code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = VideoToVideoSDPipeline UpperCAmelCase__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} UpperCAmelCase__ : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} UpperCAmelCase__ : List[Any] = PipelineTesterMixin.required_optional_params - {"latents"} UpperCAmelCase__ : int = False # No `output_type`. UpperCAmelCase__ : int = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def _a ( self ) -> int: torch.manual_seed(0 ) __UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) __UpperCamelCase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) __UpperCamelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) __UpperCamelCase =CLIPTextModel(A_ ) __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def _a ( self , A_ , A_=0 ) -> Optional[Any]: # 3 frames __UpperCamelCase =floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): __UpperCamelCase =torch.manual_seed(A_ ) else: __UpperCamelCase =torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase ={ 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def _a ( self ) -> Tuple: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.get_dummy_components() __UpperCamelCase =VideoToVideoSDPipeline(**A_ ) __UpperCamelCase =sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase =self.get_dummy_inputs(A_ ) __UpperCamelCase ='np' __UpperCamelCase =sd_pipe(**A_ ).frames __UpperCamelCase =frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) __UpperCamelCase =np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def _a ( self ) -> Any: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _a ( self ) -> int: pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def _a ( self ) -> Any: pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def _a ( self ) -> Any: pass def _a ( self ) -> Optional[Any]: return super().test_progress_bar() @slow @skip_mps class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Tuple: __UpperCamelCase =VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames __UpperCamelCase =torch.Generator(device='cpu' ).manual_seed(0 ) __UpperCamelCase =torch.randn((1, 10, 3, 1024, 576) , generator=A_ ) __UpperCamelCase =video.to('cuda' ) __UpperCamelCase ='Spiderman is surfing' __UpperCamelCase =pipe(A_ , video=A_ , generator=A_ , num_inference_steps=3 , output_type='pt' ).frames __UpperCamelCase =np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
682
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'unc-nlp/lxmert-base-uncased': 'https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "lxmert" UpperCAmelCase__ : str = {} def __init__( self , A_=30522 , A_=768 , A_=12 , A_=9500 , A_=1600 , A_=400 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=9 , A_=5 , A_=5 , A_=2048 , A_=4 , A_=6.67 , A_=True , A_=True , A_=True , A_=True , A_=True , A_=True , A_=True , **A_ , ) -> int: __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =num_qa_labels __UpperCamelCase =num_object_labels __UpperCamelCase =num_attr_labels __UpperCamelCase =l_layers __UpperCamelCase =x_layers __UpperCamelCase =r_layers __UpperCamelCase =visual_feat_dim __UpperCamelCase =visual_pos_dim __UpperCamelCase =visual_loss_normalizer __UpperCamelCase =task_matched __UpperCamelCase =task_mask_lm __UpperCamelCase =task_obj_predict __UpperCamelCase =task_qa __UpperCamelCase =visual_obj_loss __UpperCamelCase =visual_attr_loss __UpperCamelCase =visual_feat_loss __UpperCamelCase ={'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**A_ )
682
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
1
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any="attention" ): __UpperCamelCase =params[F'{prefix}/layers_{i}/{layer_name}/key/kernel'] __UpperCamelCase =params[F'{prefix}/layers_{i}/{layer_name}/out/kernel'] __UpperCamelCase =params[F'{prefix}/layers_{i}/{layer_name}/query/kernel'] __UpperCamelCase =params[F'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=False ): if split_mlp_wi: __UpperCamelCase =params[F'{prefix}/layers_{i}/mlp/wi_0/kernel'] __UpperCamelCase =params[F'{prefix}/layers_{i}/mlp/wi_1/kernel'] __UpperCamelCase =(wi_a, wi_a) else: __UpperCamelCase =params[F'{prefix}/layers_{i}/mlp/wi/kernel'] __UpperCamelCase =params[F'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): return params[F'{prefix}/layers_{i}/{layer_name}/scale'] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ): __UpperCamelCase =traverse_util.flatten_dict(variables['target'] ) __UpperCamelCase ={'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi __UpperCamelCase ='encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =collections.OrderedDict() # Shared embeddings. __UpperCamelCase =old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). __UpperCamelCase =tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) __UpperCamelCase =layer_norm __UpperCamelCase =k.T __UpperCamelCase =o.T __UpperCamelCase =q.T __UpperCamelCase =v.T # Block i, layer 1 (MLP). __UpperCamelCase =tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase =tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =layer_norm if split_mlp_wi: __UpperCamelCase =wi[0].T __UpperCamelCase =wi[1].T else: __UpperCamelCase =wi.T __UpperCamelCase =wo.T __UpperCamelCase =old[ 'encoder/relpos_bias/rel_embedding' ].T __UpperCamelCase =old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). __UpperCamelCase =tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) __UpperCamelCase =layer_norm __UpperCamelCase =k.T __UpperCamelCase =o.T __UpperCamelCase =q.T __UpperCamelCase =v.T # Block i, layer 1 (Cross Attention). __UpperCamelCase =tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) __UpperCamelCase =layer_norm __UpperCamelCase =k.T __UpperCamelCase =o.T __UpperCamelCase =q.T __UpperCamelCase =v.T # Block i, layer 2 (MLP). __UpperCamelCase =tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) __UpperCamelCase , __UpperCamelCase =tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =layer_norm if split_mlp_wi: __UpperCamelCase =wi[0].T __UpperCamelCase =wi[1].T else: __UpperCamelCase =wi.T __UpperCamelCase =wo.T __UpperCamelCase =old['decoder/decoder_norm/scale'] __UpperCamelCase =old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: __UpperCamelCase =old['decoder/logits_dense/kernel'].T return new def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : bool ): __UpperCamelCase =collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: __UpperCamelCase =state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: __UpperCamelCase =state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) __UpperCamelCase =state_dict['shared.weight'] return state_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = False ): __UpperCamelCase =TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: __UpperCamelCase =TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": _A = argparse.ArgumentParser(description='Converts a native T5X checkpoint into a PyTorch checkpoint.') # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path to the T5X checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_encoder_only', action='store_true', help='Check if the model is encoder-decoder model', default=False ) _A = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _A = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] _A = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = ' Hello world! cécé herlolip' _A = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =[ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __UpperCamelCase =torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase , __UpperCamelCase =emb.weight.shape __UpperCamelCase =nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple=None ): if not os.path.exists(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =torch.hub.load('pytorch/fairseq' , SCREAMING_SNAKE_CASE__ ).eval() else: __UpperCamelCase =load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: __UpperCamelCase =checkpoint_path.replace('.' , '-' ) __UpperCamelCase =BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) __UpperCamelCase =BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}' ) if checkpoint_path == "bart.large.mnli": __UpperCamelCase =bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bart.predict('mnli' , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about __UpperCamelCase =bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =state_dict['decoder.embed_tokens.weight'] __UpperCamelCase =bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": __UpperCamelCase =BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ).model[0] else: __UpperCamelCase =BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , 'lm_head' ): __UpperCamelCase =make_linear_from_emb(model.model.shared ) __UpperCamelCase =model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) _A = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input _A = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def _UpperCAmelCase ( ): __UpperCamelCase =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __UpperCamelCase =get_sagemaker_input() else: __UpperCamelCase =get_cluster_input() return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('config' , description=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate config command' , description=SCREAMING_SNAKE_CASE__ ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_user_input() if args.config_file is not None: __UpperCamelCase =args.config_file else: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): os.makedirs(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(SCREAMING_SNAKE_CASE__ ) else: config.to_yaml_file(SCREAMING_SNAKE_CASE__ ) print(F'accelerate configuration saved at {config_file}' ) def _UpperCAmelCase ( ): __UpperCamelCase =config_command_parser() __UpperCamelCase =parser.parse_args() config_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING _A = logging.get_logger(__name__) _A = Dict[str, Any] _A = List[Prediction] @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> List[Any]: super().__init__(*A_ , **A_ ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _a ( self , **A_ ) -> int: __UpperCamelCase ={} if "threshold" in kwargs: __UpperCamelCase =kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *A_ , **A_ ) -> Union[Predictions, List[Prediction]]: return super().__call__(*A_ , **A_ ) def _a ( self , A_ ) -> int: __UpperCamelCase =load_image(A_ ) __UpperCamelCase =torch.IntTensor([[image.height, image.width]] ) __UpperCamelCase =self.image_processor(images=[image] , return_tensors='pt' ) if self.tokenizer is not None: __UpperCamelCase =self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt' ) __UpperCamelCase =target_size return inputs def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =model_inputs.pop('target_size' ) __UpperCamelCase =self.model(**A_ ) __UpperCamelCase =outputs.__class__({'target_size': target_size, **outputs} ) if self.tokenizer is not None: __UpperCamelCase =model_inputs['bbox'] return model_outputs def _a ( self , A_ , A_=0.9 ) -> int: __UpperCamelCase =model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __UpperCamelCase , __UpperCamelCase =target_size[0].tolist() def unnormalize(A_ ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) __UpperCamelCase , __UpperCamelCase =model_outputs['logits'].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __UpperCamelCase =[self.model.config.idalabel[prediction] for prediction in classes.tolist()] __UpperCamelCase =[unnormalize(A_ ) for bbox in model_outputs['bbox'].squeeze(0 )] __UpperCamelCase =['score', 'label', 'box'] __UpperCamelCase =[dict(zip(A_ , A_ ) ) for vals in zip(scores.tolist() , A_ , A_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __UpperCamelCase =self.image_processor.post_process_object_detection(A_ , A_ , A_ ) __UpperCamelCase =raw_annotations[0] __UpperCamelCase =raw_annotation['scores'] __UpperCamelCase =raw_annotation['labels'] __UpperCamelCase =raw_annotation['boxes'] __UpperCamelCase =scores.tolist() __UpperCamelCase =[self.model.config.idalabel[label.item()] for label in labels] __UpperCamelCase =[self._get_bounding_box(A_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __UpperCamelCase =['score', 'label', 'box'] __UpperCamelCase =[ dict(zip(A_ , A_ ) ) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes'] ) ] return annotation def _a ( self , A_ ) -> Dict[str, int]: if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.' ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =box.int().tolist() __UpperCamelCase ={ 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
682
