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) accelerator.save_state(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = evaluation_loop(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = accuracy lowerCAmelCase : Tuple = lr_scheduler.get_lr()[0] lowerCAmelCase : Tuple = optimizer.param_groups[0]["lr"] lowerCAmelCase : List[Any] = epoch lowerCAmelCase : Optional[int] = overall_step accelerator.print(f"""epoch {epoch}:""" , SCREAMING_SNAKE_CASE ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE , ) parser.add_argument( "--output_dir" , type=SCREAMING_SNAKE_CASE , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=SCREAMING_SNAKE_CASE , default=SCREAMING_SNAKE_CASE , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=SCREAMING_SNAKE_CASE , default=2 , help="Number of train epochs." , ) lowerCAmelCase : Tuple = parser.parse_args() lowerCAmelCase : Union[str, Any] = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 4_2, "batch_size": 1_6} training_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
709
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
0
"""simple docstring""" import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="M-CLIP" def __init__( self , snake_case__=1_024 , snake_case__=768 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = transformerDimSize lowerCAmelCase : Optional[int] = imageDimSize super().__init__(**snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Tuple =MCLIPConfig def __init__( self , snake_case__ , *snake_case__ , **snake_case__ ): """simple docstring""" super().__init__(snake_case__ , *snake_case__ , **snake_case__ ) lowerCAmelCase : Dict = XLMRobertaModel(snake_case__ ) lowerCAmelCase : Tuple = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.transformer(input_ids=snake_case__ , attention_mask=snake_case__ )[0] lowerCAmelCase : str = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(snake_case__ ), embs
710
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
0
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = '''▁''' lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Optional[Any] =BertGenerationTokenizer a : Union[str, Any] =False a : Tuple =True def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Optional[int] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = "<s>" lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "<pad>" ) self.assertEqual(len(snake_case__ ) , 1_002 ) def lowercase__ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = BertGenerationTokenizer(snake_case__ , keep_accents=snake_case__ ) lowerCAmelCase : Dict = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def lowercase__ ( self ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("google/bert_for_seq_generation_L-24_bbc_encoder" ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = "Hello World!" lowerCAmelCase : Optional[int] = [18_536, 2_260, 101] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) lowerCAmelCase : Dict = [ 871, 419, 358, 946, 991, 2_521, 452, 358, 1_357, 387, 7_751, 3_536, 112, 985, 456, 126, 865, 938, 5_400, 5_734, 458, 1_368, 467, 786, 2_462, 5_246, 1_159, 633, 865, 4_519, 457, 582, 852, 2_557, 427, 916, 508, 405, 34_324, 497, 391, 408, 11_342, 1_244, 385, 100, 938, 985, 456, 574, 362, 12_597, 3_200, 3_129, 1_172, ] self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase : List[str] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase : str = " ".join(snake_case__ ) lowerCAmelCase : Dict = self.big_tokenizer.encode_plus(snake_case__ , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Any = self.big_tokenizer.batch_encode_plus( [sequence + " " + sequence] , return_tensors="pt" , return_token_type_ids=snake_case__ ) lowerCAmelCase : Optional[int] = BertGenerationConfig() lowerCAmelCase : int = BertGenerationEncoder(snake_case__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**snake_case__ ) model(**snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = {"input_ids": [[39_286, 458, 36_335, 2_001, 456, 13_073, 13_266, 455, 113, 7_746, 1_741, 11_157, 391, 13_073, 13_266, 455, 113, 3_967, 35_412, 113, 4_936, 109, 3_870, 2_377, 113, 30_084, 45_720, 458, 134, 17_496, 112, 503, 11_672, 113, 118, 112, 5_665, 13_347, 38_687, 112, 1_496, 31_389, 112, 3_268, 47_264, 134, 962, 112, 16_377, 8_035, 23_130, 430, 12_169, 15_518, 28_592, 458, 146, 41_697, 109, 391, 12_169, 15_518, 16_689, 458, 146, 41_358, 109, 452, 726, 4_034, 111, 763, 35_412, 5_082, 388, 1_903, 111, 9_051, 391, 2_870, 48_918, 1_900, 1_123, 550, 998, 112, 9_586, 15_985, 455, 391, 410, 22_955, 37_636, 114], [448, 17_496, 419, 3_663, 385, 763, 113, 27_533, 2_870, 3_283, 13_043, 1_639, 24_713, 523, 656, 24_013, 18_550, 2_521, 517, 27_014, 21_244, 420, 1_212, 1_465, 391, 927, 4_833, 388, 578, 11_786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2_169, 7_687, 21_932, 18_146, 726, 363, 17_032, 3_391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="google/bert_for_seq_generation_L-24_bbc_encoder" , revision="c817d1fd1be2ffa69431227a1fe320544943d4db" , )
711
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Optional[int] = False elif args.student_type == "gpt2": lowerCAmelCase : Union[str, Any] = False def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if args.student_type == "roberta": lowerCAmelCase : Any = False def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=SCREAMING_SNAKE_CASE , choices=["distilbert", "roberta", "gpt2"] , required=SCREAMING_SNAKE_CASE , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=SCREAMING_SNAKE_CASE , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=SCREAMING_SNAKE_CASE , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=SCREAMING_SNAKE_CASE , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=SCREAMING_SNAKE_CASE , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=SCREAMING_SNAKE_CASE , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=SCREAMING_SNAKE_CASE , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=SCREAMING_SNAKE_CASE , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=SCREAMING_SNAKE_CASE , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=SCREAMING_SNAKE_CASE , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=5_0 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=SCREAMING_SNAKE_CASE , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=SCREAMING_SNAKE_CASE , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5E-4 , type=SCREAMING_SNAKE_CASE , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1E-6 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=SCREAMING_SNAKE_CASE , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=SCREAMING_SNAKE_CASE , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=SCREAMING_SNAKE_CASE , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=SCREAMING_SNAKE_CASE , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=5_6 , help="Random seed" ) parser.add_argument("--log_interval" , type=SCREAMING_SNAKE_CASE , default=5_0_0 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=SCREAMING_SNAKE_CASE , default=4_0_0_0 , help="Checkpoint interval." ) lowerCAmelCase : List[str] = parser.parse_args() sanity_checks(SCREAMING_SNAKE_CASE ) # ARGS # init_gpu_params(SCREAMING_SNAKE_CASE ) set_seed(SCREAMING_SNAKE_CASE ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(f"""Param: {args}""" ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , indent=4 ) git_log(args.dump_path ) lowerCAmelCase : List[Any] = MODEL_CLASSES[args.student_type] lowerCAmelCase : Tuple = MODEL_CLASSES[args.teacher_type] # TOKENIZER # lowerCAmelCase : List[Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) lowerCAmelCase : Union[str, Any] = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): lowerCAmelCase : Optional[Any] = tokenizer.all_special_tokens.index(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = tokenizer.all_special_ids[idx] logger.info(f"""Special tokens {special_tok_ids}""" ) lowerCAmelCase : List[Any] = special_tok_ids lowerCAmelCase : List[str] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f"""Loading data from {args.data_file}""" ) with open(args.data_file , "rb" ) as fp: lowerCAmelCase : List[Any] = pickle.load(SCREAMING_SNAKE_CASE ) if args.mlm: logger.info(f"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , "rb" ) as fp: lowerCAmelCase : List[str] = pickle.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = np.maximum(SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): lowerCAmelCase : Tuple = 0.0 # do not predict special tokens lowerCAmelCase : int = torch.from_numpy(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Union[str, Any] = None lowerCAmelCase : Union[str, Any] = LmSeqsDataset(params=SCREAMING_SNAKE_CASE , data=SCREAMING_SNAKE_CASE ) logger.info("Data loader created." ) # STUDENT # logger.info(f"""Loading student config from {args.student_config}""" ) lowerCAmelCase : Optional[Any] = student_config_class.from_pretrained(args.student_config ) lowerCAmelCase : str = True if args.student_pretrained_weights is not None: logger.info(f"""Loading pretrained weights from {args.student_pretrained_weights}""" ) lowerCAmelCase : List[str] = student_model_class.from_pretrained(args.student_pretrained_weights , config=SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : int = student_model_class(SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: student.to(f"""cuda:{args.local_rank}""" ) logger.info("Student loaded." ) # TEACHER # lowerCAmelCase : Any = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=SCREAMING_SNAKE_CASE ) if args.n_gpu > 0: teacher.to(f"""cuda:{args.local_rank}""" ) logger.info(f"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if args.freeze_token_type_embds: freeze_token_type_embeddings(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() lowerCAmelCase : Tuple = Distiller( params=SCREAMING_SNAKE_CASE , dataset=SCREAMING_SNAKE_CASE , token_probs=SCREAMING_SNAKE_CASE , student=SCREAMING_SNAKE_CASE , teacher=SCREAMING_SNAKE_CASE ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
712
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
713
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
0
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
714
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
0
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : int = Mock() lowerCAmelCase : str = conn, Mock() lowerCAmelCase : Union[str, Any] = iter([1, None] ) lowerCAmelCase : List[str] = lambda SCREAMING_SNAKE_CASE : next(SCREAMING_SNAKE_CASE ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=SCREAMING_SNAKE_CASE ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
715
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
0
"""simple docstring""" import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] ="naver-clova-ix/donut-base-finetuned-docvqa" a : List[Any] =( "This is a tool that answers a question about an document (pdf). It takes an input named `document` which " "should be the document containing the information, as well as a `question` that is the question about the " "document. It returns a text that contains the answer to the question." ) a : List[Any] ="document_qa" a : Union[str, Any] =AutoProcessor a : Optional[Any] =VisionEncoderDecoderModel a : List[str] =["image", "text"] a : Tuple =["text"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" lowerCAmelCase : Any = task_prompt.replace("{user_input}" , snake_case__ ) lowerCAmelCase : Any = self.pre_processor.tokenizer( snake_case__ , add_special_tokens=snake_case__ , return_tensors="pt" ).input_ids lowerCAmelCase : Optional[Any] = self.pre_processor(snake_case__ , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def lowercase__ ( self , snake_case__ ): """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=snake_case__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=snake_case__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=snake_case__ , ).sequences def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.pre_processor.batch_decode(snake_case__ )[0] lowerCAmelCase : Dict = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) lowerCAmelCase : Dict = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) lowerCAmelCase : List[Any] = re.sub(r"<.*?>" , "" , snake_case__ , count=1 ).strip() # remove first task start token lowerCAmelCase : Dict = self.pre_processor.tokenajson(snake_case__ ) return sequence["answer"]
716
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
0
class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = set_counts lowerCAmelCase : Optional[Any] = max(snake_case__ ) lowerCAmelCase : Any = len(snake_case__ ) lowerCAmelCase : int = [1] * num_sets lowerCAmelCase : Optional[Any] = list(range(snake_case__ ) ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = self.get_parent(snake_case__ ) lowerCAmelCase : List[Any] = self.get_parent(snake_case__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCAmelCase : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Tuple = src_parent lowerCAmelCase : Union[str, Any] = self.set_counts[src_parent] lowerCAmelCase : Optional[int] = max(self.max_set , snake_case__ ) return True def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set lowerCAmelCase : Dict = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
717
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py lowerCAmelCase__ = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''transformers''', os.path.join(PATH_TO_TRANSFORMERS, '''__init__.py'''), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) lowerCAmelCase__ = spec.loader.load_module() lowerCAmelCase__ = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` lowerCAmelCase__ = re.compile('''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') lowerCAmelCase__ = { '''CLIPConfigMixin''', '''DecisionTransformerConfigMixin''', '''EncoderDecoderConfigMixin''', '''RagConfigMixin''', '''SpeechEncoderDecoderConfigMixin''', '''VisionEncoderDecoderConfigMixin''', '''VisionTextDualEncoderConfigMixin''', } def a__ ( ): '''simple docstring''' lowerCAmelCase : int = [] for config_class in list(CONFIG_MAPPING.values() ): lowerCAmelCase : Any = False # source code of `config_class` lowerCAmelCase : Dict = inspect.getsource(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = _re_checkpoint.findall(SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` lowerCAmelCase : int = checkpoint # verify the checkpoint name corresponds to the checkpoint link lowerCAmelCase : Optional[int] = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: lowerCAmelCase : int = True break lowerCAmelCase : Any = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Any = "\n".join(sorted(SCREAMING_SNAKE_CASE ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
718
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
0
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import CLIPProcessor, GroupViTConfig, GroupViTModel def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' if "img_encoder.pos_embed" in name: lowerCAmelCase : int = name.replace("img_encoder.pos_embed" , "vision_model.embeddings.position_embeddings" ) if "img_encoder.patch_embed.proj" in name: lowerCAmelCase : List[str] = name.replace("img_encoder.patch_embed.proj" , "vision_model.embeddings.patch_embeddings.projection" ) if "img_encoder.patch_embed.norm" in name: lowerCAmelCase : int = name.replace("img_encoder.patch_embed.norm" , "vision_model.embeddings.layernorm" ) if "img_encoder.layers" in name: lowerCAmelCase : Any = name.replace("img_encoder.layers" , "vision_model.encoder.stages" ) if "blocks" in name and "res" not in name: lowerCAmelCase : str = name.replace("blocks" , "layers" ) if "attn" in name and "pre_assign" not in name: lowerCAmelCase : Dict = name.replace("attn" , "self_attn" ) if "proj" in name and "self_attn" in name and "text" not in name: lowerCAmelCase : Union[str, Any] = name.replace("proj" , "out_proj" ) if "pre_assign_attn.attn.proj" in name: lowerCAmelCase : Optional[int] = name.replace("pre_assign_attn.attn.proj" , "pre_assign_attn.attn.out_proj" ) if "norm1" in name: lowerCAmelCase : List[Any] = name.replace("norm1" , "layer_norm1" ) if "norm2" in name and "pre_assign" not in name: lowerCAmelCase : Union[str, Any] = name.replace("norm2" , "layer_norm2" ) if "img_encoder.norm" in name: lowerCAmelCase : List[Any] = name.replace("img_encoder.norm" , "vision_model.layernorm" ) # text encoder if "text_encoder.token_embedding" in name: lowerCAmelCase : Dict = name.replace("text_encoder.token_embedding" , "text_model.embeddings.token_embedding" ) if "text_encoder.positional_embedding" in name: lowerCAmelCase : Union[str, Any] = name.replace("text_encoder.positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "text_encoder.transformer.resblocks." in name: lowerCAmelCase : Dict = name.replace("text_encoder.transformer.resblocks." , "text_model.encoder.layers." ) if "ln_1" in name: lowerCAmelCase : List[str] = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: lowerCAmelCase : Dict = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: lowerCAmelCase : Dict = name.replace("c_fc" , "fc1" ) if "c_proj" in name: lowerCAmelCase : str = name.replace("c_proj" , "fc2" ) if "text_encoder" in name: lowerCAmelCase : List[str] = name.replace("text_encoder" , "text_model" ) if "ln_final" in name: lowerCAmelCase : List[str] = name.replace("ln_final" , "final_layer_norm" ) # projection layers if "img_projector.linear_hidden." in name: lowerCAmelCase : List[Any] = name.replace("img_projector.linear_hidden." , "visual_projection." ) if "img_projector.linear_out." in name: lowerCAmelCase : List[Any] = name.replace("img_projector.linear_out." , "visual_projection.3." ) if "text_projector.linear_hidden" in name: lowerCAmelCase : Union[str, Any] = name.replace("text_projector.linear_hidden" , "text_projection" ) if "text_projector.linear_out" in name: lowerCAmelCase : Any = name.replace("text_projector.linear_out" , "text_projection.3" ) return name def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: # weights and biases of the key, value and query projections of vision encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase : int = key.split("." ) lowerCAmelCase : Dict = int(key_split[2] ), int(key_split[4] ) lowerCAmelCase : str = config.vision_config.hidden_size if "weight" in key: lowerCAmelCase : int = val[:dim, :] lowerCAmelCase : str = val[dim : dim * 2, :] lowerCAmelCase : Any = val[-dim:, :] else: lowerCAmelCase : Optional[int] = val[:dim] lowerCAmelCase : Any = val[dim : dim * 2] lowerCAmelCase : Any = val[-dim:] elif "in_proj" in key: # weights and biases of the key, value and query projections of text encoder's attention layers require special treatment: # we need to split them up into separate matrices/vectors lowerCAmelCase : List[str] = key.split("." ) lowerCAmelCase : Any = int(key_split[3] ) lowerCAmelCase : int = config.text_config.hidden_size if "weight" in key: lowerCAmelCase : List[Any] = val[:dim, :] lowerCAmelCase : Optional[int] = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : List[str] = val[:dim] lowerCAmelCase : str = val[dim : dim * 2] lowerCAmelCase : Optional[int] = val[-dim:] else: lowerCAmelCase : Dict = rename_key(SCREAMING_SNAKE_CASE ) # squeeze if necessary if ( "text_projection.0" in new_name or "text_projection.3" in new_name or "visual_projection.0" in new_name or "visual_projection.3" in new_name ): lowerCAmelCase : Dict = val.squeeze_() else: lowerCAmelCase : Optional[int] = val return orig_state_dict def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase : str = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int="groupvit-gcc-yfcc" , SCREAMING_SNAKE_CASE : Dict=False ): '''simple docstring''' lowerCAmelCase : List[str] = GroupViTConfig() lowerCAmelCase : Dict = GroupViTModel(SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase : List[Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : Any = convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) assert missing_keys == ["text_model.embeddings.position_ids"] assert (unexpected_keys == ["multi_label_logit_scale"]) or (len(SCREAMING_SNAKE_CASE ) == 0) # verify result lowerCAmelCase : Optional[Any] = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32" ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Optional[int] = processor(text=["a photo of a cat", "a photo of a dog"] , images=SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , return_tensors="pt" ) with torch.no_grad(): lowerCAmelCase : Any = model(**SCREAMING_SNAKE_CASE ) if model_name == "groupvit-gcc-yfcc": lowerCAmelCase : Tuple = torch.tensor([[13.3_523, 6.3_629]] ) elif model_name == "groupvit-gcc-redcaps": lowerCAmelCase : List[Any] = torch.tensor([[16.1_873, 8.6_230]] ) else: raise ValueError(f"""Model name {model_name} not supported.""" ) assert torch.allclose(outputs.logits_per_image , SCREAMING_SNAKE_CASE , atol=1E-3 ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print("Successfully saved processor and model to" , SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) processor.push_to_hub(SCREAMING_SNAKE_CASE , organization="nielsr" ) model.push_to_hub(SCREAMING_SNAKE_CASE , organization="nielsr" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to dump the processor and PyTorch model.''' ) parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to GroupViT checkpoint''') parser.add_argument( '''--model_name''', default='''groupvit-gccy-fcc''', type=str, help='''Name of the model. Expecting either \'groupvit-gcc-yfcc\' or \'groupvit-gcc-redcaps\'''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub using the provided `model_name`.''', ) lowerCAmelCase__ = parser.parse_args() convert_groupvit_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
719
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
0
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : str = 0 lowerCAmelCase : Any = len(SCREAMING_SNAKE_CASE ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: lowerCAmelCase : Optional[Any] = i + 1 else: lowerCAmelCase : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"{two_pointer([2, 7, 11, 15], 9) = }")
720
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : List[str] =StableDiffusionXLImgaImgPipeline a : Optional[int] =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a : int =PipelineTesterMixin.required_optional_params - {"latents"} a : Tuple =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a : Optional[int] =IMAGE_TO_IMAGE_IMAGE_PARAMS a : List[Any] =IMAGE_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , addition_embed_type="text_time" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCAmelCase : Optional[int] = EulerDiscreteScheduler( beta_start=0.00085 , beta_end=0.012 , steps_offset=1 , beta_schedule="scaled_linear" , timestep_spacing="leading" , ) torch.manual_seed(0 ) lowerCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase : Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=32 , ) lowerCAmelCase : Optional[Any] = CLIPTextModel(snake_case__ ) lowerCAmelCase : Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTextModelWithProjection(snake_case__ ) lowerCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" , local_files_only=snake_case__ ) lowerCAmelCase : Union[str, Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_encoder_2": text_encoder_a, "tokenizer_2": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : int = image / 2 + 0.5 if str(snake_case__ ).startswith("mps" ): lowerCAmelCase : str = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : List[str] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 5.0, "output_type": "numpy", "strength": 0.75, } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase : str = self.get_dummy_components() lowerCAmelCase : List[str] = StableDiffusionXLImgaImgPipeline(**snake_case__ ) lowerCAmelCase : List[str] = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Union[str, Any] = sd_pipe(**snake_case__ ).images lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase : str = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.get_dummy_components() lowerCAmelCase : str = StableDiffusionXLImgaImgPipeline(**snake_case__ ) lowerCAmelCase : str = sd_pipe.to(snake_case__ ) lowerCAmelCase : Dict = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) # forward without prompt embeds lowerCAmelCase : str = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : Tuple = 3 * ["this is a negative prompt"] lowerCAmelCase : Tuple = negative_prompt lowerCAmelCase : Optional[Any] = 3 * [inputs["prompt"]] lowerCAmelCase : Tuple = sd_pipe(**snake_case__ ) lowerCAmelCase : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCAmelCase : Tuple = self.get_dummy_inputs(snake_case__ ) lowerCAmelCase : str = 3 * ["this is a negative prompt"] lowerCAmelCase : List[Any] = 3 * [inputs.pop("prompt" )] ( lowerCAmelCase ) : Tuple = sd_pipe.encode_prompt(snake_case__ , negative_prompt=snake_case__ ) lowerCAmelCase : List[Any] = sd_pipe( **snake_case__ , prompt_embeds=snake_case__ , negative_prompt_embeds=snake_case__ , pooled_prompt_embeds=snake_case__ , negative_pooled_prompt_embeds=snake_case__ , ) lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self , snake_case__ , snake_case__="cpu" , snake_case__=torch.floataa , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Union[str, Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : int = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 64, 64) ) lowerCAmelCase : List[Any] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) lowerCAmelCase : Dict = { "prompt": "a photograph of an astronaut riding a horse", "latents": latents, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-base" ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Optional[int] = self.get_inputs(snake_case__ ) lowerCAmelCase : Dict = pipe(**snake_case__ ).images lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCAmelCase : List[Any] = np.array([0.49493, 0.47896, 0.40798, 0.54214, 0.53212, 0.48202, 0.47656, 0.46329, 0.48506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration lowerCAmelCase__ = HfArgumentParser(InitializationArguments) lowerCAmelCase__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks lowerCAmelCase__ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) lowerCAmelCase__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config lowerCAmelCase__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=2 , snake_case__=True , snake_case__=False , snake_case__=10 , snake_case__=3 , snake_case__=32 * 8 , snake_case__=32 * 8 , snake_case__=4 , snake_case__=64 , ): """simple docstring""" lowerCAmelCase : Tuple = parent lowerCAmelCase : List[str] = batch_size lowerCAmelCase : List[str] = is_training lowerCAmelCase : str = use_auxiliary_loss lowerCAmelCase : Any = num_queries lowerCAmelCase : Union[str, Any] = num_channels lowerCAmelCase : Union[str, Any] = min_size lowerCAmelCase : Tuple = max_size lowerCAmelCase : int = num_labels lowerCAmelCase : List[Any] = hidden_dim lowerCAmelCase : List[str] = hidden_dim def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( snake_case__ ) lowerCAmelCase : Any = torch.ones([self.batch_size, self.min_size, self.max_size] , device=snake_case__ ) lowerCAmelCase : Any = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=snake_case__ ) > 0.5 ).float() lowerCAmelCase : Union[str, Any] = (torch.rand((self.batch_size, self.num_labels) , device=snake_case__ ) > 0.5).long() lowerCAmelCase : int = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase : Optional[Any] = self.num_queries lowerCAmelCase : Any = self.num_labels lowerCAmelCase : Tuple = [1, 1, 1, 1] lowerCAmelCase : Optional[int] = self.num_channels lowerCAmelCase : Tuple = 64 lowerCAmelCase : Tuple = 128 lowerCAmelCase : Optional[int] = self.hidden_dim lowerCAmelCase : Dict = self.hidden_dim lowerCAmelCase : Dict = self.hidden_dim return config def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.prepare_config_and_inputs() lowerCAmelCase : Union[str, Any] = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = output.encoder_hidden_states lowerCAmelCase : int = output.pixel_decoder_hidden_states lowerCAmelCase : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(snake_case__ ) , config.decoder_layers ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): """simple docstring""" with torch.no_grad(): lowerCAmelCase : int = MaskaFormerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Dict = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowerCAmelCase : List[str] = model(snake_case__ , output_hidden_states=snake_case__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(config=snake_case__ ) model.to(snake_case__ ) model.eval() def comm_check_on_output(snake_case__ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(pixel_values=snake_case__ , pixel_mask=snake_case__ ) lowerCAmelCase : List[str] = model(snake_case__ ) comm_check_on_output(snake_case__ ) lowerCAmelCase : str = model( pixel_values=snake_case__ , pixel_mask=snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) comm_check_on_output(snake_case__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =(MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () a : str ={"feature-extraction": MaskaFormerModel} if is_torch_available() else {} a : Dict =False a : str =False a : Dict =False a : int =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = MaskaFormerModelTester(self ) lowerCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*snake_case__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former is not a generative model" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Optional[int] = model_class(snake_case__ ) lowerCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase : Union[str, Any] = MaskaFormerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = (self.model_tester.min_size,) * 2 lowerCAmelCase : Optional[int] = { "pixel_values": torch.randn((2, 3, *size) , device=snake_case__ ), "mask_labels": torch.randn((2, 10, *size) , device=snake_case__ ), "class_labels": torch.zeros(2 , 10 , device=snake_case__ ).long(), } lowerCAmelCase : List[Any] = self.model_tester.get_config() lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation(snake_case__ ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) self.assertTrue(outputs.loss is not None ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(snake_case__ , **snake_case__ , output_hidden_states=snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : int = model_class(snake_case__ ).to(snake_case__ ) lowerCAmelCase : Tuple = model(**snake_case__ , output_attentions=snake_case__ ) self.assertTrue(outputs.attentions is not None ) def lowercase__ ( self ): """simple docstring""" if not self.model_tester.is_training: return lowerCAmelCase : Tuple = self.all_model_classes[1] lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Optional[int] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() lowerCAmelCase : List[str] = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ).loss loss.backward() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.all_model_classes[1] lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() lowerCAmelCase : Dict = True lowerCAmelCase : Tuple = True lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ).to(snake_case__ ) model.train() lowerCAmelCase : Optional[Any] = model(snake_case__ , mask_labels=snake_case__ , class_labels=snake_case__ ) lowerCAmelCase : Any = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase : str = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase : int = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=snake_case__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCAmelCase__ = 1e-4 def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return "facebook/mask2former-swin-small-coco-instance" @cached_property def lowercase__ ( self ): """simple docstring""" return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(snake_case__ ) lowerCAmelCase : List[Any] = self.default_image_processor lowerCAmelCase : Tuple = prepare_img() lowerCAmelCase : Optional[Any] = image_processor(snake_case__ , return_tensors="pt" ).to(snake_case__ ) lowerCAmelCase : List[str] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowerCAmelCase : Optional[int] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) lowerCAmelCase : str = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(snake_case__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowerCAmelCase : Dict = self.default_image_processor lowerCAmelCase : Optional[int] = prepare_img() lowerCAmelCase : List[str] = image_processor(snake_case__ , return_tensors="pt" ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(snake_case__ , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) # masks_queries_logits lowerCAmelCase : Union[str, Any] = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase : int = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] lowerCAmelCase : Dict = torch.tensor(snake_case__ ).to(snake_case__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , snake_case__ , atol=snake_case__ ) ) # class_queries_logits lowerCAmelCase : Optional[int] = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase : Union[str, Any] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , snake_case__ , atol=snake_case__ ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(snake_case__ ).eval() lowerCAmelCase : int = self.default_image_processor lowerCAmelCase : int = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase : List[str] = inputs["pixel_values"].to(snake_case__ ) lowerCAmelCase : Dict = [el.to(snake_case__ ) for el in inputs["mask_labels"]] lowerCAmelCase : str = [el.to(snake_case__ ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(**snake_case__ ) self.assertTrue(outputs.loss is not None )
701
"""simple docstring""" import random from .binary_exp_mod import bin_exp_mod def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int=1_0_0_0 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCAmelCase : int = n - 1 lowerCAmelCase : Optional[int] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCAmelCase : Optional[Any] = 0 while count < prec: lowerCAmelCase : List[str] = random.randint(2 , n - 1 ) lowerCAmelCase : Tuple = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: lowerCAmelCase : List[str] = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: lowerCAmelCase : List[str] = False break lowerCAmelCase : Optional[Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCAmelCase__ = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
681
0
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase__ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[Any] = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , "words.txt" ) lowerCAmelCase : List[Any] = "" with open(SCREAMING_SNAKE_CASE ) as f: lowerCAmelCase : int = f.readline() lowerCAmelCase : int = [word.strip("\"" ) for word in words.strip("\r\n" ).split("," )] lowerCAmelCase : Tuple = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
702
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a : CommonSchedulerState # setable values a : jnp.ndarray a : jnp.ndarray a : Optional[int] =None @classmethod def lowercase__ ( cls , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" return cls(common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ ) @dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : DDPMSchedulerState class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase ): """simple docstring""" a : Union[str, Any] =[e.name for e in FlaxKarrasDiffusionSchedulers] a : jnp.dtype @property def lowercase__ ( self ): """simple docstring""" return True @register_to_config def __init__( self , snake_case__ = 1_000 , snake_case__ = 0.0001 , snake_case__ = 0.02 , snake_case__ = "linear" , snake_case__ = None , snake_case__ = "fixed_small" , snake_case__ = True , snake_case__ = "epsilon" , snake_case__ = jnp.floataa , ): """simple docstring""" lowerCAmelCase : Any = dtype def lowercase__ ( self , snake_case__ = None ): """simple docstring""" if common is None: lowerCAmelCase : Dict = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowerCAmelCase : str = jnp.array(1.0 , dtype=self.dtype ) lowerCAmelCase : Any = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=snake_case__ , init_noise_sigma=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None ): """simple docstring""" return sample def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = () ): """simple docstring""" lowerCAmelCase : List[Any] = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowerCAmelCase : Any = (jnp.arange(0 , snake_case__ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=snake_case__ , timesteps=snake_case__ , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=None ): """simple docstring""" lowerCAmelCase : Optional[Any] = state.common.alphas_cumprod[t] lowerCAmelCase : List[str] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowerCAmelCase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowerCAmelCase : List[str] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowerCAmelCase : List[Any] = jnp.clip(snake_case__ , a_min=1e-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowerCAmelCase : List[str] = jnp.log(jnp.clip(snake_case__ , a_min=1e-20 ) ) elif variance_type == "fixed_large": lowerCAmelCase : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowerCAmelCase : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowerCAmelCase : List[str] = variance lowerCAmelCase : Dict = state.common.betas[t] lowerCAmelCase : Optional[Any] = (predicted_variance + 1) / 2 lowerCAmelCase : List[str] = frac * max_log + (1 - frac) * min_log return variance def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = True , ): """simple docstring""" lowerCAmelCase : Optional[Any] = timestep if key is None: lowerCAmelCase : Tuple = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowerCAmelCase , lowerCAmelCase : Optional[Any] = jnp.split(snake_case__ , sample.shape[1] , axis=1 ) else: lowerCAmelCase : Tuple = None # 1. compute alphas, betas lowerCAmelCase : Optional[int] = state.common.alphas_cumprod[t] lowerCAmelCase : Optional[int] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowerCAmelCase : Dict = 1 - alpha_prod_t lowerCAmelCase : Any = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowerCAmelCase : List[Any] = model_output elif self.config.prediction_type == "v_prediction": lowerCAmelCase : Tuple = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` """ " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowerCAmelCase : Optional[int] = jnp.clip(snake_case__ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : List[Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowerCAmelCase : List[str] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCAmelCase : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowerCAmelCase : Tuple = jax.random.split(snake_case__ , num=1 ) lowerCAmelCase : str = jax.random.normal(snake_case__ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(snake_case__ , snake_case__ , predicted_variance=snake_case__ ) ** 0.5) * noise lowerCAmelCase : Union[str, Any] = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowerCAmelCase : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=snake_case__ , state=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return add_noise_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): """simple docstring""" return get_velocity_common(state.common , snake_case__ , snake_case__ , snake_case__ ) def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
681
0
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ): '''simple docstring''' lowerCAmelCase : int = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=SCREAMING_SNAKE_CASE , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=SCREAMING_SNAKE_CASE ) return parser.parse_args() def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = parse_args() # Import training_script as a module. lowerCAmelCase : int = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase : Any = script_fpath.stem lowerCAmelCase : Union[str, Any] = importlib.import_module(SCREAMING_SNAKE_CASE ) # Patch sys.argv lowerCAmelCase : Tuple = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
703
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = OmegaConf.load(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE , map_location="cpu" )["model"] lowerCAmelCase : int = list(state_dict.keys() ) # extract state_dict for VQVAE lowerCAmelCase : Tuple = {} lowerCAmelCase : Dict = "first_stage_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[str] = state_dict[key] # extract state_dict for UNetLDM lowerCAmelCase : List[Any] = {} lowerCAmelCase : Tuple = "model.diffusion_model." for key in keys: if key.startswith(SCREAMING_SNAKE_CASE ): lowerCAmelCase : str = state_dict[key] lowerCAmelCase : List[str] = config.model.params.first_stage_config.params lowerCAmelCase : List[Any] = config.model.params.unet_config.params lowerCAmelCase : Union[str, Any] = VQModel(**SCREAMING_SNAKE_CASE ).eval() vqvae.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = UNetLDMModel(**SCREAMING_SNAKE_CASE ).eval() unet.load_state_dict(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=SCREAMING_SNAKE_CASE , ) lowerCAmelCase : Tuple = LDMPipeline(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) pipeline.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCAmelCase__ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
681
0
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
704
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): '''simple docstring''' return sum(e for e in range(3 , SCREAMING_SNAKE_CASE ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
681
0
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
705
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=snake_case__ , ) assert hasattr(self , "env" ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = { "enabled": True, "processes_per_host": 8, } lowerCAmelCase : List[Any] = { "enabled": True, "parameters": { "microbatches": 4, "placement_strategy": "spread", "pipeline": "interleaved", "optimize": "speed", "partitions": 4, "ddp": True, }, } lowerCAmelCase : List[Any] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options} lowerCAmelCase : Optional[Any] = "trainer" if self.script == "run_glue.py" else "smtrainer" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=snake_case__ , instance_type=self.instance_type , debugger_hook_config=snake_case__ , hyperparameters={ **self.env.hyperparameters, "model_name_or_path": self.model_name_or_path, "max_steps": 500, } , metric_definitions=self.env.metric_definitions , distribution=snake_case__ , py_version="py36" , ) def lowercase__ ( self , snake_case__ ): """simple docstring""" TrainingJobAnalytics(snake_case__ ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) @parameterized.expand([(1,)] ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.create_estimator(snake_case__ ) # run training estimator.fit() # result dataframe lowerCAmelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCAmelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) lowerCAmelCase : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCAmelCase : Dict = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , snake_case__ )