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "xlm-roberta" def __init__( self , A_=30522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1E-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Dict: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =hidden_act __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =use_cache __UpperCamelCase =classifier_dropout class UpperCAmelCase__ ( A_ ): """simple docstring""" @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __UpperCamelCase ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =UniSpeechSatForSequenceClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =downstream_dict['projector.weight'] __UpperCamelCase =downstream_dict['projector.bias'] __UpperCamelCase =downstream_dict['model.post_net.linear.weight'] __UpperCamelCase =downstream_dict['model.post_net.linear.bias'] return model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =UniSpeechSatForAudioFrameClassification.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =downstream_dict['model.linear.weight'] __UpperCamelCase =downstream_dict['model.linear.bias'] return model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =UniSpeechSatForXVector.from_pretrained(SCREAMING_SNAKE_CASE__ , config=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =downstream_dict['connector.weight'] __UpperCamelCase =downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __UpperCamelCase =downstream_dict[ F'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] __UpperCamelCase =downstream_dict[F'model.framelevel_feature_extractor.module.{i}.kernel.bias'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] __UpperCamelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] __UpperCamelCase =downstream_dict['objective.W'] return model @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __UpperCamelCase =checkpoint['Downstream'] __UpperCamelCase =UniSpeechSatConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =WavaVecaFeatureExtractor.from_pretrained( SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , do_normalize=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =hf_config.architectures[0] if arch.endswith('ForSequenceClassification' ): __UpperCamelCase =convert_classification(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif arch.endswith('ForAudioFrameClassification' ): __UpperCamelCase =convert_diarization(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) elif arch.endswith('ForXVector' ): __UpperCamelCase =convert_xvector(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: raise NotImplementedError(F'S3PRL weights conversion is not supported for {arch}' ) if hf_config.use_weighted_layer_sum: __UpperCamelCase =checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') _A = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =3_84 if "tiny" in model_name: __UpperCamelCase =[3, 3, 9, 3] __UpperCamelCase =[96, 1_92, 3_84, 7_68] if "small" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[96, 1_92, 3_84, 7_68] if "base" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[1_28, 2_56, 5_12, 10_24] __UpperCamelCase =5_12 if "large" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[1_92, 3_84, 7_68, 15_36] __UpperCamelCase =7_68 if "xlarge" in model_name: __UpperCamelCase =[3, 3, 27, 3] __UpperCamelCase =[2_56, 5_12, 10_24, 20_48] __UpperCamelCase =10_24 # set label information __UpperCamelCase =1_50 __UpperCamelCase ='huggingface/label-files' __UpperCamelCase ='ade20k-id2label.json' __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =ConvNextConfig( depths=SCREAMING_SNAKE_CASE__ , hidden_sizes=SCREAMING_SNAKE_CASE__ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __UpperCamelCase =UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE__ , auxiliary_in_channels=SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ , ) return config def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =[] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'backbone.stages.{i}.{j}.gamma', F'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.weight', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.depthwise_conv.bias', F'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.weight', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.norm.bias', F'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv1.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.weight', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') ) rename_keys.append((F'backbone.stages.{i}.{j}.pointwise_conv2.bias', F'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') ) if i > 0: rename_keys.append((F'backbone.downsample_layers.{i}.0.weight', F'backbone.encoder.stages.{i}.downsampling_layer.0.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.0.bias', F'backbone.encoder.stages.{i}.downsampling_layer.0.bias') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.weight', F'backbone.encoder.stages.{i}.downsampling_layer.1.weight') ) rename_keys.append((F'backbone.downsample_layers.{i}.1.bias', F'backbone.encoder.stages.{i}.downsampling_layer.1.bias') ) rename_keys.append((F'backbone.norm{i}.weight', F'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((F'backbone.norm{i}.bias', F'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =dct.pop(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =val def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase ={ 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } __UpperCamelCase =model_name_to_url[model_name] __UpperCamelCase =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE__ , map_location='cpu' )['state_dict'] __UpperCamelCase =get_upernet_config(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): __UpperCamelCase =state_dict.pop(SCREAMING_SNAKE_CASE__ ) if "bn" in key: __UpperCamelCase =key.replace('bn' , 'batch_norm' ) __UpperCamelCase =val # rename keys __UpperCamelCase =create_rename_keys(SCREAMING_SNAKE_CASE__ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # verify on image __UpperCamelCase ='https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ).convert('RGB' ) __UpperCamelCase =SegformerImageProcessor() __UpperCamelCase =processor(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values with torch.no_grad(): __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) if model_name == "upernet-convnext-tiny": __UpperCamelCase =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": __UpperCamelCase =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": __UpperCamelCase =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": __UpperCamelCase =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": __UpperCamelCase =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if push_to_hub: print(F'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(F'openmmlab/{model_name}' ) processor.push_to_hub(F'openmmlab/{model_name}' ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f"""upernet-convnext-{size}""" for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _A = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
682
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
1
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _A = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": _A = 'hopper-medium-v2' _A = gym.make(env_name) _A = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) _A = env.reset() _A = 0 _A = 0 _A = 1000 _A = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _A = pipeline(obs, planning_horizon=32) # execute action in environment _A , _A , _A , _A = env.step(denorm_actions) _A = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) _A = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
682
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
1
import argparse import logging import os from datetime import datetime import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, TensorDataset from tqdm import tqdm from transformers import GPTaLMHeadModel _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # save results if os.path.exists(SCREAMING_SNAKE_CASE__ ): if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , 'config.json' ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , 'config.json' ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE__ , 'config.json' ) ) if os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , 'pytorch_model.bin' ) ) and os.path.isfile( os.path.join(SCREAMING_SNAKE_CASE__ , 'pytorch_model.bin' ) ): os.remove(os.path.join(SCREAMING_SNAKE_CASE__ , 'pytorch_model.bin' ) ) else: os.makedirs(SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=False ): __UpperCamelCase =2 if unlogit: __UpperCamelCase =torch.pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =p * torch.log(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0 return -plogp.sum(dim=-1 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): logger.info('lv, h >\t' + '\t'.join(F'{x + 1}' for x in range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) for row in range(len(SCREAMING_SNAKE_CASE__ ) ): if tensor.dtype != torch.long: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:.5f}' for x in tensor[row].cpu().data ) ) else: logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:d}' for x in tensor[row].cpu().data ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : List[str]=False ): __UpperCamelCase , __UpperCamelCase =model.config.num_hidden_layers, model.config.num_attention_heads __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(args.device ) __UpperCamelCase =torch.zeros(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(args.device ) if head_mask is None: __UpperCamelCase =torch.ones(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).to(args.device ) head_mask.requires_grad_(requires_grad=SCREAMING_SNAKE_CASE__ ) # If actually pruned attention multi-head, set head mask to None to avoid shape mismatch if actually_pruned: __UpperCamelCase =None __UpperCamelCase =0.0 __UpperCamelCase =0.0 for step, inputs in enumerate(tqdm(SCREAMING_SNAKE_CASE__ , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ): __UpperCamelCase =tuple(t.to(args.device ) for t in inputs ) ((__UpperCamelCase) , ) =inputs # Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below) __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) # (loss), lm_logits, presents, (all hidden_states), (attentions) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =( outputs[0], outputs[1], outputs[-1], ) # Loss and logits are the first, attention the last loss.backward() # Backpropagate to populate the gradients in the head mask total_loss += loss.detach().cpu().numpy() if compute_entropy: for layer, attn in enumerate(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =entropy(attn.detach() , SCREAMING_SNAKE_CASE__ ) attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach() if compute_importance: head_importance += head_mask.grad.abs().detach() tot_tokens += torch.ones_like(SCREAMING_SNAKE_CASE__ ).float().detach().sum().data # Normalize attn_entropy /= tot_tokens head_importance /= tot_tokens # Layerwise importance normalization if not args.dont_normalize_importance_by_layer: __UpperCamelCase =2 __UpperCamelCase =torch.pow(torch.pow(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sum(-1 ) , 1 / exponent ) head_importance /= norm_by_layer.unsqueeze(-1 ) + 1E-20 if not args.dont_normalize_global_importance: __UpperCamelCase =(head_importance - head_importance.min()) / (head_importance.max() - head_importance.min()) # Print matrices if compute_entropy: logger.info('Attention entropies' ) print_ad_tensor(SCREAMING_SNAKE_CASE__ ) if compute_importance: logger.info('Head importance scores' ) print_ad_tensor(SCREAMING_SNAKE_CASE__ ) logger.info('Head ranked by importance scores' ) __UpperCamelCase =torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device ) __UpperCamelCase =torch.arange( head_importance.numel() , device=args.device ) __UpperCamelCase =head_ranks.view_as(SCREAMING_SNAKE_CASE__ ) print_ad_tensor(SCREAMING_SNAKE_CASE__ ) return attn_entropy, head_importance, total_loss def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =compute_heads_importance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =1 / loss # instead of downsteam score use the LM loss logger.info('Pruning: original score: %f, threshold: %f' , SCREAMING_SNAKE_CASE__ , original_score * args.masking_threshold ) __UpperCamelCase =torch.ones_like(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =max(1 , int(new_head_mask.numel() * args.masking_amount ) ) __UpperCamelCase =original_score while current_score >= original_score * args.masking_threshold: __UpperCamelCase =new_head_mask.clone().detach() # save current head mask # heads from least important to most - keep only not-masked heads __UpperCamelCase =float('Inf' ) __UpperCamelCase =head_importance.view(-1 ).sort()[1] if len(SCREAMING_SNAKE_CASE__ ) <= num_to_mask: print('BREAK BY num_to_mask' ) break # mask heads __UpperCamelCase =current_heads_to_mask[:num_to_mask] logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) ) __UpperCamelCase =new_head_mask.view(-1 ) __UpperCamelCase =0.0 __UpperCamelCase =new_head_mask.view_as(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_head_mask.clone().detach() print_ad_tensor(SCREAMING_SNAKE_CASE__ ) # Compute metric and head importance again __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =compute_heads_importance( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =1 / loss logger.info( 'Masking: current score: %f, remaining heads %d (%.1f percents)' , SCREAMING_SNAKE_CASE__ , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 1_00 , ) logger.info('Final head mask' ) print_ad_tensor(SCREAMING_SNAKE_CASE__ ) np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() ) return head_mask def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =datetime.now() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =compute_heads_importance( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ , compute_importance=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =1 / loss __UpperCamelCase =datetime.now() - before_time __UpperCamelCase =sum(p.numel() for p in model.parameters() ) __UpperCamelCase ={ layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(SCREAMING_SNAKE_CASE__ ) ) } for k, v in heads_to_prune.items(): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[ v, ] assert sum(len(SCREAMING_SNAKE_CASE__ ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item() model.prune_heads(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =sum(p.numel() for p in model.parameters() ) __UpperCamelCase =datetime.now() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =compute_heads_importance( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , compute_entropy=SCREAMING_SNAKE_CASE__ , compute_importance=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , actually_pruned=SCREAMING_SNAKE_CASE__ , ) __UpperCamelCase =1 / loss __UpperCamelCase =datetime.now() - before_time logger.info( 'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , pruned_num_params / original_num_params * 1_00 , ) logger.info('Pruning: score with masking: %f score with pruning: %f' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 1_00 ) save_model(SCREAMING_SNAKE_CASE__ , args.output_dir ) def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( '--data_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , ) parser.add_argument( '--model_name_or_path' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the model predictions and checkpoints will be written.' , ) # Other parameters parser.add_argument( '--config_name' , default='' , type=SCREAMING_SNAKE_CASE__ , help='Pretrained config name or path if not the same as model_name_or_path' , ) parser.add_argument( '--tokenizer_name' , default='' , type=SCREAMING_SNAKE_CASE__ , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , ) parser.add_argument( '--cache_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='Where do you want to store the pre-trained models downloaded from s3' , ) parser.add_argument( '--data_subset' , type=SCREAMING_SNAKE_CASE__ , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' ) parser.add_argument( '--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' ) parser.add_argument( '--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' ) parser.add_argument( '--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , ) parser.add_argument( '--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' ) parser.add_argument( '--masking_threshold' , default=0.9 , type=SCREAMING_SNAKE_CASE__ , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , ) parser.add_argument( '--masking_amount' , default=0.1 , type=SCREAMING_SNAKE_CASE__ , help='Amount to heads to masking at each masking step.' ) parser.add_argument('--metric_name' , default='acc' , type=SCREAMING_SNAKE_CASE__ , help='Metric to use for head masking.' ) parser.add_argument( '--max_seq_length' , default=1_28 , type=SCREAMING_SNAKE_CASE__ , help=( 'The maximum total input sequence length after WordPiece tokenization. \n' 'Sequences longer than this will be truncated, sequences shorter padded.' ) , ) parser.add_argument('--batch_size' , default=1 , type=SCREAMING_SNAKE_CASE__ , help='Batch size.' ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=42 ) parser.add_argument('--local_rank' , type=SCREAMING_SNAKE_CASE__ , default=-1 , help='local_rank for distributed training on gpus' ) parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' ) parser.add_argument('--server_ip' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=SCREAMING_SNAKE_CASE__ , default='' , help='Can be used for distant debugging.' ) __UpperCamelCase =parser.parse_args() if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=SCREAMING_SNAKE_CASE__ ) ptvsd.wait_for_attach() # Setup devices and distributed training if args.local_rank == -1 or args.no_cuda: __UpperCamelCase =torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' ) __UpperCamelCase =0 if args.no_cuda else torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank ) __UpperCamelCase =torch.device('cuda' , args.local_rank ) __UpperCamelCase =1 torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend # Setup logging logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN ) logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) ) __UpperCamelCase =GPTaLMHeadModel.from_pretrained(args.model_name_or_path ) # Distributed and parallel training model.to(args.device ) if args.local_rank != -1: __UpperCamelCase =nn.parallel.DistributedDataParallel( SCREAMING_SNAKE_CASE__ , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=SCREAMING_SNAKE_CASE__ ) elif args.n_gpu > 1: __UpperCamelCase =nn.DataParallel(SCREAMING_SNAKE_CASE__ ) # Print/save training arguments os.makedirs(args.output_dir , exist_ok=SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(args.output_dir , 'run_args.bin' ) ) logger.info('Training/evaluation parameters %s' , SCREAMING_SNAKE_CASE__ ) # Prepare dataset __UpperCamelCase =np.concatenate( [ np.loadtxt(args.data_dir , dtype=np.intaa ), ] ) __UpperCamelCase =(torch.from_numpy(SCREAMING_SNAKE_CASE__ ),) __UpperCamelCase =TensorDataset(*SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=args.batch_size ) # Compute head entropy and importance score compute_heads_importance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Try head masking (set heads to zero until the score goes under a threshole) # and head pruning (remove masked heads and see the effect on the network) if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0: __UpperCamelCase =mask_heads(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) prune_heads(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _A = get_tests_dir('fixtures') class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> List[Any]: # A mock response for an HTTP head request to emulate server down __UpperCamelCase =mock.Mock() __UpperCamelCase =500 __UpperCamelCase ={} __UpperCamelCase =HTTPError __UpperCamelCase ={} # Download this model to make sure it's in the cache. __UpperCamelCase =ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: __UpperCamelCase =ViTImageProcessor.from_pretrained('hf-internal-testing/tiny-random-vit' ) # This check we did call the fake head request mock_head.assert_called() def _a ( self ) -> str: # This test is for deprecated behavior and can be removed in v5 __UpperCamelCase =ViTImageProcessor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json' ) def _a ( self ) -> Any: with self.assertRaises(A_ ): # config is in subfolder, the following should not work without specifying the subfolder __UpperCamelCase =AutoImageProcessor.from_pretrained('hf-internal-testing/stable-diffusion-all-variants' ) __UpperCamelCase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/stable-diffusion-all-variants' , subfolder='feature_extractor' ) self.assertIsNotNone(A_ ) @is_staging_test class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @classmethod def _a ( cls ) -> List[str]: __UpperCamelCase =TOKEN HfFolder.save_token(A_ ) @classmethod def _a ( cls ) -> Optional[Any]: try: delete_repo(token=cls._token , repo_id='test-image-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-image-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-image-processor' ) except HTTPError: pass def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('test-image-processor' , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='test-image-processor' , push_to_hub=A_ , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained(f'{USER}/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def _a ( self ) -> Dict: __UpperCamelCase =ViTImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('valid_org/test-image-processor' , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained('valid_org/test-image-processor' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-image-processor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( A_ , repo_id='valid_org/test-image-processor-org' , push_to_hub=A_ , use_auth_token=self._token ) __UpperCamelCase =ViTImageProcessor.from_pretrained('valid_org/test-image-processor-org' ) for k, v in image_processor.__dict__.items(): self.assertEqual(A_ , getattr(A_ , A_ ) ) def _a ( self ) -> Union[str, Any]: CustomImageProcessor.register_for_auto_class() __UpperCamelCase =CustomImageProcessor.from_pretrained(A_ ) image_processor.push_to_hub('test-dynamic-image-processor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'AutoImageProcessor': 'custom_image_processing.CustomImageProcessor'} , ) __UpperCamelCase =AutoImageProcessor.from_pretrained( f'{USER}/test-dynamic-image-processor' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , 'CustomImageProcessor' )
682
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _A = parse(importlib.metadata.version('torch')) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Version] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F'`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}' ) __UpperCamelCase =STR_OPERATION_TO_FUNC[operation] if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =parse(importlib.metadata.version(SCREAMING_SNAKE_CASE__ ) ) return operation(SCREAMING_SNAKE_CASE__ , parse(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): return compare_versions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
1
import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _A = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = True , ) -> str: __UpperCamelCase =[file for file in os.listdir(A_ ) if os.path.isfile(os.path.join(A_ , A_ ) )] if identifier is not None: __UpperCamelCase =[file for file in files if identifier in file] if n_identifier is not None: if isinstance(A_ , A_ ): for n_ in n_identifier: __UpperCamelCase =[file for file in files if n_ not in file] else: __UpperCamelCase =[file for file in files if n_identifier not in file] __UpperCamelCase =ignore_files or [] ignore_files.append('__init__.py' ) __UpperCamelCase =[file for file in files if file not in ignore_files] for file in files: # Open all files print('Testing' , A_ ) if only_modules: __UpperCamelCase =file.split('.' )[0] try: __UpperCamelCase =getattr(A_ , A_ ) __UpperCamelCase =doctest.DocTestSuite(A_ ) __UpperCamelCase =unittest.TextTestRunner().run(A_ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'{module_identifier} is not a module.' ) else: __UpperCamelCase =doctest.testfile(str('..' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase ='modeling' __UpperCamelCase =[ 'modeling_ctrl.py', 'modeling_tf_ctrl.py', ] self.analyze_directory(A_ , identifier=A_ , ignore_files=A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase ='tokenization' self.analyze_directory(A_ , identifier=A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase ='configuration' self.analyze_directory(A_ , identifier=A_ ) def _a ( self ) -> Any: __UpperCamelCase =Path('src/transformers' ) __UpperCamelCase =['configuration', 'modeling', 'tokenization'] self.analyze_directory(A_ , n_identifier=A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =Path('docs/source' ) __UpperCamelCase =['favicon.ico'] self.analyze_directory(A_ , ignore_files=A_ , only_modules=A_ )
682
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) __UpperCamelCase =AutoTokenizer.from_pretrained('xlm-roberta-base' ) __UpperCamelCase ='The dog is cute and lives in the garden house' __UpperCamelCase =jnp.array([tokenizer.encode(A_ )] ) __UpperCamelCase =(1, 12, 768) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase =jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) __UpperCamelCase =model(A_ )['last_hidden_state'] self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , A_ , atol=1E-3 ) )