681
0
"""simple docstring""" import numpy as np lowerCAmelCase__ = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : List[str] = np.array(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = np.where(letter == self.SQUARE ) lowerCAmelCase : Any = np.concatenate([indexa + 1, indexa + 1] ) return indexes def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.SQUARE[indexa - 1, indexa - 1] return letter def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = message.lower() lowerCAmelCase : int = message.replace(" " , "" ) lowerCAmelCase : Union[str, Any] = message.replace("j" , "i" ) lowerCAmelCase : int = np.empty((2, len(snake_case__ )) ) for letter_index in range(len(snake_case__ ) ): lowerCAmelCase : Tuple = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase : int = numbers[0] lowerCAmelCase : Tuple = numbers[1] lowerCAmelCase : str = first_step.reshape(2 * len(snake_case__ ) ) lowerCAmelCase : Optional[Any] = "" for numbers_index in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = int(second_step[numbers_index * 2] ) lowerCAmelCase : Any = int(second_step[(numbers_index * 2) + 1] ) lowerCAmelCase : Any = self.numbers_to_letter(snake_case__ , snake_case__ ) lowerCAmelCase : List[str] = encoded_message + letter return encoded_message def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = message.lower() message.replace(" " , "" ) lowerCAmelCase : Optional[int] = np.empty(2 * len(snake_case__ ) ) for letter_index in range(len(snake_case__ ) ): lowerCAmelCase : Optional[Any] = self.letter_to_numbers(message[letter_index] ) lowerCAmelCase : Dict = numbers[0] lowerCAmelCase : str = numbers[1] lowerCAmelCase : Union[str, Any] = first_step.reshape((2, len(snake_case__ )) ) lowerCAmelCase : Any = "" for numbers_index in range(len(snake_case__ ) ): lowerCAmelCase : List[str] = int(second_step[0, numbers_index] ) lowerCAmelCase : Union[str, Any] = int(second_step[1, numbers_index] ) lowerCAmelCase : Dict = self.numbers_to_letter(snake_case__ , snake_case__ ) lowerCAmelCase : int = decoded_message + letter return decoded_message
706
"""simple docstring""" from math import factorial def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0 ): '''simple docstring''' return sum(int(SCREAMING_SNAKE_CASE ) for x in str(factorial(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
681
0
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
707
"""simple docstring""" from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = data lowerCAmelCase : Any = None def __repr__( self ): """simple docstring""" return f"""Node({self.data})""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self ): """simple docstring""" lowerCAmelCase : Tuple = None def __iter__( self ): """simple docstring""" lowerCAmelCase : Any = self.head while node: yield node.data lowerCAmelCase : Optional[int] = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(snake_case__ ) for item in self] ) def __getitem__( self , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) lowerCAmelCase : Union[str, Any] = self.head for _ in range(snake_case__ ): lowerCAmelCase : int = current.next lowerCAmelCase : List[str] = data def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(len(self ) , snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" self.insert_nth(0 , snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) lowerCAmelCase : Optional[int] = Node(snake_case__ ) if self.head is None: lowerCAmelCase : Any = new_node elif index == 0: lowerCAmelCase : Any = self.head # link new_node to head lowerCAmelCase : Union[str, Any] = new_node else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : int = temp.next lowerCAmelCase : int = temp.next lowerCAmelCase : Dict = new_node def lowercase__ ( self ): # print every node data """simple docstring""" print(self ) def lowercase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def lowercase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) lowerCAmelCase : List[Any] = self.head # default first node if index == 0: lowerCAmelCase : Optional[int] = self.head.next else: lowerCAmelCase : List[str] = self.head for _ in range(index - 1 ): lowerCAmelCase : Union[str, Any] = temp.next lowerCAmelCase : Optional[Any] = temp.next lowerCAmelCase : Any = temp.next.next return delete_node.data def lowercase__ ( self ): """simple docstring""" return self.head is None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = self.head while current: # Store the current node's next node. lowerCAmelCase : List[Any] = current.next # Make the current node's next point backwards lowerCAmelCase : Dict = prev # Make the previous node be the current node lowerCAmelCase : List[str] = current # Make the current node the next node (to progress iteration) lowerCAmelCase : int = next_node # Return prev in order to put the head at the end lowerCAmelCase : Tuple = prev def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(SCREAMING_SNAKE_CASE ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(SCREAMING_SNAKE_CASE ) == 9 assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase : Optional[Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), "dlrow olleH", 7, 5_5_5_5, 0, -192.55_555, "Hello, world!", 77.9, Node(1_0 ), None, None, 12.20, ] lowerCAmelCase : List[str] = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase : str = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase : Union[str, Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE ) assert ( str(SCREAMING_SNAKE_CASE ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def a__ ( ): '''simple docstring''' from doctest import testmod testmod() lowerCAmelCase : Optional[Any] = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE ) print("\nReading/changing Node data using indexing:" ) print(f"""Element at Position 1: {linked_list[1]}""" ) lowerCAmelCase : Any = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE ) print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" ) if __name__ == "__main__": main()
681
0
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : int = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : str = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[str] = embeddings_size lowerCAmelCase : Optional[int] = hidden_sizes lowerCAmelCase : Any = depths lowerCAmelCase : Union[str, Any] = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : Union[str, Any] = hidden_act lowerCAmelCase : Union[str, Any] = num_labels lowerCAmelCase : Union[str, Any] = scope lowerCAmelCase : Any = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : str = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : int = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[int] = RegNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Tuple = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.num_labels lowerCAmelCase : int = RegNetForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[Any] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() lowerCAmelCase : Union[str, Any] = config_and_inputs lowerCAmelCase : int = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : str =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () a : int =( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) a : List[Any] =False a : Tuple =False a : Dict =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = RegNetModelTester(self ) lowerCAmelCase : int = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="RegNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="RegNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Any = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : List[Any] = [*signature.parameters.keys()] lowerCAmelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Union[str, Any] = model_class(config=snake_case__ ) for name, module in model.named_modules(): if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Dict = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Dict = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : List[Any] = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Dict = layer_type lowerCAmelCase : Tuple = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : Optional[Any] = RegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.default_image_processor lowerCAmelCase : Any = prepare_img() lowerCAmelCase : Optional[Any] = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): lowerCAmelCase : Optional[int] = model(**snake_case__ ) # verify the logits lowerCAmelCase : Tuple = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : Optional[Any] = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { '''configuration_efficientformer''': [ '''EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EfficientFormerConfig''', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''EfficientFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EfficientFormerForImageClassification''', '''EfficientFormerForImageClassificationWithTeacher''', '''EfficientFormerModel''', '''EfficientFormerPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFEfficientFormerForImageClassification''', '''TFEfficientFormerForImageClassificationWithTeacher''', '''TFEfficientFormerModel''', '''TFEfficientFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
681
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : str =GPTaTokenizer a : Optional[Any] =GPTaTokenizerFast a : List[str] =True a : List[Any] ={"add_prefix_space": True} a : int =False def lowercase__ ( self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase : Tuple = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] lowerCAmelCase : Any = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : List[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase : List[Any] = {"unk_token": "<unk>"} lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = "lower newer" lowerCAmelCase : Dict = "lower newer" return input_text, output_text def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase : str = "lower newer" lowerCAmelCase : Optional[Any] = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase : Any = tokenizer.tokenize(snake_case__ , add_prefix_space=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] lowerCAmelCase : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCAmelCase : List[str] = self.get_tokenizer() lowerCAmelCase : List[str] = self.get_rust_tokenizer(add_prefix_space=snake_case__ ) lowerCAmelCase : Optional[Any] = "lower newer" # Testing tokenization lowerCAmelCase : Any = tokenizer.tokenize(snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : Union[str, Any] = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids without special tokens lowerCAmelCase : List[str] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : Tuple = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing conversion to ids with special tokens lowerCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.encode(snake_case__ , add_prefix_space=snake_case__ ) lowerCAmelCase : Tuple = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) # Testing the unknown token lowerCAmelCase : int = tokens + [rust_tokenizer.unk_token] lowerCAmelCase : Any = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def lowercase__ ( self , *snake_case__ , **snake_case__ ): """simple docstring""" pass def lowercase__ ( self , snake_case__=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase : Dict = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) # Simple input lowerCAmelCase : Tuple = "This is a simple input" lowerCAmelCase : Optional[int] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase : Dict = ("This is a simple input", "This is a pair") lowerCAmelCase : Union[str, Any] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Simple input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" ) # Pair input self.assertRaises( snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding="max_length" , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input lowerCAmelCase : str = "This is a simple input" lowerCAmelCase : int = ["This is a simple input looooooooong", "This is a simple input"] lowerCAmelCase : Tuple = ("This is a simple input", "This is a pair") lowerCAmelCase : Tuple = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] lowerCAmelCase : List[Any] = tokenizer.pad_token_id lowerCAmelCase : List[Any] = tokenizer(snake_case__ , padding="max_length" , max_length=30 , return_tensors="np" ) lowerCAmelCase : List[str] = tokenizer(snake_case__ , padding=snake_case__ , truncate=snake_case__ , return_tensors="np" ) lowerCAmelCase : Optional[int] = tokenizer(*snake_case__ , padding="max_length" , max_length=60 , return_tensors="np" ) lowerCAmelCase : int = tokenizer(snake_case__ , padding=snake_case__ , truncate=snake_case__ , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "$$$" lowerCAmelCase : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case__ , add_bos_token=snake_case__ ) lowerCAmelCase : Optional[Any] = "This is a simple input" lowerCAmelCase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] lowerCAmelCase : Dict = tokenizer.bos_token_id lowerCAmelCase : int = tokenizer(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer(snake_case__ ) self.assertEqual(out_s.input_ids[0] , snake_case__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) lowerCAmelCase : Optional[int] = tokenizer.decode(out_s.input_ids ) lowerCAmelCase : Dict = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , snake_case__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = [self.get_tokenizer(do_lower_case=snake_case__ , add_bos_token=snake_case__ )] for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase : Dict = "Encode this." lowerCAmelCase : Dict = "This one too please." lowerCAmelCase : Tuple = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) encoded_sequence += tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) lowerCAmelCase : str = tokenizer.encode_plus( snake_case__ , snake_case__ , add_special_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , ) lowerCAmelCase : Optional[Any] = encoded_sequence_dict["input_ids"] lowerCAmelCase : Dict = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) lowerCAmelCase : List[Any] = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(snake_case__ ) ] lowerCAmelCase : str = [x for x in filtered_sequence if x is not None] self.assertEqual(snake_case__ , snake_case__ ) @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=snake_case__ ) lowerCAmelCase : Dict = "A photo of a cat" lowerCAmelCase : List[str] = tokenizer.encode( snake_case__ , ) self.assertEqual(snake_case__ , [2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("test_opt" ) lowerCAmelCase : Tuple = AutoTokenizer.from_pretrained("./test_opt" ) lowerCAmelCase : Union[str, Any] = tokenizer.encode( snake_case__ , ) self.assertEqual(snake_case__ , [2, 250, 1_345, 9, 10, 4_758] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=snake_case__ ) lowerCAmelCase : List[str] = "A photo of a cat" lowerCAmelCase : List[str] = tokenizer.encode( snake_case__ , ) # Same as above self.assertEqual(snake_case__ , [2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=snake_case__ ) lowerCAmelCase : Optional[Any] = "bos" lowerCAmelCase : Dict = tokenizer.get_vocab()["bos"] lowerCAmelCase : Optional[int] = "A photo of a cat" lowerCAmelCase : Dict = tokenizer.encode( snake_case__ , ) # We changed the bos token self.assertEqual(snake_case__ , [31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("./tok" ) lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) lowerCAmelCase : List[str] = tokenizer.encode( snake_case__ , ) self.assertEqual(snake_case__ , [31_957, 250, 1_345, 9, 10, 4_758] )
709
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) lowerCAmelCase__ = logging.getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = np.argmax(SCREAMING_SNAKE_CASE , axis=1 ) return np.sum(outputs == labels ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf_8" ) as f: lowerCAmelCase : Tuple = csv.reader(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = [] next(SCREAMING_SNAKE_CASE ) # skip the first line for line in tqdm(SCREAMING_SNAKE_CASE ): output.append((" ".join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[Any] = [] for dataset in encoded_datasets: lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) lowerCAmelCase : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) lowerCAmelCase : int = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) lowerCAmelCase : List[Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Union[str, Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] lowerCAmelCase : Tuple = with_conta lowerCAmelCase : Any = with_conta lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Dict = len(SCREAMING_SNAKE_CASE ) - 1 lowerCAmelCase : Optional[Any] = with_conta lowerCAmelCase : List[Any] = with_conta lowerCAmelCase : str = mc_label lowerCAmelCase : Dict = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(SCREAMING_SNAKE_CASE ) for t in all_inputs ) ) return tensor_datasets def a__ ( ): '''simple docstring''' lowerCAmelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--model_name" , type=SCREAMING_SNAKE_CASE , default="openai-gpt" , help="pretrained model name" ) parser.add_argument("--do_train" , action="store_true" , help="Whether to run training." ) parser.add_argument("--do_eval" , action="store_true" , help="Whether to run eval on the dev set." ) parser.add_argument( "--output_dir" , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="The output directory where the model predictions and checkpoints will be written." , ) parser.add_argument("--train_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--eval_dataset" , type=SCREAMING_SNAKE_CASE , default="" ) parser.add_argument("--seed" , type=SCREAMING_SNAKE_CASE , default=4_2 ) parser.add_argument("--num_train_epochs" , type=SCREAMING_SNAKE_CASE , default=3 ) parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=8 ) parser.add_argument("--eval_batch_size" , type=SCREAMING_SNAKE_CASE , default=1_6 ) parser.add_argument("--adam_epsilon" , default=1E-8 , type=SCREAMING_SNAKE_CASE , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , type=SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument( "--max_steps" , default=-1 , type=SCREAMING_SNAKE_CASE , help=( "If > 0: set total number of training steps to perform. Override num_train_epochs." ) , ) parser.add_argument( "--gradient_accumulation_steps" , type=SCREAMING_SNAKE_CASE , default=1 , help="Number of updates steps to accumulate before performing a backward/update pass." , ) parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=6.2_5E-5 ) parser.add_argument("--warmup_steps" , default=0 , type=SCREAMING_SNAKE_CASE , help="Linear warmup over warmup_steps." ) parser.add_argument("--lr_schedule" , type=SCREAMING_SNAKE_CASE , default="warmup_linear" ) parser.add_argument("--weight_decay" , type=SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--lm_coef" , type=SCREAMING_SNAKE_CASE , default=0.9 ) parser.add_argument("--n_valid" , type=SCREAMING_SNAKE_CASE , default=3_7_4 ) parser.add_argument("--server_ip" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) parser.add_argument("--server_port" , type=SCREAMING_SNAKE_CASE , default="" , help="Can be used for distant debugging." ) lowerCAmelCase : Tuple = parser.parse_args() print(SCREAMING_SNAKE_CASE ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) lowerCAmelCase : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) lowerCAmelCase : Optional[int] = torch.cuda.device_count() logger.info("device: {}, n_gpu {}".format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if not args.do_train and not args.do_eval: raise ValueError("At least one of `do_train` or `do_eval` must be True." ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset lowerCAmelCase : str = ["_start_", "_delimiter_", "_classify_"] lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(SCREAMING_SNAKE_CASE ) ) model.to(SCREAMING_SNAKE_CASE ) # Load and encode the datasets def tokenize_and_encode(SCREAMING_SNAKE_CASE : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(SCREAMING_SNAKE_CASE ) ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return obj return [tokenize_and_encode(SCREAMING_SNAKE_CASE ) for o in obj] logger.info("Encoding dataset..." ) lowerCAmelCase : Optional[Any] = load_rocstories_dataset(args.train_dataset ) lowerCAmelCase : int = load_rocstories_dataset(args.eval_dataset ) lowerCAmelCase : Tuple = (train_dataset, eval_dataset) lowerCAmelCase : Dict = tokenize_and_encode(SCREAMING_SNAKE_CASE ) # Compute the max input length for the Transformer lowerCAmelCase : Any = model.config.n_positions // 2 - 2 lowerCAmelCase : int = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) lowerCAmelCase : Union[str, Any] = min(SCREAMING_SNAKE_CASE , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders lowerCAmelCase : Any = pre_process_datasets(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : Tuple = tensor_datasets[0], tensor_datasets[1] lowerCAmelCase : List[str] = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = RandomSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.train_batch_size ) lowerCAmelCase : int = TensorDataset(*SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = SequentialSampler(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = DataLoader(SCREAMING_SNAKE_CASE , sampler=SCREAMING_SNAKE_CASE , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: lowerCAmelCase : int = args.max_steps lowerCAmelCase : str = args.max_steps // (len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps) + 1 else: lowerCAmelCase : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) // args.gradient_accumulation_steps * args.num_train_epochs lowerCAmelCase : Dict = list(model.named_parameters() ) lowerCAmelCase : str = ["bias", "LayerNorm.bias", "LayerNorm.weight"] lowerCAmelCase : Tuple = [ { "params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], "weight_decay": args.weight_decay, }, {"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], "weight_decay": 0.0}, ] lowerCAmelCase : Tuple = AdamW(SCREAMING_SNAKE_CASE , lr=args.learning_rate , eps=args.adam_epsilon ) lowerCAmelCase : str = get_linear_schedule_with_warmup( SCREAMING_SNAKE_CASE , num_warmup_steps=args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE ) if args.do_train: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="Epoch" ): lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = tqdm(SCREAMING_SNAKE_CASE , desc="Training" ) for step, batch in enumerate(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Tuple = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = batch lowerCAmelCase : Optional[int] = model(SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() lowerCAmelCase : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 lowerCAmelCase : int = "Training loss: {:.2e} lr: {:.2e}".format(SCREAMING_SNAKE_CASE , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer lowerCAmelCase : Optional[int] = model.module if hasattr(SCREAMING_SNAKE_CASE , "module" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` lowerCAmelCase : Any = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = os.path.join(args.output_dir , SCREAMING_SNAKE_CASE ) torch.save(model_to_save.state_dict() , SCREAMING_SNAKE_CASE ) model_to_save.config.to_json_file(SCREAMING_SNAKE_CASE ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned lowerCAmelCase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) lowerCAmelCase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(SCREAMING_SNAKE_CASE ) if args.do_eval: model.eval() lowerCAmelCase , lowerCAmelCase : Optional[int] = 0, 0 lowerCAmelCase , lowerCAmelCase : Any = 0, 0 for batch in tqdm(SCREAMING_SNAKE_CASE , desc="Evaluating" ): lowerCAmelCase : List[Any] = tuple(t.to(SCREAMING_SNAKE_CASE ) for t in batch ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = batch with torch.no_grad(): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = model( SCREAMING_SNAKE_CASE , mc_token_ids=SCREAMING_SNAKE_CASE , lm_labels=SCREAMING_SNAKE_CASE , mc_labels=SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = mc_logits.detach().cpu().numpy() lowerCAmelCase : List[str] = mc_labels.to("cpu" ).numpy() lowerCAmelCase : Any = accuracy(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 lowerCAmelCase : List[Any] = eval_loss / nb_eval_steps lowerCAmelCase : List[Any] = eval_accuracy / nb_eval_examples lowerCAmelCase : Tuple = tr_loss / nb_tr_steps if args.do_train else None lowerCAmelCase : Any = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy, "train_loss": train_loss} lowerCAmelCase : List[str] = os.path.join(args.output_dir , "eval_results.txt" ) with open(SCREAMING_SNAKE_CASE , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , SCREAMING_SNAKE_CASE , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) if __name__ == "__main__": main()
681
0
"""simple docstring""" import os def a__ ( SCREAMING_SNAKE_CASE : int ) -> Any: '''simple docstring''' lowerCAmelCase : Union[str, Any] = len(grid[0] ) lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : List[str] = 0 lowerCAmelCase : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(SCREAMING_SNAKE_CASE ): for j in range(n_rows - 3 ): lowerCAmelCase : Optional[int] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCAmelCase : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCAmelCase : Optional[int] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCAmelCase : Optional[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCAmelCase : int = max( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if max_product > largest: lowerCAmelCase : List[Any] = max_product return largest def a__ ( ) -> Tuple: '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] with open(os.path.dirname(SCREAMING_SNAKE_CASE ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCAmelCase : Dict = [[int(SCREAMING_SNAKE_CASE ) for i in grid[j]] for j in range(len(SCREAMING_SNAKE_CASE ) )] return largest_product(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(solution())
710
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[Any] ="informer" a : int ={ "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , snake_case__ = None , snake_case__ = None , snake_case__ = "student_t" , snake_case__ = "nll" , snake_case__ = 1 , snake_case__ = None , snake_case__ = "mean" , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = 64 , snake_case__ = 32 , snake_case__ = 32 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = 2 , snake_case__ = True , snake_case__ = "gelu" , snake_case__ = 0.05 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 0.1 , snake_case__ = 100 , snake_case__ = 0.02 , snake_case__=True , snake_case__ = "prob" , snake_case__ = 5 , snake_case__ = True , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = prediction_length lowerCAmelCase : Union[str, Any] = context_length or prediction_length lowerCAmelCase : List[Any] = distribution_output lowerCAmelCase : Optional[int] = loss lowerCAmelCase : Optional[int] = input_size lowerCAmelCase : str = num_time_features lowerCAmelCase : Any = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] lowerCAmelCase : Dict = scaling lowerCAmelCase : List[str] = num_dynamic_real_features lowerCAmelCase : Dict = num_static_real_features lowerCAmelCase : Dict = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[str] = cardinality else: lowerCAmelCase : Optional[Any] = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(snake_case__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) lowerCAmelCase : List[Any] = embedding_dimension else: lowerCAmelCase : Dict = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] lowerCAmelCase : List[Any] = num_parallel_samples # Transformer architecture configuration lowerCAmelCase : Any = input_size * len(self.lags_sequence ) + self._number_of_features lowerCAmelCase : str = d_model lowerCAmelCase : List[str] = encoder_attention_heads lowerCAmelCase : int = decoder_attention_heads lowerCAmelCase : Optional[Any] = encoder_ffn_dim lowerCAmelCase : Dict = decoder_ffn_dim lowerCAmelCase : int = encoder_layers lowerCAmelCase : Union[str, Any] = decoder_layers lowerCAmelCase : Tuple = dropout lowerCAmelCase : List[Any] = attention_dropout lowerCAmelCase : int = activation_dropout lowerCAmelCase : Union[str, Any] = encoder_layerdrop lowerCAmelCase : int = decoder_layerdrop lowerCAmelCase : Optional[int] = activation_function lowerCAmelCase : int = init_std lowerCAmelCase : Optional[Any] = use_cache # Informer lowerCAmelCase : Dict = attention_type lowerCAmelCase : Any = sampling_factor lowerCAmelCase : Optional[int] = distil super().__init__(is_encoder_decoder=snake_case__ , **snake_case__ ) @property def lowercase__ ( self ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
711
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if num < 0: return False lowerCAmelCase : int = num lowerCAmelCase : int = 0 while num > 0: lowerCAmelCase : Dict = rev_num * 1_0 + (num % 1_0) num //= 1_0 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
681
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate lowerCAmelCase__ = trt.Logger(trt.Logger.WARNING) lowerCAmelCase__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) lowerCAmelCase__ = parser.parse_args() if args.tokenizer_name: lowerCAmelCase__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) lowerCAmelCase__ = args.per_device_eval_batch_size lowerCAmelCase__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties lowerCAmelCase__ = True lowerCAmelCase__ = '''temp_engine/bert-fp32.engine''' if args.fpaa: lowerCAmelCase__ = '''temp_engine/bert-fp16.engine''' if args.inta: lowerCAmelCase__ = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') lowerCAmelCase__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network lowerCAmelCase__ = [network.get_input(i) for i in range(network.num_inputs)] lowerCAmelCase__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: lowerCAmelCase__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) lowerCAmelCase__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) lowerCAmelCase__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = np.asarray(inputs["input_ids"] , dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) lowerCAmelCase : List[str] = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time lowerCAmelCase : Dict = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : str = time.time() lowerCAmelCase : Optional[Any] = end_time - start_time lowerCAmelCase : Optional[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. lowerCAmelCase__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. lowerCAmelCase__ = raw_datasets['''validation'''].column_names lowerCAmelCase__ = '''question''' if '''question''' in column_names else column_names[0] lowerCAmelCase__ = '''context''' if '''context''' in column_names else column_names[1] lowerCAmelCase__ = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). lowerCAmelCase__ = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) lowerCAmelCase__ = min(args.max_seq_length, tokenizer.model_max_length) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : str = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : Optional[Any] = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Dict = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : List[Any] = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : Optional[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples lowerCAmelCase__ = raw_datasets['''validation'''] # Validation Feature Creation lowerCAmelCase__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) lowerCAmelCase__ = default_data_collator lowerCAmelCase__ = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) lowerCAmelCase__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any]="eval" ): '''simple docstring''' lowerCAmelCase : int = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : List[str] = [ {"id": k, "prediction_text": v, "no_answer_probability": 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[str] = [{"id": k, "prediction_text": v} for k, v in predictions.items()] lowerCAmelCase : Union[str, Any] = [{"id": ex["id"], "answers": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. lowerCAmelCase__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer lowerCAmelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) lowerCAmelCase__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) lowerCAmelCase__ = cuda.mem_alloc(h_outputa.nbytes) lowerCAmelCase__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. lowerCAmelCase__ = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F" Num examples = {len(eval_dataset)}") logger.info(F" Batch size = {args.per_device_eval_batch_size}") lowerCAmelCase__ = 0.0 lowerCAmelCase__ = 0 lowerCAmelCase__ = timeit.default_timer() lowerCAmelCase__ = None for step, batch in enumerate(eval_dataloader): lowerCAmelCase__ ,lowerCAmelCase__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 lowerCAmelCase__ ,lowerCAmelCase__ = outputs lowerCAmelCase__ = torch.tensor(start_logits) lowerCAmelCase__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered lowerCAmelCase__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) lowerCAmelCase__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) lowerCAmelCase__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) lowerCAmelCase__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: lowerCAmelCase__ = nested_truncate(all_preds, len(eval_dataset)) lowerCAmelCase__ = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1_000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1_000)) logger.info('''Total Number of Inference = %d''', niter) lowerCAmelCase__ = post_processing_function(eval_examples, eval_dataset, all_preds) lowerCAmelCase__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F"Evaluation metrics: {eval_metric}")
712
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
681
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''t5-small''': '''https://huggingface.co/t5-small/resolve/main/tokenizer.json''', '''t5-base''': '''https://huggingface.co/t5-base/resolve/main/tokenizer.json''', '''t5-large''': '''https://huggingface.co/t5-large/resolve/main/tokenizer.json''', '''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/tokenizer.json''', '''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/tokenizer.json''', }, } # TODO(PVP) - this should be removed in Transformers v5 lowerCAmelCase__ = { '''t5-small''': 512, '''t5-base''': 512, '''t5-large''': 512, '''t5-3b''': 512, '''t5-11b''': 512, } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[str] =VOCAB_FILES_NAMES a : Optional[int] =PRETRAINED_VOCAB_FILES_MAP a : Dict =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : str =["input_ids", "attention_mask"] a : int =TaTokenizer a : List[int] =[] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="</s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__=100 , snake_case__=None , **snake_case__ , ): """simple docstring""" if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase : Any = [f"""<extra_id_{i}>""" for i in range(snake_case__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase : List[str] = len(set(filter(lambda snake_case__ : bool("extra_id_" in str(snake_case__ ) ) , snake_case__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f"""Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are""" " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( snake_case__ , tokenizer_file=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , extra_ids=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) lowerCAmelCase : int = vocab_file lowerCAmelCase : int = False if not self.vocab_file else True lowerCAmelCase : Union[str, Any] = extra_ids @staticmethod def lowercase__ ( snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase : List[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f""" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this""" " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f""" {pretrained_model_name_or_path} automatically truncating your input to""" f""" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences""" f""" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with""" " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , snake_case__ , ) return max_model_length def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase : Optional[int] = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) logger.info(f"""Copy vocab file to {out_vocab_file}""" ) return (out_vocab_file,) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase : Dict = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Tuple = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowercase__ ( self ): """simple docstring""" return list( set(filter(lambda snake_case__ : bool(re.search(r"<extra_id_\d+>" , snake_case__ ) ) is not None , self.additional_special_tokens ) ) ) def lowercase__ ( self ): """simple docstring""" return [self.convert_tokens_to_ids(snake_case__ ) for token in self.get_sentinel_tokens()]
713
"""simple docstring""" import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowerCAmelCase__ = object() # For specifying empty leaf dict `{}` lowerCAmelCase__ = object() def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' lowerCAmelCase : Optional[int] = tuple((re.compile(x + "$" ) for x in qs) ) for i in range(len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE ) + 1 ): lowerCAmelCase : int = [x.match(SCREAMING_SNAKE_CASE ) for x, y in zip(SCREAMING_SNAKE_CASE , ks[i:] )] if matches and all(SCREAMING_SNAKE_CASE ): return True return False def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def replace(SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict ): for rule, replacement in rules: if _match(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return replacement return val return replace def a__ ( ): '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), (("transformer", "wte", "embedding"), P("mp" , SCREAMING_SNAKE_CASE )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("attention", "out_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(SCREAMING_SNAKE_CASE , "mp" )), (("mlp", "c_fc", "bias"), P("mp" )), (("mlp", "c_proj", "kernel"), P("mp" , SCREAMING_SNAKE_CASE )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' lowerCAmelCase : Any = _get_partition_rules() lowerCAmelCase : Tuple = _replacement_rules(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = {k: _unmatched for k in flatten_dict(SCREAMING_SNAKE_CASE )} lowerCAmelCase : List[Any] = {k: replace(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(SCREAMING_SNAKE_CASE ) )
681
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''bigscience/bloom''': '''https://huggingface.co/bigscience/bloom/resolve/main/config.json''', '''bigscience/bloom-560m''': '''https://huggingface.co/bigscience/bloom-560m/blob/main/config.json''', '''bigscience/bloom-1b1''': '''https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json''', '''bigscience/bloom-1b7''': '''https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json''', '''bigscience/bloom-3b''': '''https://huggingface.co/bigscience/bloom-3b/blob/main/config.json''', '''bigscience/bloom-7b1''': '''https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] ="bloom" a : Tuple =["past_key_values"] a : Optional[Any] ={ "num_hidden_layers": "n_layer", "num_attention_heads": "n_head", } def __init__( self , snake_case__=250_880 , snake_case__=64 , snake_case__=2 , snake_case__=8 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=0.0 , snake_case__=0.0 , snake_case__=1 , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase : int = vocab_size # Backward compatibility with n_embed kwarg lowerCAmelCase : Any = kwargs.pop("n_embed" , snake_case__ ) lowerCAmelCase : Optional[int] = hidden_size if n_embed is None else n_embed lowerCAmelCase : Dict = n_layer lowerCAmelCase : Optional[Any] = n_head lowerCAmelCase : Any = layer_norm_epsilon lowerCAmelCase : int = initializer_range lowerCAmelCase : Optional[int] = use_cache lowerCAmelCase : Dict = pretraining_tp lowerCAmelCase : str = apply_residual_connection_post_layernorm lowerCAmelCase : Optional[int] = hidden_dropout lowerCAmelCase : Dict = attention_dropout lowerCAmelCase : Union[str, Any] = bos_token_id lowerCAmelCase : Optional[int] = eos_token_id lowerCAmelCase : Optional[int] = slow_but_exact super().__init__(bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =version.parse("1.12" ) def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None , snake_case__ = False , ): """simple docstring""" super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , "pad_token_id" , snake_case__ ): # TODO: how to do that better? lowerCAmelCase : Union[str, Any] = 0 @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(snake_case__ , direction="inputs" , inverted_values_shape=snake_case__ ) lowerCAmelCase : List[Any] = {0: "batch", 1: "past_sequence + sequence"} else: lowerCAmelCase : Any = {0: "batch", 1: "sequence"} return common_inputs @property def lowercase__ ( self ): """simple docstring""" return self._config.n_layer @property def lowercase__ ( self ): """simple docstring""" return self._config.n_head @property def lowercase__ ( self ): """simple docstring""" return 1e-3 def lowercase__ ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ): """simple docstring""" lowerCAmelCase : int = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() lowerCAmelCase : Any = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCAmelCase : Any = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCAmelCase : int = seqlen + 2 lowerCAmelCase : Optional[int] = self._config.hidden_size // self.num_attention_heads lowerCAmelCase : Any = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) lowerCAmelCase : int = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) lowerCAmelCase : Optional[int] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] lowerCAmelCase : Union[str, Any] = common_inputs["attention_mask"] if self.use_past: lowerCAmelCase : List[Any] = ordered_inputs["attention_mask"].dtype lowerCAmelCase : Optional[int] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def lowercase__ ( self ): """simple docstring""" return 13