682
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'facebook/timesformer': 'https://huggingface.co/facebook/timesformer/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "timesformer" def __init__( self , A_=224 , A_=16 , A_=3 , A_=8 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-6 , A_=True , A_="divided_space_time" , A_=0 , **A_ , ) -> int: super().__init__(**A_ ) __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =num_frames __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =qkv_bias __UpperCamelCase =attention_type __UpperCamelCase =drop_path_rate
682
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
1
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] _A = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] _A = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) _A = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) _A = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): for tf_name, hf_name in patterns: __UpperCamelCase =k.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return k def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : dict ): __UpperCamelCase =BigBirdPegasusConfig(**SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BigBirdPegasusForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch_model.state_dict() __UpperCamelCase ={} # separating decoder weights __UpperCamelCase ={k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} __UpperCamelCase ={k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ): __UpperCamelCase =[k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue __UpperCamelCase =DECODER_PATTERNS __UpperCamelCase =rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __UpperCamelCase =v.T __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ): __UpperCamelCase =[k.endswith(SCREAMING_SNAKE_CASE__ ) for ending in KEYS_TO_IGNORE] if any(SCREAMING_SNAKE_CASE__ ): continue __UpperCamelCase =REMAINING_PATTERNS __UpperCamelCase =rename_state_dict_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): __UpperCamelCase =v.T __UpperCamelCase =torch.from_numpy(SCREAMING_SNAKE_CASE__ ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' __UpperCamelCase =mapping['model.embed_positions.weight'] __UpperCamelCase =mapping.pop('model.embed_positions.weight' ) __UpperCamelCase , __UpperCamelCase =torch_model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =tf.train.list_variables(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={} __UpperCamelCase =['global_step'] for name, shape in tqdm(SCREAMING_SNAKE_CASE__ , desc='converting tf checkpoint to dict' ): __UpperCamelCase =any(pat in name for pat in ignore_name ) if skip_key: continue __UpperCamelCase =tf.train.load_variable(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =array return tf_weights def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : dict ): __UpperCamelCase =get_tf_weights_as_numpy(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =convert_bigbird_pegasus(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) torch_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') _A = parser.parse_args() _A = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : UNetaDModel UpperCAmelCase__ : ScoreSdeVeScheduler def __init__( self , A_ , A_ ) -> Tuple: super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = 2000 , A_ = None , A_ = "pil" , A_ = True , **A_ , ) -> Union[ImagePipelineOutput, Tuple]: __UpperCamelCase =self.unet.config.sample_size __UpperCamelCase =(batch_size, 3, img_size, img_size) __UpperCamelCase =self.unet __UpperCamelCase =randn_tensor(A_ , generator=A_ ) * self.scheduler.init_noise_sigma __UpperCamelCase =sample.to(self.device ) self.scheduler.set_timesteps(A_ ) self.scheduler.set_sigmas(A_ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase =self.unet(A_ , A_ ).sample __UpperCamelCase =self.scheduler.step_correct(A_ , A_ , generator=A_ ).prev_sample # prediction step __UpperCamelCase =model(A_ , A_ ).sample __UpperCamelCase =self.scheduler.step_pred(A_ , A_ , A_ , generator=A_ ) __UpperCamelCase , __UpperCamelCase =output.prev_sample, output.prev_sample_mean __UpperCamelCase =sample_mean.clamp(0 , 1 ) __UpperCamelCase =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase =self.numpy_to_pil(A_ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A_ )
682
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
1
import math import tensorflow as tf from packaging import version def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tf.cast(math.pi , x.dtype ) __UpperCamelCase =tf.cast(0.044715 , x.dtype ) __UpperCamelCase =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(SCREAMING_SNAKE_CASE__ , 3 )) )) return x * cdf def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) return x * tf.tanh(tf.math.softplus(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tf.cast(0.044715 , x.dtype ) __UpperCamelCase =tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =tf.convert_to_tensor(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): return tf.clip_by_value(_gelu(SCREAMING_SNAKE_CASE__ ) , -10 , 10 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict=-1 ): __UpperCamelCase , __UpperCamelCase =tf.split(SCREAMING_SNAKE_CASE__ , 2 , axis=SCREAMING_SNAKE_CASE__ ) return a * tf.math.sigmoid(SCREAMING_SNAKE_CASE__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): return tf.keras.activations.gelu(SCREAMING_SNAKE_CASE__ , approximate=SCREAMING_SNAKE_CASE__ ) _A = tf.keras.activations.gelu _A = approximate_gelu_wrap else: _A = _gelu _A = _gelu_new _A = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
682
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.json'} _A = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _A = {'mgp-str': 27} class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : int = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A_ , A_="[GO]" , A_="[GO]" , A_="[s]" , A_="[GO]" , **A_ ) -> int: super().__init__( unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ , ) with open(A_ , encoding='utf-8' ) as vocab_handle: __UpperCamelCase =json.load(A_ ) __UpperCamelCase ={v: k for k, v in self.vocab.items()} @property def _a ( self ) -> List[Any]: return len(self.vocab ) def _a ( self ) -> str: return dict(self.vocab , **self.added_tokens_encoder ) def _a ( self , A_ ) -> Dict: __UpperCamelCase =[] for s in text: char_tokens.extend(A_ ) return char_tokens def _a ( self , A_ ) -> Any: return self.vocab.get(A_ , self.vocab.get(self.unk_token ) ) def _a ( self , A_ ) -> Union[str, Any]: return self.decoder.get(A_ ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error('Vocabulary path ({}) should be a directory'.format(A_ ) ) return __UpperCamelCase =os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) return (vocab_file,)
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =int(SCREAMING_SNAKE_CASE__ ) if n_element < 1: __UpperCamelCase =ValueError('a should be a positive number' ) raise my_error __UpperCamelCase =[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =(0, 0, 0) __UpperCamelCase =1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": _A = input('Enter the last number (nth term) of the Hamming Number Series: ') print('Formula of Hamming Number Series => 2^i * 3^j * 5^k') _A = hamming(int(n)) print('-----------------------------------------------------') print(f"""The list with nth numbers is: {hamming_numbers}""") print('-----------------------------------------------------')
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=3 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1000 , ) -> Optional[int]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =text_seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =coordinate_size __UpperCamelCase =shape_size __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase =text_seq_length __UpperCamelCase =(image_size // patch_size) ** 2 + 1 __UpperCamelCase =self.text_seq_length + self.image_seq_length def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase =bbox[i, j, 3] __UpperCamelCase =bbox[i, j, 1] __UpperCamelCase =t if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase =bbox[i, j, 2] __UpperCamelCase =bbox[i, j, 0] __UpperCamelCase =t __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =LayoutLMvaModel(config=A_ ) model.to(A_ ) model.eval() # text + image __UpperCamelCase =model(A_ , pixel_values=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , bbox=A_ , pixel_values=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , bbox=A_ , pixel_values=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase =model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase =model(pixel_values=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =LayoutLMvaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =LayoutLMvaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =LayoutLMvaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> int: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : str = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _a ( self ) -> List[Any]: __UpperCamelCase =LayoutLMvaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self , A_ , A_ , A_=False ) -> Optional[int]: __UpperCamelCase =copy.deepcopy(A_ ) if model_class in get_values(A_ ): __UpperCamelCase ={ k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): __UpperCamelCase =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in get_values(A_ ): __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: __UpperCamelCase =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A_ , ) return inputs_dict def _a ( self ) -> List[Any]: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def _a ( self ) -> Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =LayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _a ( self ) -> Dict: __UpperCamelCase =LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) __UpperCamelCase =torch.tensor([[1, 2]] ) __UpperCamelCase =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __UpperCamelCase =model( input_ids=input_ids.to(A_ ) , bbox=bbox.to(A_ ) , pixel_values=pixel_values.to(A_ ) , ) # verify the logits __UpperCamelCase =torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A_ ) __UpperCamelCase =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1E-4 ) )
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): # A local function to see if a dot lands in the circle. def is_in_circle(SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ) -> bool: __UpperCamelCase =sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle __UpperCamelCase =mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) # The ratio of the area for circle to square is pi/4. __UpperCamelCase =proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 , ): return mean( function_to_integrate(uniform(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) for _ in range(SCREAMING_SNAKE_CASE__ ) ) * (max_value - min_value) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : float = 0.0 , SCREAMING_SNAKE_CASE__ : float = 1.0 ): def identity_function(SCREAMING_SNAKE_CASE__ : float ) -> float: return x __UpperCamelCase =area_under_curve_estimator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =(max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print('******************' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): def function_to_integrate(SCREAMING_SNAKE_CASE__ : float ) -> float: return sqrt(4.0 - x * x ) __UpperCamelCase =area_under_curve_estimator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
682
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
1