714
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
681
0
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , "schedulers/" ) ) lowerCAmelCase : List[str] = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , "src/diffusers/schedulers/scheduling_ddpm.py" ) , os.path.join(self.diffusers_dir , "schedulers/scheduling_ddpm.py" ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = "src/diffusers" shutil.rmtree(self.diffusers_dir ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): """simple docstring""" lowerCAmelCase : Union[str, Any] = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowerCAmelCase : str = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowerCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) lowerCAmelCase : int = black.format_str(snake_case__ , mode=snake_case__ ) lowerCAmelCase : Dict = os.path.join(self.diffusers_dir , "new_code.py" ) with open(snake_case__ , "w" , newline="\n" ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , "r" ) as f: self.assertTrue(f.read() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = check_copies.find_code_in_diffusers("schedulers.scheduling_ddpm.DDPMSchedulerOutput" ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput" , "DDPMSchedulerOutput" , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , re.sub("DDPM" , "Test" , snake_case__ ) , ) # Copy consistency with a really long name lowerCAmelCase : Union[str, Any] = "TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub("Bert" , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test" , "TestSchedulerOutput" , snake_case__ , overwrite_result=re.sub("DDPM" , "Test" , snake_case__ ) , )
715
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) while cur > 1: # Find the maximum number in arr lowerCAmelCase : List[str] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCAmelCase : str = arr[mi::-1] + arr[mi + 1 : len(SCREAMING_SNAKE_CASE )] # Reverse whole list lowerCAmelCase : str = arr[cur - 1 :: -1] + arr[cur : len(SCREAMING_SNAKE_CASE )] cur -= 1 return arr if __name__ == "__main__": lowerCAmelCase__ = input('''Enter numbers separated by a comma:\n''').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(''',''')] print(pancake_sort(unsorted))
681
0
"""simple docstring""" import re def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : List[str] = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
716
"""simple docstring""" from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
681
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =WavaVecaPhonemeCTCTokenizer a : List[str] =False def lowercase__ ( self ): """simple docstring""" super().setUp() lowerCAmelCase : Dict = ( "<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː " "ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː " "ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 " "oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ " "pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ " "yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ " "əʊ S ɡʲ onɡ2 u\" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ " "ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ " "ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ " "uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ " "ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ " "ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ " "ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4" ).split(" " ) lowerCAmelCase : int = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) lowerCAmelCase : Union[str, Any] = {"pad_token": "<pad>", "unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>"} lowerCAmelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) def lowercase__ ( self , snake_case__ , snake_case__=False , snake_case__=20 , snake_case__=5 ): """simple docstring""" lowerCAmelCase : List[Any] = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=snake_case__ )) for i in range(len(snake_case__ ) )] lowerCAmelCase : Dict = list(filter(lambda snake_case__ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=snake_case__ ) , snake_case__ ) ) if max_length is not None and len(snake_case__ ) > max_length: lowerCAmelCase : List[str] = toks[:max_length] if min_length is not None and len(snake_case__ ) < min_length and len(snake_case__ ) > 0: while len(snake_case__ ) < min_length: lowerCAmelCase : Optional[int] = toks + toks # toks_str = [t[1] for t in toks] lowerCAmelCase : str = [t[0] for t in toks] # Ensure consistency lowerCAmelCase : int = tokenizer.decode(snake_case__ , clean_up_tokenization_spaces=snake_case__ ) if " " not in output_txt and len(snake_case__ ) > 1: lowerCAmelCase : Optional[int] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=snake_case__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=snake_case__ ) ) if with_prefix_space: lowerCAmelCase : int = " " + output_txt lowerCAmelCase : Optional[Any] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) return output_txt, output_ids def lowercase__ ( self , **snake_case__ ): """simple docstring""" kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) # check adding a single token tokenizer.add_tokens("xxx" ) lowerCAmelCase : Any = tokenizer("m xxx ɪ" , do_phonemize=snake_case__ ).input_ids self.assertEqual(snake_case__ , [13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(["aaa", "bbb", "ccc"] ) lowerCAmelCase : Tuple = tokenizer("m aaa ɪ ccc" , do_phonemize=snake_case__ ).input_ids self.assertEqual(snake_case__ , [13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa lowerCAmelCase : Union[str, Any] = tokenizer("maɪ c" , do_phonemize=snake_case__ ).input_ids self.assertEqual(snake_case__ , [3, 200] ) # mai should be <unk> (=3) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase : Optional[Any] = "Hello how are you" lowerCAmelCase : List[str] = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) self.assertEqual(snake_case__ , "h ə l oʊ h aʊ ɑːɹ j uː" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase : Any = "Hello how are you" lowerCAmelCase : int = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(snake_case__ ).input_ids , tokenizer(snake_case__ , do_phonemize=snake_case__ ).input_ids ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase : Optional[Any] = "Hello how are you" lowerCAmelCase : Dict = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) lowerCAmelCase : List[Any] = tokenizer.decode(tokenizer(snake_case__ ).input_ids ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] lowerCAmelCase : Tuple = tokenizer.decode(sample_ids[0] ) lowerCAmelCase : Tuple = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , batch_tokens[0] ) self.assertEqual(snake_case__ , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase : Optional[int] = "Hello how are you" lowerCAmelCase : Any = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) self.assertEqual(snake_case__ , "h ə l oʊ | h aʊ | ɑːɹ | j uː |" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase : Optional[int] = "Hello how are you" lowerCAmelCase : str = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) self.assertEqual(tokenizer(snake_case__ ).input_ids , tokenizer(snake_case__ , do_phonemize=snake_case__ ).input_ids ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off lowerCAmelCase : Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter lowerCAmelCase : List[Any] = tokenizer.decode(sample_ids[0] ) lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , batch_tokens[0] ) self.assertEqual(snake_case__ , ["k s ɾ ɾ l ɭʲ", "j ð s j ð s oːɹ"] ) # decode with no word_del_token filter lowerCAmelCase : List[Any] = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=snake_case__ ) lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(snake_case__ , filter_word_delimiter_token=snake_case__ ) self.assertEqual(snake_case__ , batch_tokens[0] ) self.assertEqual(snake_case__ , ["k s ɾ | ɾ l | ɭʲ", "| j ð | s j ð s oːɹ"] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase : List[Any] = "Hello how are you" lowerCAmelCase : int = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) lowerCAmelCase : Optional[Any] = tokenizer.decode(tokenizer(snake_case__ ).input_ids , filter_word_delimiter_token=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token="|" ) tokenizer.add_tokens("|" ) lowerCAmelCase : Optional[int] = "Hello how are you" lowerCAmelCase : List[Any] = tokenizer.phonemize(snake_case__ , phonemizer_lang="en-us" ) lowerCAmelCase : Optional[int] = tokenizer.decode(tokenizer(snake_case__ ).input_ids , filter_word_delimiter_token=snake_case__ ) self.assertEqual(" ".join([p.strip() for p in phonemes.split(" |" )] ).strip() , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained( "facebook/wav2vec2-lv-60-espeak-cv-ft" , word_delimiter_token=snake_case__ ) lowerCAmelCase : Optional[Any] = "Hello how are you" lowerCAmelCase : Dict = tokenizer(snake_case__ , phonemizer_lang="en-us" ).input_ids lowerCAmelCase : Tuple = tokenizer(snake_case__ , phonemizer_lang="fr-fr" ).input_ids self.assertNotEqual(snake_case__ , snake_case__ ) lowerCAmelCase : str = tokenizer.decode(snake_case__ ) lowerCAmelCase : Optional[Any] = tokenizer.decode(snake_case__ ) self.assertEqual(snake_case__ , "h ə l oʊ h aʊ ɑːɹ j uː" ) self.assertEqual(snake_case__ , "ɛ l o h aʊ a ʁ j u" ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) lowerCAmelCase : Optional[int] = "Hello how Are you" lowerCAmelCase : Optional[Any] = "hello how are you" lowerCAmelCase : Tuple = tokenizer(snake_case__ ).input_ids lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ ).input_ids self.assertEqual(snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = self.tokenizer_class.from_pretrained("facebook/wav2vec2-lv-60-espeak-cv-ft" ) tokenizer.add_tokens(["!", "?"] ) tokenizer.add_special_tokens({"cls_token": "$$$"} ) # fmt: off lowerCAmelCase : Any = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on lowerCAmelCase : Dict = tokenizer.batch_decode(snake_case__ ) self.assertEqual(snake_case__ , ["k s ɾ ɾ l ɭʲ!?!? $$$", "j ð s j ð s oːɹ $$$"] ) @staticmethod def lowercase__ ( snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Union[str, Any] = [d[key] for d in offsets] return retrieved_list def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_tokenizer(word_delimiter_token="|" ) tokenizer.add_tokens("|" ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" lowerCAmelCase : Tuple = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on lowerCAmelCase : Optional[int] = tokenizer.decode(snake_case__ , output_char_offsets=snake_case__ , filter_word_delimiter_token=snake_case__ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue("text" in outputs ) self.assertTrue("char_offsets" in outputs ) self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(" ".join(self.get_from_offsets(outputs["char_offsets"] , "char" ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "char" ) , ["k", "s", "ɾ", "ɾ", "|", "ɾ", "l", "|", "ɭʲ"] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "start_offset" ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs["char_offsets"] , "end_offset" ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.get_tokenizer(word_delimiter_token="|" ) def check_list_tuples_equal(snake_case__ , snake_case__ ): self.assertTrue(isinstance(snake_case__ , snake_case__ ) ) self.assertTrue(isinstance(outputs_list[0] , snake_case__ ) ) # transform list to ModelOutput lowerCAmelCase : Any = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch["text"] , outputs_batch_a["text"] ) def recursive_check(snake_case__ , snake_case__ ): if isinstance(snake_case__ , snake_case__ ): [recursive_check(snake_case__ , snake_case__ ) for la, la in zip(snake_case__ , snake_case__ )] self.assertEqual(snake_case__ , snake_case__ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch["char_offsets"] , outputs_batch_a["char_offsets"] ) # fmt: off lowerCAmelCase : Dict = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(snake_case__ , output_char_offsets=snake_case__ ) lowerCAmelCase : Union[str, Any] = [tokenizer.decode(snake_case__ , output_char_offsets=snake_case__ ) for ids in sample_ids] check_list_tuples_equal(snake_case__ , snake_case__ ) @unittest.skip("Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Wav2Vec2PhonemeTokenizer always puts spaces between phonemes" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Wav2Vec2PhonemeModel has no max model length => no testing" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.get_tokenizers(do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase : Optional[Any] = tokenizer.vocab_size lowerCAmelCase : Dict = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowerCAmelCase : str = ["aaaaa bbbbbb", "cccccccccdddddddd"] lowerCAmelCase : Any = tokenizer.add_tokens(snake_case__ ) lowerCAmelCase : Dict = tokenizer.vocab_size lowerCAmelCase : Optional[int] = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , len(snake_case__ ) ) self.assertEqual(snake_case__ , all_size + len(snake_case__ ) ) lowerCAmelCase : int = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=snake_case__ ) self.assertGreaterEqual(len(snake_case__ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowerCAmelCase : int = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} lowerCAmelCase : Any = tokenizer.add_special_tokens(snake_case__ ) lowerCAmelCase : List[Any] = tokenizer.vocab_size lowerCAmelCase : List[str] = len(snake_case__ ) self.assertNotEqual(snake_case__ , 0 ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , len(snake_case__ ) ) self.assertEqual(snake_case__ , all_size_a + len(snake_case__ ) ) lowerCAmelCase : str = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=snake_case__ ) self.assertGreaterEqual(len(snake_case__ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("The tokenizer shouldn't be used to encode input IDs (except for labels), only to decode." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = self.get_tokenizers(fast=snake_case__ , do_lower_case=snake_case__ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowerCAmelCase : str = ["ð", "ɪ", "s", "ɪ", "z", "ɐ", "t", "ɛ", "k", "s", "t"] lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_string(snake_case__ ) self.assertIsInstance(output["text"] , snake_case__ )
717
"""simple docstring""" import math def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return math.sqrt(SCREAMING_SNAKE_CASE ) * math.sqrt(SCREAMING_SNAKE_CASE ) == num def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : Dict = 0 lowerCAmelCase : List[str] = n while left <= right: lowerCAmelCase : str = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: lowerCAmelCase : int = mid - 1 else: lowerCAmelCase : int = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
681
0
"""simple docstring""" import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowerCAmelCase__ = open # noqa: we just need to have a builtin inside this module to test it properly
718
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="vit" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : Optional[Any] = hidden_size lowerCAmelCase : List[Any] = num_hidden_layers lowerCAmelCase : List[Any] = num_attention_heads lowerCAmelCase : Union[str, Any] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[Any] = hidden_dropout_prob lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase : List[str] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : Optional[Any] = patch_size lowerCAmelCase : Tuple = num_channels lowerCAmelCase : Optional[int] = qkv_bias lowerCAmelCase : str = encoder_stride class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : List[Any] =version.parse("1.11" ) @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowercase__ ( self ): """simple docstring""" return 1e-4
681
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : int = 1_0 , SCREAMING_SNAKE_CASE : int = 2_2 ): '''simple docstring''' lowerCAmelCase : Dict = range(1 , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = range(1 , SCREAMING_SNAKE_CASE ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"{solution(10, 22) = }")
719
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
681
0
"""simple docstring""" lowerCAmelCase__ = tuple[float, float, float] lowerCAmelCase__ = tuple[float, float, float] def a__ ( SCREAMING_SNAKE_CASE : Pointad , SCREAMING_SNAKE_CASE : Pointad ): '''simple docstring''' lowerCAmelCase : int = end_pointa[0] - end_pointa[0] lowerCAmelCase : Optional[int] = end_pointa[1] - end_pointa[1] lowerCAmelCase : List[Any] = end_pointa[2] - end_pointa[2] return (x, y, z) def a__ ( SCREAMING_SNAKE_CASE : Vectorad , SCREAMING_SNAKE_CASE : Vectorad ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ab[1] * ac[2] - ab[2] * ac[1] # *i lowerCAmelCase : List[str] = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j lowerCAmelCase : int = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def a__ ( SCREAMING_SNAKE_CASE : Vectorad , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return tuple(round(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for x in vector ) == (0, 0, 0) def a__ ( SCREAMING_SNAKE_CASE : Pointad , SCREAMING_SNAKE_CASE : Pointad , SCREAMING_SNAKE_CASE : Pointad , SCREAMING_SNAKE_CASE : int = 1_0 ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = create_vector(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = create_vector(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return is_zero_vector(get_ad_vectors_cross(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
720
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="resnet50" , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=True , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[str] = parent lowerCAmelCase : Union[str, Any] = out_indices if out_indices is not None else [4] lowerCAmelCase : Tuple = stage_names lowerCAmelCase : Any = out_features lowerCAmelCase : Any = backbone lowerCAmelCase : Union[str, Any] = batch_size lowerCAmelCase : Optional[int] = image_size lowerCAmelCase : List[str] = num_channels lowerCAmelCase : int = use_pretrained_backbone lowerCAmelCase : Tuple = is_training def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values def lowercase__ ( self ): """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : List[Any] = TimmBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase : Tuple = config_and_inputs lowerCAmelCase : str = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Optional[int] =(TimmBackbone,) if is_torch_available() else () a : Union[str, Any] ={"feature-extraction": TimmBackbone} if is_torch_available() else {} a : Tuple =False a : List[Any] =False a : Optional[Any] =False a : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TimmBackboneModelTester(self ) lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = "resnet18" lowerCAmelCase : str = "microsoft/resnet-18" lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ ) lowerCAmelCase : List[str] = AutoBackbone.from_pretrained(snake_case__ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) lowerCAmelCase : Union[str, Any] = AutoBackbone.from_pretrained(snake_case__ , use_timm_backbone=snake_case__ , out_indices=[1, 2, 3] ) lowerCAmelCase : List[Any] = AutoBackbone.from_pretrained(snake_case__ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip("TimmBackbone doesn't support feed forward chunking" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have num_hidden_layers attribute" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone initialization is managed on the timm side" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone models doesn't have inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone model cannot be created without specifying a backbone checkpoint" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("model weights aren't tied in TimmBackbone." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Only checkpoints on timm can be loaded into TimmBackbone" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't have hidden size info in its configuration." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("TimmBackbone doesn't support output_attentions." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Safetensors is not supported by timm." ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] lowerCAmelCase : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : int = True lowerCAmelCase : str = self.has_attentions # no need to test all models as different heads yield the same functionality lowerCAmelCase : Optional[int] = self.all_model_classes[0] lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : Dict = model(**snake_case__ ) lowerCAmelCase : Tuple = outputs[0][-1] # Encoder-/Decoder-only models lowerCAmelCase : Optional[int] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: lowerCAmelCase : Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=snake_case__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : List[str] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None lowerCAmelCase : Dict = copy.deepcopy(snake_case__ ) lowerCAmelCase : Optional[int] = None lowerCAmelCase : Dict = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[int] = model(**snake_case__ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights lowerCAmelCase : Optional[int] = copy.deepcopy(snake_case__ ) lowerCAmelCase : List[str] = False lowerCAmelCase : int = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() lowerCAmelCase : Optional[Any] = model(**snake_case__ )
681
0
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : List[Any] = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase : Optional[Any] = MobileBertForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint lowerCAmelCase : Any = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
721
"""simple docstring""" import argparse import os import re lowerCAmelCase__ = '''src/transformers''' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(r'''\[([^\]]+)\]''') def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = _re_indent.search(SCREAMING_SNAKE_CASE ) return "" if search is None else search.groups()[0] def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]="" , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' lowerCAmelCase : Tuple = 0 lowerCAmelCase : Optional[int] = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(SCREAMING_SNAKE_CASE ): index += 1 lowerCAmelCase : Dict = ["\n".join(lines[:index] )] else: lowerCAmelCase : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCAmelCase : Union[str, Any] = [lines[index]] index += 1 while index < len(SCREAMING_SNAKE_CASE ) and (end_prompt is None or not lines[index].startswith(SCREAMING_SNAKE_CASE )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(SCREAMING_SNAKE_CASE ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) if index < len(SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase : List[str] = [lines[index + 1]] index += 1 else: lowerCAmelCase : Optional[Any] = [] else: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(SCREAMING_SNAKE_CASE ) > 0: blocks.append("\n".join(SCREAMING_SNAKE_CASE ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(SCREAMING_SNAKE_CASE ): blocks.append("\n".join(lines[index:] ) ) return blocks def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' def _inner(SCREAMING_SNAKE_CASE : Optional[Any] ): return key(SCREAMING_SNAKE_CASE ).lower().replace("_" , "" ) return _inner def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict=None ): '''simple docstring''' def noop(SCREAMING_SNAKE_CASE : List[Any] ): return x if key is None: lowerCAmelCase : int = noop # Constants are all uppercase, they go first. lowerCAmelCase : Dict = [obj for obj in objects if key(SCREAMING_SNAKE_CASE ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCAmelCase : List[Any] = [obj for obj in objects if key(SCREAMING_SNAKE_CASE )[0].isupper() and not key(SCREAMING_SNAKE_CASE ).isupper()] # Functions begin with a lowercase, they go last. lowerCAmelCase : List[Any] = [obj for obj in objects if not key(SCREAMING_SNAKE_CASE )[0].isupper()] lowerCAmelCase : Dict = ignore_underscore(SCREAMING_SNAKE_CASE ) return sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) + sorted(SCREAMING_SNAKE_CASE , key=SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' def _replace(SCREAMING_SNAKE_CASE : List[Any] ): lowerCAmelCase : List[str] = match.groups()[0] if "," not in imports: return f"""[{imports}]""" lowerCAmelCase : Dict = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Any = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) + "]" lowerCAmelCase : List[Any] = import_statement.split("\n" ) if len(SCREAMING_SNAKE_CASE ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCAmelCase : Tuple = 2 if lines[1].strip() == "[" else 1 lowerCAmelCase : Optional[Any] = [(i, _re_strip_line.search(SCREAMING_SNAKE_CASE ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCAmelCase : Optional[Any] = sort_objects(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] ) lowerCAmelCase : List[str] = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(SCREAMING_SNAKE_CASE ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCAmelCase : Optional[int] = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCAmelCase : List[str] = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCAmelCase : Union[str, Any] = keys[:-1] lowerCAmelCase : str = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(SCREAMING_SNAKE_CASE )] ) return "\n".join(SCREAMING_SNAKE_CASE ) else: # Finally we have to deal with imports fitting on one line lowerCAmelCase : Any = _re_bracket_content.sub(_replace , SCREAMING_SNAKE_CASE ) return import_statement def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=True ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , encoding="utf-8" ) as f: lowerCAmelCase : Union[str, Any] = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCAmelCase : List[str] = split_code_in_indented_blocks( SCREAMING_SNAKE_CASE , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCAmelCase : Tuple = main_blocks[block_idx] lowerCAmelCase : Optional[Any] = block.split("\n" ) # Get to the start of the imports. lowerCAmelCase : int = 0 while line_idx < len(SCREAMING_SNAKE_CASE ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCAmelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) else: line_idx += 1 if line_idx >= len(SCREAMING_SNAKE_CASE ): continue # Ignore beginning and last line: they don't contain anything. lowerCAmelCase : Optional[Any] = "\n".join(block_lines[line_idx:-1] ) lowerCAmelCase : Dict = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCAmelCase : Optional[Any] = split_code_in_indented_blocks(SCREAMING_SNAKE_CASE , indent_level=SCREAMING_SNAKE_CASE ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCAmelCase : Tuple = _re_direct_key if "_import_structure = {" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCAmelCase : Tuple = [(pattern.search(SCREAMING_SNAKE_CASE ).groups()[0] if pattern.search(SCREAMING_SNAKE_CASE ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCAmelCase : int = [(i, key) for i, key in enumerate(SCREAMING_SNAKE_CASE ) if key is not None] lowerCAmelCase : Union[str, Any] = [x[0] for x in sorted(SCREAMING_SNAKE_CASE , key=lambda SCREAMING_SNAKE_CASE : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCAmelCase : Tuple = 0 lowerCAmelCase : Any = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: lowerCAmelCase : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(SCREAMING_SNAKE_CASE ) count += 1 # And we put our main block back together with its first and last line. lowerCAmelCase : List[Any] = "\n".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(SCREAMING_SNAKE_CASE ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write("\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str]=True ): '''simple docstring''' lowerCAmelCase : Optional[int] = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Tuple = sort_imports(os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , check_only=SCREAMING_SNAKE_CASE ) if result: lowerCAmelCase : Optional[Any] = [os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" )] if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError(f"""Would overwrite {len(SCREAMING_SNAKE_CASE )} files, run `make style`.""" ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
681
0
import functools def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) @functools.cache def min_distance(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __UpperCamelCase =int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , SCREAMING_SNAKE_CASE__ ) , 1 + min_distance(SCREAMING_SNAKE_CASE__ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = PegasusTokenizer UpperCAmelCase__ : Union[str, Any] = PegasusTokenizerFast UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : List[str] = True def _a ( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =PegasusTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> int: return PegasusTokenizer.from_pretrained('google/pegasus-large' ) def _a ( self , **A_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ ) -> Optional[Any]: return ("This is a test", "This is a test") def _a ( self ) -> List[Any]: __UpperCamelCase ='</s>' __UpperCamelCase =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '</s>' ) self.assertEqual(vocab_keys[-1] , 'v' ) self.assertEqual(len(A_ ) , 1103 ) def _a ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _a ( self ) -> Dict: __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =( 'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important' ' </s> <pad> <pad> <pad>' ) __UpperCamelCase =rust_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] __UpperCamelCase =py_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word __UpperCamelCase ='<mask_1> To ensure a <mask_2> flow of bank resolutions.' __UpperCamelCase =[2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] __UpperCamelCase =tokenizer([raw_input_str] , return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 __UpperCamelCase ='To ensure a smooth flow of bank resolutions.' __UpperCamelCase =[413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] __UpperCamelCase =tokenizer([raw_input_str] , return_tensors=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _a ( self ) -> List[Any]: __UpperCamelCase =['This is going to be way too long.' * 150, 'short example'] __UpperCamelCase =['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase =self._large_tokenizer(A_ , padding=A_ , truncation=A_ , return_tensors='pt' ) __UpperCamelCase =self._large_tokenizer( text_target=A_ , max_length=5 , padding=A_ , truncation=A_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. @slow def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase ={'input_ids': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , ) @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = PegasusTokenizer UpperCAmelCase__ : Union[str, Any] = PegasusTokenizerFast UpperCAmelCase__ : Dict = True UpperCAmelCase__ : int = True def _a ( self ) -> List[str]: super().setUp() # We have a SentencePiece fixture for testing __UpperCamelCase =PegasusTokenizer(A_ , offset=0 , mask_token_sent=A_ , mask_token='[MASK]' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ) -> Union[str, Any]: return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' ) def _a ( self , **A_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , A_ ) -> Optional[int]: return ("This is a test", "This is a test") def _a ( self ) -> List[str]: __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =self.tokenizer_class.from_pretrained(self.tmpdirname ) __UpperCamelCase =( 'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>' ' <pad> <pad> <pad>' ) __UpperCamelCase =rust_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] __UpperCamelCase =py_tokenizer([raw_input_str] , return_tensors=A_ , add_special_tokens=A_ ).input_ids[0] self.assertListEqual(A_ , A_ ) @require_torch def _a ( self ) -> Dict: __UpperCamelCase =['This is going to be way too long.' * 1000, 'short example'] __UpperCamelCase =['not super long but more than 5 tokens', 'tiny'] __UpperCamelCase =self._large_tokenizer(A_ , padding=A_ , truncation=A_ , return_tensors='pt' ) __UpperCamelCase =self._large_tokenizer( text_target=A_ , max_length=5 , padding=A_ , truncation=A_ , return_tensors='pt' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(A_ ) == 2 # input_ids, attention_mask. def _a ( self ) -> Any: __UpperCamelCase =( 'This is an example string that is used to test the original TF implementation against the HF' ' implementation' ) __UpperCamelCase =self._large_tokenizer(A_ ).input_ids self.assertListEqual( A_ , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
682
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
1
import operator as op _A = 'scaler.pt' _A = 'pytorch_model' _A = 'random_states' _A = 'optimizer' _A = 'scheduler' _A = 'pytorch_model.bin' _A = 'pytorch_model.bin.index.json' _A = 'model.safetensors' _A = 'model.safetensors.index.json' _A = '1.10.2' _A = 'py38' _A = '4.17.0' _A = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge'] _A = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2'] _A = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP'] _A = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH'] _A = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT'] _A = '2.0.1' _A = ['pdsh', 'standard', 'openmpi', 'mvapich'] _A = ['default', 'reduce-overhead', 'max-autotune'] _A = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _A = [ 'nnodes', 'nproc_per_node', 'rdzv_backend', 'rdzv_endpoint', 'rdzv_id', 'rdzv_conf', 'standalone', 'max_restarts', 'monitor_interval', 'start_method', 'role', 'module', 'm', 'no_python', 'run_path', 'log_dir', 'r', 'redirects', 't', 'tee', 'node_rank', 'master_addr', 'master_port', ] _A = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM'] _A = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = AutoencoderKL UpperCAmelCase__ : List[str] = "sample" UpperCAmelCase__ : List[str] = 1e-2 @property def _a ( self ) -> int: __UpperCamelCase =4 __UpperCamelCase =3 __UpperCamelCase =(32, 32) __UpperCamelCase =floats_tensor((batch_size, num_channels) + sizes ).to(A_ ) return {"sample": image} @property def _a ( self ) -> List[Any]: return (3, 32, 32) @property def _a ( self ) -> Tuple: return (3, 32, 32) def _a ( self ) -> Optional[int]: __UpperCamelCase ={ 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict def _a ( self ) -> Any: pass def _a ( self ) -> Dict: pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def _a ( self ) -> List[str]: # enable deterministic behavior for gradient checkpointing __UpperCamelCase , __UpperCamelCase =self.prepare_init_args_and_inputs_for_common() __UpperCamelCase =self.model_class(**A_ ) model.to(A_ ) assert not model.is_gradient_checkpointing and model.training __UpperCamelCase =model(**A_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __UpperCamelCase =torch.randn_like(A_ ) __UpperCamelCase =(out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __UpperCamelCase =self.model_class(**A_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(A_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __UpperCamelCase =model_a(**A_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __UpperCamelCase =(out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __UpperCamelCase =dict(model.named_parameters() ) __UpperCamelCase =dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase =AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=A_ ) self.assertIsNotNone(A_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(A_ ) __UpperCamelCase =model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def _a ( self ) -> int: __UpperCamelCase =AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __UpperCamelCase =model.to(A_ ) model.eval() if torch_device == "mps": __UpperCamelCase =torch.manual_seed(0 ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase =torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCamelCase =image.to(A_ ) with torch.no_grad(): __UpperCamelCase =model(A_ , sample_posterior=A_ , generator=A_ ).sample __UpperCamelCase =output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __UpperCamelCase =torch.tensor( [ -4.0078E-01, -3.8323E-04, -1.2681E-01, -1.1462E-01, 2.0095E-01, 1.0893E-01, -8.8247E-02, -3.0361E-01, -9.8644E-03, ] ) elif torch_device == "cpu": __UpperCamelCase =torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: __UpperCamelCase =torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(A_ , A_ , rtol=1E-2 ) ) @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ , A_ ) -> Optional[Any]: return f'gaussian_noise_s={seed}_shape={"_".join([str(A_ ) for s in shape] )}.npy' def _a ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self , A_=0 , A_=(4, 3, 512, 512) , A_=False ) -> Dict: __UpperCamelCase =torch.floataa if fpaa else torch.floataa __UpperCamelCase =torch.from_numpy(load_hf_numpy(self.get_file_format(A_ , A_ ) ) ).to(A_ ).to(A_ ) return image def _a ( self , A_="CompVis/stable-diffusion-v1-4" , A_=False ) -> Dict: __UpperCamelCase ='fp16' if fpaa else None __UpperCamelCase =torch.floataa if fpaa else torch.floataa __UpperCamelCase =AutoencoderKL.from_pretrained( A_ , subfolder='vae' , torch_dtype=A_ , revision=A_ , ) model.to(A_ ).eval() return model def _a ( self , A_=0 ) -> Dict: if torch_device == "mps": return torch.manual_seed(A_ ) return torch.Generator(device=A_ ).manual_seed(A_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _a ( self , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =self.get_sd_vae_model() __UpperCamelCase =self.get_sd_image(A_ ) __UpperCamelCase =self.get_generator(A_ ) with torch.no_grad(): __UpperCamelCase =model(A_ , generator=A_ , sample_posterior=A_ ).sample assert sample.shape == image.shape __UpperCamelCase =sample[-1, -2:, -2:, :2].flatten().float().cpu() __UpperCamelCase =torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(A_ , A_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def _a ( self , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.get_sd_vae_model(fpaa=A_ ) __UpperCamelCase =self.get_sd_image(A_ , fpaa=A_ ) __UpperCamelCase =self.get_generator(A_ ) with torch.no_grad(): __UpperCamelCase =model(A_ , generator=A_ , sample_posterior=A_ ).sample assert sample.shape == image.shape __UpperCamelCase =sample[-1, -2:, :2, -2:].flatten().float().cpu() __UpperCamelCase =torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.get_sd_vae_model() __UpperCamelCase =self.get_sd_image(A_ ) with torch.no_grad(): __UpperCamelCase =model(A_ ).sample assert sample.shape == image.shape __UpperCamelCase =sample[-1, -2:, -2:, :2].flatten().float().cpu() __UpperCamelCase =torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(A_ , A_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def _a ( self , A_ , A_ ) -> Tuple: __UpperCamelCase =self.get_sd_vae_model() __UpperCamelCase =self.get_sd_image(A_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __UpperCamelCase =model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __UpperCamelCase =sample[-1, -2:, :2, -2:].flatten().cpu() __UpperCamelCase =torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def _a ( self , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.get_sd_vae_model(fpaa=A_ ) __UpperCamelCase =self.get_sd_image(A_ , shape=(3, 4, 64, 64) , fpaa=A_ ) with torch.no_grad(): __UpperCamelCase =model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __UpperCamelCase =sample[-1, -2:, :2, -2:].flatten().float().cpu() __UpperCamelCase =torch.tensor(A_ ) assert torch_all_close(A_ , A_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def _a ( self , A_ ) -> Optional[Any]: __UpperCamelCase =self.get_sd_vae_model(fpaa=A_ ) __UpperCamelCase =self.get_sd_image(A_ , shape=(3, 4, 64, 64) , fpaa=A_ ) with torch.no_grad(): __UpperCamelCase =model.decode(A_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __UpperCamelCase =model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(A_ , A_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def _a ( self , A_ ) -> Union[str, Any]: __UpperCamelCase =self.get_sd_vae_model() __UpperCamelCase =self.get_sd_image(A_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __UpperCamelCase =model.decode(A_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __UpperCamelCase =model.decode(A_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(A_ , A_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def _a ( self , A_ , A_ ) -> Tuple: __UpperCamelCase =self.get_sd_vae_model() __UpperCamelCase =self.get_sd_image(A_ ) __UpperCamelCase =self.get_generator(A_ ) with torch.no_grad(): __UpperCamelCase =model.encode(A_ ).latent_dist __UpperCamelCase =dist.sample(generator=A_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __UpperCamelCase =sample[0, -1, -3:, -3:].flatten().cpu() __UpperCamelCase =torch.tensor(A_ ) __UpperCamelCase =3E-3 if torch_device != 'mps' else 1E-2 assert torch_all_close(A_ , A_ , atol=A_ )
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCAmelCase ( ): __UpperCamelCase =ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=SCREAMING_SNAKE_CASE__ , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=SCREAMING_SNAKE_CASE__ , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=SCREAMING_SNAKE_CASE__ ) return parser.parse_args() def _UpperCAmelCase ( ): __UpperCamelCase =parse_args() # Import training_script as a module. __UpperCamelCase =Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __UpperCamelCase =script_fpath.stem __UpperCamelCase =importlib.import_module(SCREAMING_SNAKE_CASE__ ) # Patch sys.argv __UpperCamelCase =[args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[float]] ): __UpperCamelCase =[] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE__ ): if len(SCREAMING_SNAKE_CASE__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE__ ) ) return data_lists def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[float]] , SCREAMING_SNAKE_CASE__ : list[int] ): __UpperCamelCase =[] for dlist, weight in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =max(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __UpperCamelCase =F'Invalid weight of {weight:f} provided' raise ValueError(SCREAMING_SNAKE_CASE__ ) score_lists.append(SCREAMING_SNAKE_CASE__ ) return score_lists def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[float]] ): __UpperCamelCase =[0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =final_scores[j] + ele return final_scores def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[list[float]] , SCREAMING_SNAKE_CASE__ : list[int] ): __UpperCamelCase =get_data(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =calculate_each_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =generate_final_scores(SCREAMING_SNAKE_CASE__ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE__ ): source_data[i].append(SCREAMING_SNAKE_CASE__ ) return source_data