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets _A = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _A = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' _A = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): def remove_articles(SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(SCREAMING_SNAKE_CASE__ , ' ' , SCREAMING_SNAKE_CASE__ ) def white_space_fix(SCREAMING_SNAKE_CASE__ : Optional[int] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE__ ) ) ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any ): return int(normalize_answer(SCREAMING_SNAKE_CASE__ ) == normalize_answer(SCREAMING_SNAKE_CASE__ ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[any(compute_exact(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )] return (sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )) * 1_00 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =[rgram for rgrams in rgramslist for rgram in rgrams] __UpperCamelCase =Counter(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =Counter(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =Counter() for sgram, scount in sgramcounter.items(): __UpperCamelCase =scount * numref __UpperCamelCase =Counter(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =Counter() for cgram, ccount in cgramcounter.items(): __UpperCamelCase =ccount * numref # KEEP __UpperCamelCase =sgramcounter_rep & cgramcounter_rep __UpperCamelCase =keepgramcounter_rep & rgramcounter __UpperCamelCase =sgramcounter_rep & rgramcounter __UpperCamelCase =0 __UpperCamelCase =0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCamelCase =1 __UpperCamelCase =1 if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =keeptmpscorea / len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __UpperCamelCase =keeptmpscorea / sum(keepgramcounterall_rep.values() ) __UpperCamelCase =0 if keepscore_precision > 0 or keepscore_recall > 0: __UpperCamelCase =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __UpperCamelCase =sgramcounter_rep - cgramcounter_rep __UpperCamelCase =delgramcounter_rep - rgramcounter __UpperCamelCase =sgramcounter_rep - rgramcounter __UpperCamelCase =0 __UpperCamelCase =0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCamelCase =1 if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =deltmpscorea / len(SCREAMING_SNAKE_CASE__ ) # ADDITION __UpperCamelCase =set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =set(SCREAMING_SNAKE_CASE__ ) & set(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =set(SCREAMING_SNAKE_CASE__ ) - set(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __UpperCamelCase =1 __UpperCamelCase =1 if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =addtmpscore / len(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: __UpperCamelCase =addtmpscore / len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0 if addscore_precision > 0 or addscore_recall > 0: __UpperCamelCase =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =ssent.split(' ' ) __UpperCamelCase =csent.split(' ' ) __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] for rsent in rsents: __UpperCamelCase =rsent.split(' ' ) __UpperCamelCase =[] __UpperCamelCase =[] __UpperCamelCase =[] ragramslist.append(SCREAMING_SNAKE_CASE__ ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE__ ) - 1: __UpperCamelCase =ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 2: __UpperCamelCase =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 3: __UpperCamelCase =ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(SCREAMING_SNAKE_CASE__ ) ragramslist.append(SCREAMING_SNAKE_CASE__ ) ragramslist.append(SCREAMING_SNAKE_CASE__ ) ragramslist.append(SCREAMING_SNAKE_CASE__ ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE__ ) - 1: __UpperCamelCase =sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 2: __UpperCamelCase =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 3: __UpperCamelCase =sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(SCREAMING_SNAKE_CASE__ ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ): if i < len(SCREAMING_SNAKE_CASE__ ) - 1: __UpperCamelCase =cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 2: __UpperCamelCase =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(SCREAMING_SNAKE_CASE__ ) if i < len(SCREAMING_SNAKE_CASE__ ) - 3: __UpperCamelCase =cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(SCREAMING_SNAKE_CASE__ ) ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =SARIngram(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =SARIngram(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =SARIngram(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =SARIngram(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __UpperCamelCase =sum([delascore, delascore, delascore, delascore] ) / 4 __UpperCamelCase =sum([addascore, addascore, addascore, addascore] ) / 4 __UpperCamelCase =(avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : str = "13a" , SCREAMING_SNAKE_CASE__ : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __UpperCamelCase =sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __UpperCamelCase =sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE__ )()(SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE__ ) elif tokenizer == "moses": __UpperCamelCase =sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE__ , return_str=SCREAMING_SNAKE_CASE__ , escape=SCREAMING_SNAKE_CASE__ ) elif tokenizer == "penn": __UpperCamelCase =sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE__ , return_str=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =sentence if not return_str: __UpperCamelCase =normalized_sent.split() return normalized_sent def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): if not (len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )): raise ValueError('Sources length must match predictions and references lengths.' ) __UpperCamelCase =0 for src, pred, refs in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE__ ) , normalize(SCREAMING_SNAKE_CASE__ ) , [normalize(SCREAMING_SNAKE_CASE__ ) for sent in refs] ) __UpperCamelCase =sari_score / len(SCREAMING_SNAKE_CASE__ ) return 1_00 * sari_score def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any="exp" , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False , ): __UpperCamelCase =len(references[0] ) if any(len(SCREAMING_SNAKE_CASE__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __UpperCamelCase =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE__ )] __UpperCamelCase =sacrebleu.corpus_bleu( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , smooth_method=SCREAMING_SNAKE_CASE__ , smooth_value=SCREAMING_SNAKE_CASE__ , force=SCREAMING_SNAKE_CASE__ , lowercase=SCREAMING_SNAKE_CASE__ , use_effective_order=SCREAMING_SNAKE_CASE__ , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def _a ( self ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def _a ( self , A_ , A_ , A_ ) -> str: __UpperCamelCase ={} result.update({'sari': compute_sari(sources=A_ , predictions=A_ , references=A_ )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=A_ , references=A_ )} ) result.update({'exact': compute_em(predictions=A_ , references=A_ )} ) return result
682
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return 0 elif n == 2: return 1 else: __UpperCamelCase =[0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =0 __UpperCamelCase =2 while digits < n: index += 1 __UpperCamelCase =len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) ) return index def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 10_00 ): return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
1
import numpy as np from transformers import Pipeline def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =np.max(SCREAMING_SNAKE_CASE__ , axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , **A_ ) -> Union[str, Any]: __UpperCamelCase ={} if "second_text" in kwargs: __UpperCamelCase =kwargs['second_text'] return preprocess_kwargs, {}, {} def _a ( self , A_ , A_=None ) -> Dict: return self.tokenizer(A_ , text_pair=A_ , return_tensors=self.framework ) def _a ( self , A_ ) -> Any: return self.model(**A_ ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =model_outputs.logits[0].numpy() __UpperCamelCase =softmax(A_ ) __UpperCamelCase =np.argmax(A_ ) __UpperCamelCase =self.model.config.idalabel[best_class] __UpperCamelCase =probabilities[best_class].item() __UpperCamelCase =logits.tolist() return {"label": label, "score": score, "logits": logits}
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =1.5 __UpperCamelCase =int(factor * num_class_images ) __UpperCamelCase =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=SCREAMING_SNAKE_CASE__ , aesthetic_weight=0.1 ) os.makedirs(F'{class_data_dir}/images' , exist_ok=SCREAMING_SNAKE_CASE__ ) if len(list(Path(F'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: __UpperCamelCase =client.query(text=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) >= factor * num_class_images or num_images > 1E4: break else: __UpperCamelCase =int(factor * num_images ) __UpperCamelCase =ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=SCREAMING_SNAKE_CASE__ , aesthetic_weight=0.1 , ) __UpperCamelCase =0 __UpperCamelCase =0 __UpperCamelCase =tqdm(desc='downloading real regularization images' , total=SCREAMING_SNAKE_CASE__ ) with open(F'{class_data_dir}/caption.txt' , 'w' ) as fa, open(F'{class_data_dir}/urls.txt' , 'w' ) as fa, open( F'{class_data_dir}/images.txt' , 'w' ) as fa: while total < num_class_images: __UpperCamelCase =class_images[count] count += 1 try: __UpperCamelCase =requests.get(images['url'] ) if img.status_code == 2_00: __UpperCamelCase =Image.open(BytesIO(img.content ) ) with open(F'{class_data_dir}/images/{total}.jpg' , 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(F'{class_data_dir}/images/{total}.jpg' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser('' , add_help=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--class_data_dir' , help='path to save images' , required=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ ) parser.add_argument('--num_class_images' , help='number of images to download' , default=2_00 , type=SCREAMING_SNAKE_CASE__ ) return parser.parse_args() if __name__ == "__main__": _A = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F'{test_file} instead.' ) __UpperCamelCase =components[-1] if not test_fn.endswith('py' ): raise ValueError(F'`test_file` should be a python file. Got {test_fn} instead.' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F'`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.' ) __UpperCamelCase =components[:-1] + [test_fn.replace('.py' , '' )] __UpperCamelCase ='.'.join(SCREAMING_SNAKE_CASE__ ) return test_module_path def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =get_module_path(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =importlib.import_module(SCREAMING_SNAKE_CASE__ ) return test_module def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] __UpperCamelCase =get_test_module(SCREAMING_SNAKE_CASE__ ) for attr in dir(SCREAMING_SNAKE_CASE__ ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =[] __UpperCamelCase =get_test_module(SCREAMING_SNAKE_CASE__ ) for attr in dir(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , 'all_model_classes' , [] ) if len(SCREAMING_SNAKE_CASE__ ) > 0: test_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =get_test_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =test_class() if hasattr(SCREAMING_SNAKE_CASE__ , 'setUp' ): test.setUp() __UpperCamelCase =None if hasattr(SCREAMING_SNAKE_CASE__ , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __UpperCamelCase =test.model_tester.__class__ return model_tester def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_test_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =get_test_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for test_class in test_classes: __UpperCamelCase =get_model_tester_from_test_class(SCREAMING_SNAKE_CASE__ ) if tester_class is not None: tester_classes.append(SCREAMING_SNAKE_CASE__ ) # sort with class names return sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x.__name__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =get_test_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={test_class: get_model_tester_from_test_class(SCREAMING_SNAKE_CASE__ ) for test_class in test_classes} return test_tester_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =get_model_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ model_class: get_test_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in model_classes } return model_test_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =get_model_classes(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ model_class: get_tester_classes_for_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for model_class in model_classes } return model_to_tester_mapping def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return o elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return o.__name__ elif isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): return [to_json(SCREAMING_SNAKE_CASE__ ) for x in o] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {to_json(SCREAMING_SNAKE_CASE__ ): to_json(SCREAMING_SNAKE_CASE__ ) for k, v in o.items()} else: return o
682
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
1
import heapq def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : dict ): __UpperCamelCase =[] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(SCREAMING_SNAKE_CASE__ , [-1 * len(SCREAMING_SNAKE_CASE__ ), (key, value)] ) # chosen_vertices = set of chosen vertices __UpperCamelCase =set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices __UpperCamelCase =heapq.heappop(SCREAMING_SNAKE_CASE__ )[1][0] chosen_vertices.add(SCREAMING_SNAKE_CASE__ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: __UpperCamelCase =elem[1][1].index(SCREAMING_SNAKE_CASE__ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(SCREAMING_SNAKE_CASE__ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() _A = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f"""Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}""")