682
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
1
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =prime_factors(SCREAMING_SNAKE_CASE__ ) if is_square_free(SCREAMING_SNAKE_CASE__ ): return -1 if len(SCREAMING_SNAKE_CASE__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
682
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _A = logging.get_logger(__name__) @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> List[Any]: super().__init__(*A_ , **A_ ) self.check_model_type(A_ ) def _a ( self , A_=None , A_=None , A_=None , **A_ ) -> List[Any]: __UpperCamelCase , __UpperCamelCase ={}, {} if padding is not None: __UpperCamelCase =padding if truncation is not None: __UpperCamelCase =truncation if top_k is not None: __UpperCamelCase =top_k return preprocess_params, {}, postprocess_params def __call__( self , A_ , A_ = None , **A_ ) -> Tuple: if isinstance(A_ , (Image.Image, str) ) and isinstance(A_ , A_ ): __UpperCamelCase ={'image': image, 'question': question} else: __UpperCamelCase =image __UpperCamelCase =super().__call__(A_ , **A_ ) return results def _a ( self , A_ , A_=False , A_=False ) -> Dict: __UpperCamelCase =load_image(inputs['image'] ) __UpperCamelCase =self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=A_ , truncation=A_ ) __UpperCamelCase =self.image_processor(images=A_ , return_tensors=self.framework ) model_inputs.update(A_ ) return model_inputs def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =self.model(**A_ ) return model_outputs def _a ( self , A_ , A_=5 ) -> str: if top_k > self.model.config.num_labels: __UpperCamelCase =self.model.config.num_labels if self.framework == "pt": __UpperCamelCase =model_outputs.logits.sigmoid()[0] __UpperCamelCase , __UpperCamelCase =probs.topk(A_ ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) __UpperCamelCase =scores.tolist() __UpperCamelCase =ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(A_ , A_ )]
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): # Construct model if openai_config_file == "": __UpperCamelCase =OpenAIGPTConfig() else: __UpperCamelCase =OpenAIGPTConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =OpenAIGPTModel(SCREAMING_SNAKE_CASE__ ) # Load weights from numpy load_tf_weights_in_openai_gpt(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model __UpperCamelCase =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--openai_checkpoint_folder_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--openai_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) _A = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_=None , A_=None , A_=None , **A_ ) -> int: if tokenize_kwargs is None: __UpperCamelCase ={} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) __UpperCamelCase =truncation __UpperCamelCase =tokenize_kwargs __UpperCamelCase ={} if return_tensors is not None: __UpperCamelCase =return_tensors return preprocess_params, {}, postprocess_params def _a ( self , A_ , **A_ ) -> Dict[str, GenericTensor]: __UpperCamelCase =self.framework __UpperCamelCase =self.tokenizer(A_ , return_tensors=A_ , **A_ ) return model_inputs def _a ( self , A_ ) -> Dict: __UpperCamelCase =self.model(**A_ ) return model_outputs def _a ( self , A_ , A_=False ) -> int: # [0] is the first available tensor, logits or last_hidden_state. if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *A_ , **A_ ) -> Any: return super().__call__(*A_ , **A_ )
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _A = int(input('Enter number: ').strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
682
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
1
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=False , A_=False , A_=False , A_=2 , A_=99 , A_=0 , A_=32 , A_=5 , A_=4 , A_=0.1 , A_=0.1 , A_=512 , A_=12 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_="last" , A_=None , A_=None , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_lengths __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =gelu_activation __UpperCamelCase =sinusoidal_embeddings __UpperCamelCase =causal __UpperCamelCase =asm __UpperCamelCase =n_langs __UpperCamelCase =vocab_size __UpperCamelCase =n_special __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =summary_type __UpperCamelCase =use_proj __UpperCamelCase =scope def _a ( self ) -> List[str]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 ).float() __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self ) -> Dict: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Dict: __UpperCamelCase =FlaubertModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , lengths=A_ , langs=A_ ) __UpperCamelCase =model(A_ , langs=A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =FlaubertWithLMHeadModel(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> int: __UpperCamelCase =FlaubertForQuestionAnsweringSimple(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ , start_positions=A_ , end_positions=A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =FlaubertForQuestionAnswering(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) __UpperCamelCase =model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , ) __UpperCamelCase =model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , ) ((__UpperCamelCase) , ) =result_with_labels.to_tuple() __UpperCamelCase =model(A_ , start_positions=A_ , end_positions=A_ ) ((__UpperCamelCase) , ) =result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> int: __UpperCamelCase =FlaubertForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> List[str]: __UpperCamelCase =self.num_labels __UpperCamelCase =FlaubertForTokenClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Tuple: __UpperCamelCase =self.num_choices __UpperCamelCase =FlaubertForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase__ : List[str] = ( { "feature-extraction": FlaubertModel, "fill-mask": FlaubertWithLMHeadModel, "question-answering": FlaubertForQuestionAnsweringSimple, "text-classification": FlaubertForSequenceClassification, "token-classification": FlaubertForTokenClassification, "zero-shot": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self , A_ , A_ , A_=False ) -> List[Any]: __UpperCamelCase =super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def _a ( self ) -> Any: __UpperCamelCase =FlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Any: self.config_tester.run_common_tests() def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*A_ ) @slow def _a ( self ) -> Tuple: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =FlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @slow @require_torch_gpu def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __UpperCamelCase =True __UpperCamelCase =model_class(config=A_ ) __UpperCamelCase =self._prepare_for_class(A_ , A_ ) __UpperCamelCase =torch.jit.trace( A_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(A_ , os.path.join(A_ , 'traced_model.pt' ) ) __UpperCamelCase =torch.jit.load(os.path.join(A_ , 'traced_model.pt' ) , map_location=A_ ) loaded(inputs_dict['input_ids'].to(A_ ) , inputs_dict['attention_mask'].to(A_ ) ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> Tuple: __UpperCamelCase =FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) __UpperCamelCase =torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): __UpperCamelCase =model(A_ )[0] __UpperCamelCase =torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A_ ) __UpperCamelCase =torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1E-4 ) )
682
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
1
import baseaa def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): return baseaa.baaencode(string.encode('utf-8' ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : bytes ): return baseaa.baadecode(SCREAMING_SNAKE_CASE__ ).decode('utf-8' ) if __name__ == "__main__": _A = 'Hello World!' _A = baseaa_encode(test) print(encoded) _A = baseaa_decode(encoded) print(decoded)
682
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
1
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int=10_24 ): __UpperCamelCase , __UpperCamelCase =[], [] __UpperCamelCase =list(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase , __UpperCamelCase =sorted_examples[0] def is_too_big(SCREAMING_SNAKE_CASE__ : str ): return tok(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __UpperCamelCase =new_src + ' ' + src __UpperCamelCase =new_tgt + ' ' + tgt if is_too_big(SCREAMING_SNAKE_CASE__ ) or is_too_big(SCREAMING_SNAKE_CASE__ ): # cant fit, finalize example finished_src.append(SCREAMING_SNAKE_CASE__ ) finished_tgt.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =src, tgt else: # can fit, keep adding __UpperCamelCase , __UpperCamelCase =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(SCREAMING_SNAKE_CASE__ ) finished_tgt.append(SCREAMING_SNAKE_CASE__ ) return finished_src, finished_tgt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =Path(SCREAMING_SNAKE_CASE__ ) save_path.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) for split in ["train"]: __UpperCamelCase , __UpperCamelCase =data_dir / F'{split}.source', data_dir / F'{split}.target' __UpperCamelCase =[x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] __UpperCamelCase =[x.rstrip() for x in Path(SCREAMING_SNAKE_CASE__ ).open().readlines()] __UpperCamelCase , __UpperCamelCase =pack_examples(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'packed {split} split from {len(SCREAMING_SNAKE_CASE__ )} examples -> {len(SCREAMING_SNAKE_CASE__ )}.' ) Path(save_path / F'{split}.source' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) Path(save_path / F'{split}.target' ).open('w' ).write('\n'.join(SCREAMING_SNAKE_CASE__ ) ) for split in ["val", "test"]: __UpperCamelCase , __UpperCamelCase =data_dir / F'{split}.source', data_dir / F'{split}.target' shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / F'{split}.source' ) shutil.copyfile(SCREAMING_SNAKE_CASE__ , save_path / F'{split}.target' ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() parser.add_argument('--tok_name' , type=SCREAMING_SNAKE_CASE__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=SCREAMING_SNAKE_CASE__ , default=1_28 ) parser.add_argument('--data_dir' , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--save_path' , type=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =parser.parse_args() __UpperCamelCase =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(SCREAMING_SNAKE_CASE__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
682
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = field(default="automatic-speech-recognition" , metadata={"include_in_asdict_even_if_is_default": True} ) UpperCAmelCase__ : ClassVar[Features] = Features({"audio": Audio()} ) UpperCAmelCase__ : ClassVar[Features] = Features({"transcription": Value("string" )} ) UpperCAmelCase__ : str = "audio" UpperCAmelCase__ : str = "transcription" def _a ( self , A_ ) -> str: if self.audio_column not in features: raise ValueError(f'Column {self.audio_column} is not present in features.' ) if not isinstance(features[self.audio_column] , A_ ): raise ValueError(f'Column {self.audio_column} is not an Audio type.' ) __UpperCamelCase =copy.deepcopy(self ) __UpperCamelCase =self.input_schema.copy() __UpperCamelCase =features[self.audio_column] __UpperCamelCase =input_schema return task_template @property def _a ( self ) -> Dict[str, str]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
682
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
1
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def _a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) __UpperCamelCase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _a ( self ) -> Tuple: __UpperCamelCase =self.dummy_uncond_unet __UpperCamelCase =ScoreSdeVeScheduler() __UpperCamelCase =ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sde_ve(num_inference_steps=2 , output_type='numpy' , generator=A_ ).images __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sde_ve(num_inference_steps=2 , output_type='numpy' , generator=A_ , return_dict=A_ )[ 0 ] __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Dict: __UpperCamelCase ='google/ncsnpp-church-256' __UpperCamelCase =UNetaDModel.from_pretrained(A_ ) __UpperCamelCase =ScoreSdeVeScheduler.from_pretrained(A_ ) __UpperCamelCase =ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sde_ve(num_inference_steps=10 , output_type='numpy' , generator=A_ ).images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase =np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
682
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
1
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self ) -> List[Any]: __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =8 # DPR tok __UpperCamelCase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase =os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(A_ , exist_ok=A_ ) __UpperCamelCase =os.path.join(A_ , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok __UpperCamelCase =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __UpperCamelCase =dict(zip(A_ , range(len(A_ ) ) ) ) __UpperCamelCase =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __UpperCamelCase ={'unk_token': '<unk>'} __UpperCamelCase =os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(A_ , exist_ok=A_ ) __UpperCamelCase =os.path.join(A_ , BART_VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(A_ , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def _a ( self ) -> DPRQuestionEncoderTokenizer: return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def _a ( self ) -> BartTokenizer: return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def _a ( self ) -> Any: shutil.rmtree(self.tmpdirname ) @require_tokenizers def _a ( self ) -> Optional[Any]: __UpperCamelCase =os.path.join(self.tmpdirname , 'rag_tokenizer' ) __UpperCamelCase =RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) __UpperCamelCase =RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(A_ ) rag_tokenizer.save_pretrained(A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , A_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , A_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def _a ( self ) -> Optional[Any]: __UpperCamelCase =RagTokenizer.from_pretrained('facebook/rag-token-nq' ) __UpperCamelCase =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase =tokenizer(A_ ) self.assertIsNotNone(A_ ) @slow def _a ( self ) -> Any: __UpperCamelCase =RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) __UpperCamelCase =[ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] __UpperCamelCase =tokenizer(A_ ) self.assertIsNotNone(A_ )
682
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 16 _A = 32 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ): __UpperCamelCase =AutoTokenizer.from_pretrained('bert-base-cased' ) __UpperCamelCase =load_dataset('glue' , 'mrpc' ) def tokenize_function(SCREAMING_SNAKE_CASE__ : Dict ): # max_length=None => use the model max length (it's actually the default) __UpperCamelCase =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __UpperCamelCase =datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __UpperCamelCase =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. __UpperCamelCase =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __UpperCamelCase =16 elif accelerator.mixed_precision != "no": __UpperCamelCase =8 else: __UpperCamelCase =None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding='longest' , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors='pt' , ) # Instantiate dataloaders. __UpperCamelCase =DataLoader( tokenized_datasets['train'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader( tokenized_datasets['validation'] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , SCREAMING_SNAKE_CASE__ ) == "1": __UpperCamelCase =2 # Initialize accelerator __UpperCamelCase =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __UpperCamelCase =config['lr'] __UpperCamelCase =int(config['num_epochs'] ) __UpperCamelCase =int(config['seed'] ) __UpperCamelCase =int(config['batch_size'] ) __UpperCamelCase =evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation __UpperCamelCase =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __UpperCamelCase =batch_size // MAX_GPU_BATCH_SIZE __UpperCamelCase =MAX_GPU_BATCH_SIZE set_seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __UpperCamelCase =AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __UpperCamelCase =model.to(accelerator.device ) # Instantiate optimizer __UpperCamelCase =AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler __UpperCamelCase =get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=1_00 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.loss __UpperCamelCase =loss / gradient_accumulation_steps accelerator.backward(SCREAMING_SNAKE_CASE__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __UpperCamelCase =0 for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __UpperCamelCase =model(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits.argmax(dim=-1 ) __UpperCamelCase , __UpperCamelCase =accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(SCREAMING_SNAKE_CASE__ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __UpperCamelCase =predictions[: len(eval_dataloader.dataset ) - samples_seen] __UpperCamelCase =references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __UpperCamelCase =parser.parse_args() __UpperCamelCase ={'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
1
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ) -> Tuple: __UpperCamelCase =1 __UpperCamelCase =3 __UpperCamelCase =(32, 32) __UpperCamelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A_ ) return image @property def _a ( self ) -> List[Any]: torch.manual_seed(0 ) __UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A_ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def _a ( self ) -> Optional[Any]: torch.manual_seed(0 ) __UpperCamelCase =AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _a ( self ) -> str: torch.manual_seed(0 ) __UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) return CLIPTextModel(A_ ) def _a ( self ) -> Dict: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.dummy_cond_unet_upscale __UpperCamelCase =DDPMScheduler() __UpperCamelCase =DDIMScheduler(prediction_type='v_prediction' ) __UpperCamelCase =self.dummy_vae __UpperCamelCase =self.dummy_text_encoder __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase =Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __UpperCamelCase =StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) __UpperCamelCase =sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase ='A painting of a squirrel eating a burger' __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __UpperCamelCase =output.images __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , image=A_ , generator=A_ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , return_dict=A_ , )[0] __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =image_from_tuple[0, -3:, -3:, -1] __UpperCamelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) __UpperCamelCase =np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Tuple: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.dummy_cond_unet_upscale __UpperCamelCase =DDPMScheduler() __UpperCamelCase =DDIMScheduler(prediction_type='v_prediction' ) __UpperCamelCase =self.dummy_vae __UpperCamelCase =self.dummy_text_encoder __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase =Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # make sure here that pndm scheduler skips prk __UpperCamelCase =StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) __UpperCamelCase =sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase ='A painting of a squirrel eating a burger' __UpperCamelCase =sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __UpperCamelCase =output.images assert image.shape[0] == 2 __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , image=A_ , generator=A_ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type='np' , ) __UpperCamelCase =output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.dummy_cond_unet_upscale __UpperCamelCase =DDPMScheduler() __UpperCamelCase =DDIMScheduler(prediction_type='v_prediction' ) __UpperCamelCase =self.dummy_vae __UpperCamelCase =self.dummy_text_encoder __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase =self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase =Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 __UpperCamelCase =unet.half() __UpperCamelCase =text_encoder.half() # make sure here that pndm scheduler skips prk __UpperCamelCase =StableDiffusionUpscalePipeline( unet=A_ , low_res_scheduler=A_ , scheduler=A_ , vae=A_ , text_encoder=A_ , tokenizer=A_ , max_noise_level=350 , ) __UpperCamelCase =sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase ='A painting of a squirrel eating a burger' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , image=A_ , generator=A_ , num_inference_steps=2 , output_type='np' , ).images __UpperCamelCase =low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> Tuple: __UpperCamelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __UpperCamelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat.npy' ) __UpperCamelCase ='stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase =StableDiffusionUpscalePipeline.from_pretrained(A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() __UpperCamelCase ='a cat sitting on a park bench' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =pipe( prompt=A_ , image=A_ , generator=A_ , output_type='np' , ) __UpperCamelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def _a ( self ) -> Tuple: __UpperCamelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __UpperCamelCase =load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale' '/upsampled_cat_fp16.npy' ) __UpperCamelCase ='stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase =StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() __UpperCamelCase ='a cat sitting on a park bench' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =pipe( prompt=A_ , image=A_ , generator=A_ , output_type='np' , ) __UpperCamelCase =output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _a ( self ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-upscale/low_res_cat.png' ) __UpperCamelCase ='stabilityai/stable-diffusion-x4-upscaler' __UpperCamelCase =StableDiffusionUpscalePipeline.from_pretrained( A_ , torch_dtype=torch.floataa , ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCamelCase ='a cat sitting on a park bench' __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =pipe( prompt=A_ , image=A_ , generator=A_ , num_inference_steps=5 , output_type='np' , ) __UpperCamelCase =torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