682
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "vivit" def __init__( self , A_=224 , A_=32 , A_=[2, 16, 16] , A_=3 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu_fast" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1E-06 , A_=True , **A_ , ) -> Union[str, Any]: __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =layer_norm_eps __UpperCamelCase =image_size __UpperCamelCase =num_frames __UpperCamelCase =tubelet_size __UpperCamelCase =num_channels __UpperCamelCase =qkv_bias super().__init__(**A_ )
682
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : bytes ): return "".join([hex(SCREAMING_SNAKE_CASE__ )[2:].zfill(2 ).upper() for byte in list(SCREAMING_SNAKE_CASE__ )] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(SCREAMING_SNAKE_CASE__ ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(SCREAMING_SNAKE_CASE__ ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(SCREAMING_SNAKE_CASE__ ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
682
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {'configuration_ibert': ['IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'IBertConfig', 'IBertOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'IBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'IBertForMaskedLM', 'IBertForMultipleChoice', 'IBertForQuestionAnswering', 'IBertForSequenceClassification', 'IBertForTokenClassification', 'IBertModel', 'IBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "mra" def __init__( self , A_=50265 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=1 , A_=0.02 , A_=1E-5 , A_="absolute" , A_=4 , A_="full" , A_=0 , A_=0 , A_=1 , A_=0 , A_=2 , **A_ , ) -> Optional[Any]: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) __UpperCamelCase =vocab_size __UpperCamelCase =max_position_embeddings __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =initializer_range __UpperCamelCase =type_vocab_size __UpperCamelCase =layer_norm_eps __UpperCamelCase =position_embedding_type __UpperCamelCase =block_per_row __UpperCamelCase =approx_mode __UpperCamelCase =initial_prior_first_n_blocks __UpperCamelCase =initial_prior_diagonal_n_blocks
682
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=0.6 , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =mask_ratio __UpperCamelCase =scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __UpperCamelCase =(image_size // patch_size) ** 2 __UpperCamelCase =int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self ) -> int: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Dict: return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _a ( self , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =ViTMAEModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> int: __UpperCamelCase =ViTMAEForPreTraining(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) __UpperCamelCase =(self.image_size // self.patch_size) ** 2 __UpperCamelCase =self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __UpperCamelCase =1 __UpperCamelCase =ViTMAEForPreTraining(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase =model(A_ ) __UpperCamelCase =self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _a ( self ) -> Any: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCAmelCase__ : List[Any] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} UpperCAmelCase__ : Dict = False UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = False def _a ( self ) -> Union[str, Any]: __UpperCamelCase =ViTMAEModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def _a ( self ) -> Dict: pass def _a ( self ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> str: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) def _a ( self , A_ , A_ , A_ ) -> str: # make masks reproducible np.random.seed(2 ) __UpperCamelCase =int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __UpperCamelCase =np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __UpperCamelCase =torch.from_numpy(A_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __UpperCamelCase =pt_noise super().check_pt_tf_models(A_ , A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) model.to(A_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(A_ , A_ ) ) __UpperCamelCase =outputs[0].cpu().numpy() __UpperCamelCase =0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ ) __UpperCamelCase =model_class.from_pretrained(A_ ) model.to(A_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(A_ , A_ ) ) # Make sure we don't have nans __UpperCamelCase =after_outputs[0].cpu().numpy() __UpperCamelCase =0 __UpperCamelCase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A_ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _a ( self ) -> Dict: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _a ( self ) -> Union[str, Any]: pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def _a ( self ) -> Optional[Any]: pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def _a ( self ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def _a ( self ) -> str: pass @slow def _a ( self ) -> Any: for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTMAEModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Optional[Any]: return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def _a ( self ) -> Any: # make random mask reproducible across the PT and TF model np.random.seed(2 ) __UpperCamelCase =ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __UpperCamelCase =ViTMAEConfig() __UpperCamelCase =int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __UpperCamelCase =np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ , noise=torch.from_numpy(A_ ).to(device=A_ ) ) # verify the logits __UpperCamelCase =torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(A_ ) , atol=1E-4 ) )
682
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _A = logging.get_logger(__name__) # General docstring _A = 'RegNetConfig' # Base docstring _A = 'facebook/regnet-y-040' _A = [1, 1088, 7, 7] # Image classification docstring _A = 'facebook/regnet-y-040' _A = 'tabby, tabby cat' _A = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ = 3 , A_ = 1 , A_ = 1 , A_ = "relu" , **A_ , ) -> Dict: super().__init__(**A_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCamelCase =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCamelCase =tf.keras.layers.ConvaD( filters=A_ , kernel_size=A_ , strides=A_ , padding='VALID' , groups=A_ , use_bias=A_ , name='convolution' , ) __UpperCamelCase =tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) __UpperCamelCase =ACTaFN[activation] if activation is not None else tf.identity def _a ( self , A_ ) -> Tuple: __UpperCamelCase =self.convolution(self.padding(A_ ) ) __UpperCamelCase =self.normalization(A_ ) __UpperCamelCase =self.activation(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , **A_ ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =config.num_channels __UpperCamelCase =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def _a ( self , A_ ) -> Any: __UpperCamelCase =shape_list(A_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCamelCase =tf.transpose(A_ , perm=(0, 2, 3, 1) ) __UpperCamelCase =self.embedder(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ = 2 , **A_ ) -> int: super().__init__(**A_ ) __UpperCamelCase =tf.keras.layers.ConvaD( filters=A_ , kernel_size=1 , strides=A_ , use_bias=A_ , name='convolution' ) __UpperCamelCase =tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def _a ( self , A_ , A_ = False ) -> tf.Tensor: return self.normalization(self.convolution(A_ ) , training=A_ ) class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , **A_ ) -> Dict: super().__init__(**A_ ) __UpperCamelCase =tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) __UpperCamelCase =[ tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=A_ , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def _a ( self , A_ ) -> Optional[int]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCamelCase =self.pooler(A_ ) for layer_module in self.attention: __UpperCamelCase =layer_module(A_ ) __UpperCamelCase =hidden_state * pooled return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ ) -> int: super().__init__(**A_ ) __UpperCamelCase =in_channels != out_channels or stride != 1 __UpperCamelCase =max(1 , out_channels // config.groups_width ) __UpperCamelCase =( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCamelCase =[ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.2' ), ] __UpperCamelCase =ACTaFN[config.hidden_act] def _a ( self , A_ ) -> Tuple: __UpperCamelCase =hidden_state for layer_module in self.layers: __UpperCamelCase =layer_module(A_ ) __UpperCamelCase =self.shortcut(A_ ) hidden_state += residual __UpperCamelCase =self.activation(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ = 1 , **A_ ) -> Tuple: super().__init__(**A_ ) __UpperCamelCase =in_channels != out_channels or stride != 1 __UpperCamelCase =max(1 , out_channels // config.groups_width ) __UpperCamelCase =( TFRegNetShortCut(A_ , stride=A_ , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __UpperCamelCase =[ TFRegNetConvLayer(A_ , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( A_ , stride=A_ , groups=A_ , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(A_ , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(A_ , kernel_size=1 , activation=A_ , name='layer.3' ), ] __UpperCamelCase =ACTaFN[config.hidden_act] def _a ( self , A_ ) -> int: __UpperCamelCase =hidden_state for layer_module in self.layers: __UpperCamelCase =layer_module(A_ ) __UpperCamelCase =self.shortcut(A_ ) hidden_state += residual __UpperCamelCase =self.activation(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ = 2 , A_ = 2 , **A_ ) -> Dict: super().__init__(**A_ ) __UpperCamelCase =TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __UpperCamelCase =[ # downsampling is done in the first layer with stride of 2 layer(A_ , A_ , A_ , stride=A_ , name='layers.0' ), *[layer(A_ , A_ , A_ , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def _a ( self , A_ ) -> Optional[Any]: for layer_module in self.layers: __UpperCamelCase =layer_module(A_ ) return hidden_state class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self , A_ , **A_ ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( A_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __UpperCamelCase =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(A_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(A_ , A_ , A_ , depth=A_ , name=f'stages.{i+1}' ) ) def _a ( self , A_ , A_ = False , A_ = True ) -> TFBaseModelOutputWithNoAttention: __UpperCamelCase =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCamelCase =hidden_states + (hidden_state,) __UpperCamelCase =stage_module(A_ ) if output_hidden_states: __UpperCamelCase =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=A_ , hidden_states=A_ ) @keras_serializable class UpperCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = RegNetConfig def __init__( self , A_ , **A_ ) -> Optional[int]: super().__init__(**A_ ) __UpperCamelCase =config __UpperCamelCase =TFRegNetEmbeddings(A_ , name='embedder' ) __UpperCamelCase =TFRegNetEncoder(A_ , name='encoder' ) __UpperCamelCase =tf.keras.layers.GlobalAveragePoolingaD(keepdims=A_ , name='pooler' ) @unpack_inputs def _a ( self , A_ , A_ = None , A_ = None , A_ = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase =self.embedder(A_ , training=A_ ) __UpperCamelCase =self.encoder( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) __UpperCamelCase =encoder_outputs[0] __UpperCamelCase =self.pooler(A_ ) # Change to NCHW output format have uniformity in the modules __UpperCamelCase =tf.transpose(A_ , perm=(0, 3, 1, 2) ) __UpperCamelCase =tf.transpose(A_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCamelCase =tuple([tf.transpose(A_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ , pooler_output=A_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : List[str] = RegNetConfig UpperCAmelCase__ : Optional[int] = "regnet" UpperCAmelCase__ : Tuple = "pixel_values" @property def _a ( self ) -> int: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _A = R'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _A = R'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , A_ , ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , *A_ , **A_ ) -> str: super().__init__(A_ , *A_ , **A_ ) __UpperCamelCase =TFRegNetMainLayer(A_ , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=A_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _a ( self , A_ , A_ = None , A_ = None , A_=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase =self.regnet( pixel_values=A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , A_ , ) class UpperCAmelCase__ ( A_ , A_ ): """simple docstring""" def __init__( self , A_ , *A_ , **A_ ) -> Optional[Any]: super().__init__(A_ , *A_ , **A_ ) __UpperCamelCase =config.num_labels __UpperCamelCase =TFRegNetMainLayer(A_ , name='regnet' ) # classification head __UpperCamelCase =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=A_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _a ( self , A_ = None , A_ = None , A_ = None , A_ = None , A_=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCamelCase =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCamelCase =return_dict if return_dict is not None else self.config.use_return_dict __UpperCamelCase =self.regnet( A_ , output_hidden_states=A_ , return_dict=A_ , training=A_ ) __UpperCamelCase =outputs.pooler_output if return_dict else outputs[1] __UpperCamelCase =self.classifier[0](A_ ) __UpperCamelCase =self.classifier[1](A_ ) __UpperCamelCase =None if labels is None else self.hf_compute_loss(labels=A_ , logits=A_ ) if not return_dict: __UpperCamelCase =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=A_ , logits=A_ , hidden_states=outputs.hidden_states )
682
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
1
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self , A_ ) -> int: __UpperCamelCase =3 __UpperCamelCase =250 __UpperCamelCase =ids_tensor((batch_size, length) , A_ ) __UpperCamelCase =torch.ones((batch_size, length) , device=A_ , dtype=torch.float ) / length return input_ids, scores def _a ( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase =self._get_tensors(5 ) __UpperCamelCase =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =MaxLengthCriteria(max_length=10 ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(5 ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) def _a ( self ) -> List[Any]: __UpperCamelCase =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(5 ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase , __UpperCamelCase =self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) __UpperCamelCase =StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =self._get_tensors(5 ) __UpperCamelCase =MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A_ , A_ ) ) __UpperCamelCase =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A_ , A_ ) ) def _a ( self ) -> Union[str, Any]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(A_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCamelCase =validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(A_ ) , 1 )
682
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
1
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } _A = {'allegro/herbert-base-cased': 514} _A = {} class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[str] = HerbertTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_="</s>" , **A_ , ) -> Optional[int]: super().__init__( A_ , A_ , tokenizer_file=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , sep_token=A_ , **A_ , ) def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.cls_token_id] __UpperCamelCase =[self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1] def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
682
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse('0.8.3'): raise Exception('requires gluonnlp == 0.8.3') if version.parse(mx.__version__) != version.parse('1.5.0'): raise Exception('requires mxnet == 1.5.0') logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = 'The Nymphenburg Palace is a beautiful palace in Munich!' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase ={ 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 10_24, 'hidden_size': 7_68, 'max_length': 5_12, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 10_24, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1E-5, 'token_type_vocab_size': 2, } __UpperCamelCase =bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __UpperCamelCase =BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=SCREAMING_SNAKE_CASE__ , output_all_encodings=SCREAMING_SNAKE_CASE__ , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , SCREAMING_SNAKE_CASE__ ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __UpperCamelCase ='openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab __UpperCamelCase =os.path.join(get_home_dir() , 'models' ) __UpperCamelCase =_load_vocab(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cls=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =nlp.model.BERTModel( SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=SCREAMING_SNAKE_CASE__ , use_token_type_embed=SCREAMING_SNAKE_CASE__ , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=SCREAMING_SNAKE_CASE__ , use_decoder=SCREAMING_SNAKE_CASE__ , ) original_bort.load_parameters(SCREAMING_SNAKE_CASE__ , cast_dtype=SCREAMING_SNAKE_CASE__ , ignore_extra=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =original_bort._collect_params_with_prefix() # Build our config 🤗 __UpperCamelCase ={ 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.02, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(SCREAMING_SNAKE_CASE__ ), } __UpperCamelCase =BertConfig.from_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BertForMaskedLM(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(SCREAMING_SNAKE_CASE__ : Tuple ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =hf_param.shape __UpperCamelCase =to_torch(params[gluon_param] ) __UpperCamelCase =gluon_param.shape assert ( shape_hf == shape_gluon ), F'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) __UpperCamelCase =check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __UpperCamelCase =torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __UpperCamelCase =hf_bort_model.bert.encoder.layer[i] # self attention __UpperCamelCase =layer.attention.self __UpperCamelCase =check_and_map_params( self_attn.key.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __UpperCamelCase =check_and_map_params( self_attn.key.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __UpperCamelCase =check_and_map_params( self_attn.query.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __UpperCamelCase =check_and_map_params( self_attn.query.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __UpperCamelCase =check_and_map_params( self_attn.value.bias.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __UpperCamelCase =check_and_map_params( self_attn.value.weight.data , F'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __UpperCamelCase =layer.attention.output __UpperCamelCase =check_and_map_params( self_output.dense.bias , F'encoder.transformer_cells.{i}.proj.bias' ) __UpperCamelCase =check_and_map_params( self_output.dense.weight , F'encoder.transformer_cells.{i}.proj.weight' ) __UpperCamelCase =check_and_map_params( self_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.layer_norm.beta' ) __UpperCamelCase =check_and_map_params( self_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __UpperCamelCase =layer.intermediate __UpperCamelCase =check_and_map_params( intermediate.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __UpperCamelCase =check_and_map_params( intermediate.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __UpperCamelCase =layer.output __UpperCamelCase =check_and_map_params( bert_output.dense.bias , F'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __UpperCamelCase =check_and_map_params( bert_output.dense.weight , F'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __UpperCamelCase =check_and_map_params( bert_output.LayerNorm.bias , F'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __UpperCamelCase =check_and_map_params( bert_output.LayerNorm.weight , F'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __UpperCamelCase =RobertaTokenizer.from_pretrained('roberta-base' ) __UpperCamelCase =tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ )['input_ids'] # Get gluon output __UpperCamelCase =mx.nd.array([input_ids] ) __UpperCamelCase =original_bort(inputs=SCREAMING_SNAKE_CASE__ , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =BertModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) hf_bort_model.eval() __UpperCamelCase =tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors='pt' ) __UpperCamelCase =hf_bort_model(**SCREAMING_SNAKE_CASE__ )[0] __UpperCamelCase =output_gluon[0].asnumpy() __UpperCamelCase =output_hf[0].detach().numpy() __UpperCamelCase =np.max(np.abs(hf_layer - gluon_layer ) ).item() __UpperCamelCase =np.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--bort_checkpoint_path', default=None, type=str, required=True, help='Path the official Bort params file.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _A = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1
import warnings from ..trainer import Trainer from ..utils import logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_=None , **A_ ) -> Union[str, Any]: warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , A_ , ) super().__init__(args=A_ , **A_ )
682
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _A = 50_0000 _A , _A = os.path.split(__file__) _A = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : datasets.Dataset , **SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =dataset.map(**SCREAMING_SNAKE_CASE__ ) @get_duration def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : datasets.Dataset , **SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =dataset.filter(**SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( ): __UpperCamelCase ={'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase =datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) __UpperCamelCase =generate_example_dataset( os.path.join(SCREAMING_SNAKE_CASE__ , 'dataset.arrow' ) , SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=SCREAMING_SNAKE_CASE__ ) def tokenize(SCREAMING_SNAKE_CASE__ : Optional[Any] ): return tokenizer(examples['text'] ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='numpy' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='pandas' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=lambda SCREAMING_SNAKE_CASE__ : None , batched=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =map(SCREAMING_SNAKE_CASE__ , function=SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =filter(SCREAMING_SNAKE_CASE__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
682
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self , A_ ) -> List[Any]: with open(A_ , encoding='utf-8' ) as input_file: __UpperCamelCase =re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) __UpperCamelCase =input_file.read() __UpperCamelCase =regexp.search(A_ ) return match def _a ( self , A_ ) -> Dict: with open(A_ , encoding='utf-8' ) as input_file: __UpperCamelCase =re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) __UpperCamelCase =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __UpperCamelCase =regexp.finditer(A_ ) __UpperCamelCase =[match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _a ( self ) -> Dict: __UpperCamelCase =Path('./datasets' ) __UpperCamelCase =list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(A_ ) ): raise AssertionError(f'open(...) must use utf-8 encoding in {dataset}' ) def _a ( self ) -> List[str]: __UpperCamelCase =Path('./datasets' ) __UpperCamelCase =list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(A_ ) ): raise AssertionError(f'print statement found in {dataset}. Use datasets.logger/logging instead.' )
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import platform import sys _A = '3' print('Python version:', sys.version) print('OS platform:', platform.platform()) print('OS architecture:', platform.machine()) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) except ImportError: print('Torch version:', None) try: import transformers print('transformers version:', transformers.__version__) except ImportError: print('transformers version:', None)
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