682
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> int: __UpperCamelCase =tempfile.mkdtemp() __UpperCamelCase =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __UpperCamelCase ={ 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __UpperCamelCase =os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(A_ , A_ ) def _a ( self , **A_ ) -> int: return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , **A_ ) -> int: return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def _a ( self , **A_ ) -> str: return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> Tuple: __UpperCamelCase =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase =[Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ) -> Any: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_rust_tokenizer() __UpperCamelCase =self.get_image_processor() __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) __UpperCamelCase =AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) __UpperCamelCase =AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase =self.prepare_image_inputs() __UpperCamelCase =image_processor(A_ , return_tensors='np' ) __UpperCamelCase =processor(images=A_ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase ='lower newer' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase ='lower newer' __UpperCamelCase =self.prepare_image_inputs() __UpperCamelCase =processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> int: __UpperCamelCase =self.get_image_processor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =AlignProcessor(tokenizer=A_ , image_processor=A_ ) __UpperCamelCase ='lower newer' __UpperCamelCase =self.prepare_image_inputs() __UpperCamelCase =processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =num_channels __UpperCamelCase =embeddings_size __UpperCamelCase =hidden_sizes __UpperCamelCase =depths __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_act __UpperCamelCase =num_labels __UpperCamelCase =scope __UpperCamelCase =len(A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Any: return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _a ( self , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFResNetModel(config=A_ ) __UpperCamelCase =model(A_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFResNetForImageClassification(A_ ) __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCAmelCase__ : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : Optional[int] = False def _a ( self ) -> Optional[int]: __UpperCamelCase =TFResNetModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def _a ( self ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> Optional[Any]: return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _a ( self ) -> Optional[int]: pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _a ( self ) -> int: pass def _a ( self ) -> Any: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Any: def check_hidden_states_output(A_ , A_ , A_ ): __UpperCamelCase =model_class(A_ ) __UpperCamelCase =model(**self._prepare_for_class(A_ , A_ ) ) __UpperCamelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase =self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCamelCase =layer_type __UpperCamelCase =True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase =True check_hidden_states_output(A_ , A_ , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def _a ( self ) -> Any: for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFResNetModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Optional[Any]: return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='tf' ) # forward pass __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , A_ , atol=1E-4 ) )
682
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list ): if len(SCREAMING_SNAKE_CASE__ ) <= 1: return [tuple(SCREAMING_SNAKE_CASE__ )] __UpperCamelCase =[] def generate(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , SCREAMING_SNAKE_CASE__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even __UpperCamelCase , __UpperCamelCase =arr[k - 1], arr[i] else: # k is odd __UpperCamelCase , __UpperCamelCase =arr[k - 1], arr[0] generate(k - 1 , SCREAMING_SNAKE_CASE__ ) generate(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) return res if __name__ == "__main__": _A = input('Enter numbers separated by a comma:\n').strip() _A = [int(item) for item in user_input.split(',')] print(heaps(arr))
682
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _A = logging.get_logger(__name__) class UpperCAmelCase__ ( enum.Enum ): """simple docstring""" UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : List[Any] = 1 @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "generated" def __init__( self , *A_ , **A_ ) -> Dict: super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _a ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , ) -> Union[str, Any]: __UpperCamelCase ={} if truncation is not None: __UpperCamelCase =truncation __UpperCamelCase =generate_kwargs __UpperCamelCase ={} if return_tensors is not None and return_type is None: __UpperCamelCase =ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: __UpperCamelCase =return_type if clean_up_tokenization_spaces is not None: __UpperCamelCase =clean_up_tokenization_spaces if stop_sequence is not None: __UpperCamelCase =self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) __UpperCamelCase =stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _a ( self , A_ , A_ , A_ ) -> Tuple: return True def _a ( self , *A_ , A_ ) -> Any: __UpperCamelCase =self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) __UpperCamelCase =([prefix + arg for arg in args[0]],) __UpperCamelCase =True elif isinstance(args[0] , A_ ): __UpperCamelCase =(prefix + args[0],) __UpperCamelCase =False else: raise ValueError( f' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) __UpperCamelCase =self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ ) -> Union[str, Any]: __UpperCamelCase =super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def _a ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ ) -> Union[str, Any]: __UpperCamelCase =self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def _a ( self , A_ , **A_ ) -> str: if self.framework == "pt": __UpperCamelCase , __UpperCamelCase =model_inputs['input_ids'].shape elif self.framework == "tf": __UpperCamelCase , __UpperCamelCase =tf.shape(model_inputs['input_ids'] ).numpy() __UpperCamelCase =generate_kwargs.get('min_length' , self.model.config.min_length ) __UpperCamelCase =generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) __UpperCamelCase =self.model.generate(**A_ , **A_ ) __UpperCamelCase =output_ids.shape[0] if self.framework == "pt": __UpperCamelCase =output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": __UpperCamelCase =tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _a ( self , A_ , A_=ReturnType.TEXT , A_=False ) -> List[str]: __UpperCamelCase =[] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: __UpperCamelCase ={f'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: __UpperCamelCase ={ f'{self.return_name}_text': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = "summary" def __call__( self , *A_ , **A_ ) -> Union[str, Any]: return super().__call__(*A_ , **A_ ) def _a ( self , A_ , A_ , A_ ) -> bool: if max_length < min_length: logger.warning(f'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( f'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "translation" def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: if input_length > 0.9 * max_length: logger.warning( f'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _a ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None ) -> Dict: if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def _a ( self , A_=None , A_=None , **A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =super()._sanitize_parameters(**A_ ) if src_lang is not None: __UpperCamelCase =src_lang if tgt_lang is not None: __UpperCamelCase =tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. __UpperCamelCase =kwargs.get('task' , self.task ) __UpperCamelCase =task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY __UpperCamelCase =items[1] __UpperCamelCase =items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ ) -> int: return super().__call__(*A_ , **A_ )
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast _A = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" UpperCAmelCase__ : int = 1_0_0_0_0 UpperCAmelCase__ : Optional[List[str]] = None UpperCAmelCase__ : Optional[datasets.Features] = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ParquetConfig def _a ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def _a ( self , A_ ) -> Optional[Any]: if not self.config.data_files: raise ValueError(f'At least one data file must be specified, but got data_files={self.config.data_files}' ) __UpperCamelCase =dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): __UpperCamelCase =data_files if isinstance(A_ , A_ ): __UpperCamelCase =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCamelCase =[dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] __UpperCamelCase =[] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): __UpperCamelCase =[files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __UpperCamelCase =[dl_manager.iter_files(A_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(A_ ): with open(A_ , 'rb' ) as f: __UpperCamelCase =datasets.Features.from_arrow_schema(pq.read_schema(A_ ) ) break splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={'files': files} ) ) return splits def _a ( self , A_ ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __UpperCamelCase =table_cast(A_ , self.info.features.arrow_schema ) return pa_table def _a ( self , A_ ) -> Dict: __UpperCamelCase =self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f'Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'' ) for file_idx, file in enumerate(itertools.chain.from_iterable(A_ ) ): with open(A_ , 'rb' ) as f: __UpperCamelCase =pq.ParquetFile(A_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __UpperCamelCase =pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'{file_idx}_{batch_idx}', self._cast_table(A_ ) except ValueError as e: logger.error(f'Failed to read file \'{file}\' with error {type(A_ )}: {e}' ) raise
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } _A = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } _A = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : int = RoFormerTokenizer def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Union[str, Any]: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get('lowercase' , A_ ) != do_lower_case or pre_tok_state.get('strip_accents' , A_ ) != strip_accents ): __UpperCamelCase =getattr(A_ , pre_tok_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =pre_tok_class(**A_ ) __UpperCamelCase =do_lower_case def __getstate__( self ) -> Any: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =BertPreTokenizer() return state def __setstate__( self , A_ ) -> int: __UpperCamelCase =d __UpperCamelCase =self.__dict__['_tokenizer'].get_vocab() __UpperCamelCase =PreTokenizer.custom(JiebaPreTokenizer(A_ ) ) def _a ( self , A_ , A_=None ) -> Dict: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def _a ( self , A_ , A_=None , A_=None , A_=False , **A_ , ) -> Dict: __UpperCamelCase =BertPreTokenizer() return super().save_pretrained(A_ , A_ , A_ , A_ , **A_ )
682
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _A = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _A = direct_transformers_import(PATH_TO_TRANSFORMERS) _A = transformers.models.auto.configuration_auto.CONFIG_MAPPING _A = { # used to compute the property `self.chunk_length` 'EncodecConfig': ['overlap'], # used as `self.bert_model = BertModel(config, ...)` 'DPRConfig': True, # not used in modeling files, but it's an important information 'FSMTConfig': ['langs'], # used internally in the configuration class file 'GPTNeoConfig': ['attention_types'], # used internally in the configuration class file 'EsmConfig': ['is_folding_model'], # used during training (despite we don't have training script for these models yet) 'Mask2FormerConfig': ['ignore_value'], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) 'OneFormerConfig': ['ignore_value', 'norm'], # used during preprocessing and collation, see `collating_graphormer.py` 'GraphormerConfig': ['spatial_pos_max'], # used internally in the configuration class file 'T5Config': ['feed_forward_proj'], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally 'MT5Config': ['feed_forward_proj', 'tokenizer_class'], 'UMT5Config': ['feed_forward_proj', 'tokenizer_class'], # used internally in the configuration class file 'LongT5Config': ['feed_forward_proj'], # used internally in the configuration class file 'SwitchTransformersConfig': ['feed_forward_proj'], # having default values other than `1e-5` - we can't fix them without breaking 'BioGptConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'GLPNConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'SegformerConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'CvtConfig': ['layer_norm_eps'], # having default values other than `1e-5` - we can't fix them without breaking 'PerceiverConfig': ['layer_norm_eps'], # used internally to calculate the feature size 'InformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'TimeSeriesTransformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate the feature size 'AutoformerConfig': ['num_static_real_features', 'num_time_features'], # used internally to calculate `mlp_dim` 'SamVisionConfig': ['mlp_ratio'], # For (head) training, but so far not implemented 'ClapAudioConfig': ['num_classes'], # Not used, but providing useful information to users 'SpeechT5HifiGanConfig': ['sampling_rate'], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { 'CLIPSegConfig': True, 'DeformableDetrConfig': True, 'DetaConfig': True, 'DinatConfig': True, 'DonutSwinConfig': True, 'EfficientFormerConfig': True, 'FSMTConfig': True, 'JukeboxConfig': True, 'LayoutLMv2Config': True, 'MaskFormerSwinConfig': True, 'MT5Config': True, 'NatConfig': True, 'OneFormerConfig': True, 'PerceiverConfig': True, 'RagConfig': True, 'SpeechT5Config': True, 'SwinConfig': True, 'Swin2SRConfig': True, 'Swinv2Config': True, 'SwitchTransformersConfig': True, 'TableTransformerConfig': True, 'TapasConfig': True, 'TransfoXLConfig': True, 'UniSpeechConfig': True, 'UniSpeechSatConfig': True, 'WavLMConfig': True, 'WhisperConfig': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) 'JukeboxPriorConfig': True, # TODO: @Younes (for `is_decoder`) 'Pix2StructTextConfig': True, } ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F'config.{attribute}' in modeling_source or F'getattr(config, "{attribute}"' in modeling_source or F'getattr(self.config, "{attribute}"' in modeling_source ): __UpperCamelCase =True # Deal with multi-line cases elif ( re.search( rF'getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"' , SCREAMING_SNAKE_CASE__ , ) is not None ): __UpperCamelCase =True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: __UpperCamelCase =True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files __UpperCamelCase =[ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] __UpperCamelCase =['encoder_no_repeat_ngram_size'] # Special cases to be allowed __UpperCamelCase =True if not attribute_used: __UpperCamelCase =False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: __UpperCamelCase =True elif attribute in ["tie_word_embeddings"] and default_value is False: __UpperCamelCase =True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: __UpperCamelCase =True elif attribute.endswith('_token_id' ): __UpperCamelCase =True # configuration class specific cases if not case_allowed: __UpperCamelCase =SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) __UpperCamelCase =allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =dict(inspect.signature(config_class.__init__ ).parameters ) __UpperCamelCase =[x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] __UpperCamelCase =[signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass __UpperCamelCase ={} if len(config_class.attribute_map ) > 0: __UpperCamelCase ={v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files __UpperCamelCase =inspect.getsourcefile(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.dirname(SCREAMING_SNAKE_CASE__ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. __UpperCamelCase =[os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for fn in os.listdir(SCREAMING_SNAKE_CASE__ ) if fn.startswith('modeling_' )] # Get the source code strings __UpperCamelCase =[] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE__ ): with open(SCREAMING_SNAKE_CASE__ ) as fp: modeling_sources.append(fp.read() ) __UpperCamelCase =[] for config_param, default_value in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # `attributes` here is all the variant names for `config_param` __UpperCamelCase =[config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase ={} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) __UpperCamelCase =[ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE__ : inspect.isclass(SCREAMING_SNAKE_CASE__ ) and issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and inspect.getmodule(SCREAMING_SNAKE_CASE__ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: __UpperCamelCase =check_config_attributes_being_used(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =unused_attributes if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase ='The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += F'{name}: {attributes}\n' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": check_config_attributes()
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" @register_to_config def __init__( self , A_ = 768 , ) -> List[str]: super().__init__() __UpperCamelCase =nn.Parameter(torch.zeros(1 , A_ ) ) __UpperCamelCase =nn.Parameter(torch.ones(1 , A_ ) ) def _a ( self , A_ = None , A_ = None , ) -> Tuple: __UpperCamelCase =nn.Parameter(self.mean.to(A_ ).to(A_ ) ) __UpperCamelCase =nn.Parameter(self.std.to(A_ ).to(A_ ) ) return self def _a ( self , A_ ) -> Any: __UpperCamelCase =(embeds - self.mean) * 1.0 / self.std return embeds def _a ( self , A_ ) -> str: __UpperCamelCase =(embeds * self.std) + self.mean return embeds
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=A_ ).to(A_ ) __UpperCamelCase =AutoTokenizer.from_pretrained('google/mt5-small' ) __UpperCamelCase =tokenizer('Hello there' , return_tensors='pt' ).input_ids __UpperCamelCase =tokenizer('Hi I am' , return_tensors='pt' ).input_ids __UpperCamelCase =model(input_ids.to(A_ ) , labels=labels.to(A_ ) ).loss __UpperCamelCase =-(labels.shape[-1] * loss.item()) __UpperCamelCase =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1