from __future__ import annotations _A = tuple[int, int, int] _A = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase _A = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' # -------------------------- default selection -------------------------- # rotors -------------------------- _A = 'EGZWVONAHDCLFQMSIPJBYUKXTR' _A = 'FOBHMDKEXQNRAULPGSJVTYICZW' _A = 'ZJXESIUQLHAVRMDOYGTNFWPBKC' # reflector -------------------------- _A = { 'A': 'N', 'N': 'A', 'B': 'O', 'O': 'B', 'C': 'P', 'P': 'C', 'D': 'Q', 'Q': 'D', 'E': 'R', 'R': 'E', 'F': 'S', 'S': 'F', 'G': 'T', 'T': 'G', 'H': 'U', 'U': 'H', 'I': 'V', 'V': 'I', 'J': 'W', 'W': 'J', 'K': 'X', 'X': 'K', 'L': 'Y', 'Y': 'L', 'M': 'Z', 'Z': 'M', } # -------------------------- extra rotors -------------------------- _A = 'RMDJXFUWGISLHVTCQNKYPBEZOA' _A = 'SGLCPQWZHKXAREONTFBVIYJUDM' _A = 'HVSICLTYKQUBXDWAJZOMFGPREN' _A = 'RZWQHFMVDBKICJLNTUXAGYPSOE' _A = 'LFKIJODBEGAMQPXVUHYSTCZRWN' _A = 'KOAEGVDHXPQZMLFTYWJNBRCIUS' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : RotorPositionT , SCREAMING_SNAKE_CASE__ : RotorSelectionT , SCREAMING_SNAKE_CASE__ : str ): # Checks if there are 3 unique rotors if (unique_rotsel := len(set(SCREAMING_SNAKE_CASE__ ) )) < 3: __UpperCamelCase =F'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(SCREAMING_SNAKE_CASE__ ) # Checks if rotor positions are valid __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =rotpos if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =F'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =F'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(SCREAMING_SNAKE_CASE__ ) if not 0 < rotorposa <= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =F'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(SCREAMING_SNAKE_CASE__ ) # Validates string and returns dict __UpperCamelCase =_plugboard(SCREAMING_SNAKE_CASE__ ) return rotpos, rotsel, pbdict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): # tests the input string if it # a) is type string # b) has even length (so pairs can be made) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =F'Plugboard setting isn\'t type string ({type(SCREAMING_SNAKE_CASE__ )})' raise TypeError(SCREAMING_SNAKE_CASE__ ) elif len(SCREAMING_SNAKE_CASE__ ) % 2 != 0: __UpperCamelCase =F'Odd number of symbols ({len(SCREAMING_SNAKE_CASE__ )})' raise Exception(SCREAMING_SNAKE_CASE__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique __UpperCamelCase =set() for i in pbstring: if i not in abc: __UpperCamelCase =F'\'{i}\' not in list of symbols' raise Exception(SCREAMING_SNAKE_CASE__ ) elif i in tmppbl: __UpperCamelCase =F'Duplicate symbol ({i})' raise Exception(SCREAMING_SNAKE_CASE__ ) else: tmppbl.add(SCREAMING_SNAKE_CASE__ ) del tmppbl # Created the dictionary __UpperCamelCase ={} for j in range(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 , 2 ): __UpperCamelCase =pbstring[j + 1] __UpperCamelCase =pbstring[j] return pb def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : RotorPositionT , SCREAMING_SNAKE_CASE__ : RotorSelectionT = (rotora, rotora, rotora) , SCREAMING_SNAKE_CASE__ : str = "" , ): __UpperCamelCase =text.upper() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =_validator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , plugb.upper() ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =rotor_position __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCamelCase =[] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCamelCase =plugboard[symbol] # rotor ra -------------------------- __UpperCamelCase =abc.index(SCREAMING_SNAKE_CASE__ ) + rotorposa __UpperCamelCase =rotora[index % len(SCREAMING_SNAKE_CASE__ )] # rotor rb -------------------------- __UpperCamelCase =abc.index(SCREAMING_SNAKE_CASE__ ) + rotorposa __UpperCamelCase =rotora[index % len(SCREAMING_SNAKE_CASE__ )] # rotor rc -------------------------- __UpperCamelCase =abc.index(SCREAMING_SNAKE_CASE__ ) + rotorposa __UpperCamelCase =rotora[index % len(SCREAMING_SNAKE_CASE__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCamelCase =reflector[symbol] # 2nd rotors __UpperCamelCase =abc[rotora.index(SCREAMING_SNAKE_CASE__ ) - rotorposa] __UpperCamelCase =abc[rotora.index(SCREAMING_SNAKE_CASE__ ) - rotorposa] __UpperCamelCase =abc[rotora.index(SCREAMING_SNAKE_CASE__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCamelCase =plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =0 rotorposa += 1 if rotorposa >= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(SCREAMING_SNAKE_CASE__ ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = 'This is my Python script that emulates the Enigma machine from WWII.' _A = (1, 1, 1) _A = 'pictures' _A = (rotora, rotora, rotora) _A = enigma(message, rotor_pos, rotor_sel, pb) print('Encrypted message:', en) print('Decrypted message:', enigma(en, rotor_pos, rotor_sel, pb))
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": TFMobileBertModel, "fill-mask": TFMobileBertForMaskedLM, "question-answering": TFMobileBertForQuestionAnswering, "text-classification": TFMobileBertForSequenceClassification, "token-classification": TFMobileBertForTokenClassification, "zero-shot": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : int = False UpperCAmelCase__ : int = False def _a ( self , A_ , A_ , A_=False ) -> Optional[Any]: __UpperCamelCase =super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class in get_values(A_ ): __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =embedding_size def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =TFMobileBertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =TFMobileBertForMaskedLM(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFMobileBertForNextSentencePrediction(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =TFMobileBertForPreTraining(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFMobileBertForSequenceClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFMobileBertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =self.num_labels __UpperCamelCase =TFMobileBertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =TFMobileBertForQuestionAnswering(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def _a ( self ) -> Optional[int]: __UpperCamelCase =TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*A_ ) @slow def _a ( self ) -> str: # for model_name in TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["google/mobilebert-uncased"]: __UpperCamelCase =TFMobileBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> str: __UpperCamelCase =TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] __UpperCamelCase =[1, 6, 30522] self.assertEqual(output.shape , A_ ) __UpperCamelCase =tf.constant( [ [ [-4.591_9547, -9.24_8295, -9.64_5256], [-6.730_6175, -6.44_0284, -6.605_2837], [-7.274_3506, -6.784_7915, -6.02_4673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 )
682
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
from __future__ import annotations import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[int | float], int | float] , SCREAMING_SNAKE_CASE__ : int | float , SCREAMING_SNAKE_CASE__ : int | float , SCREAMING_SNAKE_CASE__ : int = 1_00 , ): __UpperCamelCase =x_start __UpperCamelCase =fnc(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =0.0 for _ in range(SCREAMING_SNAKE_CASE__ ): # Approximates curve as a sequence of linear lines and sums their length __UpperCamelCase =(x_end - x_start) / steps + xa __UpperCamelCase =fnc(SCREAMING_SNAKE_CASE__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __UpperCamelCase =xa __UpperCamelCase =fxa return length if __name__ == "__main__": def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): return math.sin(10 * x ) print('f(x) = sin(10 * x)') print('The length of the curve from x = -10 to x = 10 is:') _A = 10 while i <= 10_0000: print(f"""With {i} steps: {line_length(f, -10, 10, i)}""") i *= 10
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
1
import itertools import string from collections.abc import Generator, Iterable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Iterable[str] , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =iter(SCREAMING_SNAKE_CASE__ ) while True: __UpperCamelCase =tuple(itertools.islice(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if not chunk: return yield chunk def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __UpperCamelCase ='' if len(SCREAMING_SNAKE_CASE__ ) < 2: return dirty for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(SCREAMING_SNAKE_CASE__ ) & 1: clean += "X" return clean def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) __UpperCamelCase ='ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __UpperCamelCase =[] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(SCREAMING_SNAKE_CASE__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(SCREAMING_SNAKE_CASE__ ) return table def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =generate_table(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =prepare_input(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE__ , 2 ): __UpperCamelCase , __UpperCamelCase =divmod(table.index(SCREAMING_SNAKE_CASE__ ) , 5 ) __UpperCamelCase , __UpperCamelCase =divmod(table.index(SCREAMING_SNAKE_CASE__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =generate_table(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ='' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(SCREAMING_SNAKE_CASE__ , 2 ): __UpperCamelCase , __UpperCamelCase =divmod(table.index(SCREAMING_SNAKE_CASE__ ) , 5 ) __UpperCamelCase , __UpperCamelCase =divmod(table.index(SCREAMING_SNAKE_CASE__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
import pytest import datasets # Import fixture modules as plugins _A = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['integration', 'unit'] ): continue item.add_marker(pytest.mark.unit ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): config.addinivalue_line('markers' , 'torchaudio_latest: mark test to run with torchaudio>=0.12' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? __UpperCamelCase =tmp_path_factory.getbasetemp() / 'cache' __UpperCamelCase =test_hf_cache_home / 'datasets' __UpperCamelCase =test_hf_cache_home / 'metrics' __UpperCamelCase =test_hf_cache_home / 'modules' monkeypatch.setattr('datasets.config.HF_DATASETS_CACHE' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('datasets.config.HF_METRICS_CACHE' , str(SCREAMING_SNAKE_CASE__ ) ) monkeypatch.setattr('datasets.config.HF_MODULES_CACHE' , str(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =test_hf_datasets_cache / 'downloads' monkeypatch.setattr('datasets.config.DOWNLOADED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE__ ) ) __UpperCamelCase =test_hf_datasets_cache / 'downloads' / 'extracted' monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(SCREAMING_SNAKE_CASE__ ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ , scope='session' ) def _UpperCAmelCase ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): # don't take tests into account when counting downloads monkeypatch.setattr('datasets.config.HF_UPDATE_DOWNLOAD_COUNTS' , SCREAMING_SNAKE_CASE__ ) @pytest.fixture def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('sqlalchemy.util.deprecations.SILENCE_UBER_WARNING' , SCREAMING_SNAKE_CASE__ )
682
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = FlaxAutoencoderKL @property def _a ( self ) -> int: __UpperCamelCase =4 __UpperCamelCase =3 __UpperCamelCase =(32, 32) __UpperCamelCase =jax.random.PRNGKey(0 ) __UpperCamelCase =jax.random.uniform(A_ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _a ( self ) -> Optional[Any]: __UpperCamelCase ={ 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __UpperCamelCase =self.dummy_input return init_dict, inputs_dict
682
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
1
from typing import Any class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> Tuple: __UpperCamelCase =data __UpperCamelCase =None def __repr__( self ) -> str: return f'Node({self.data})' class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =None def __iter__( self ) -> Any: __UpperCamelCase =self.head while node: yield node.data __UpperCamelCase =node.next def __len__( self ) -> int: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(A_ ) for item in self] ) def __getitem__( self , A_ ) -> Any: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , A_ , A_ ) -> None: if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) __UpperCamelCase =self.head for _ in range(A_ ): __UpperCamelCase =current.next __UpperCamelCase =data def _a ( self , A_ ) -> None: self.insert_nth(len(self ) , A_ ) def _a ( self , A_ ) -> None: self.insert_nth(0 , A_ ) def _a ( self , A_ , A_ ) -> None: if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) __UpperCamelCase =Node(A_ ) if self.head is None: __UpperCamelCase =new_node elif index == 0: __UpperCamelCase =self.head # link new_node to head __UpperCamelCase =new_node else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =new_node def _a ( self ) -> None: # print every node data print(self ) def _a ( self ) -> Any: return self.delete_nth(0 ) def _a ( self ) -> Any: # delete from tail return self.delete_nth(len(self ) - 1 ) def _a ( self , A_ = 0 ) -> Any: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) __UpperCamelCase =self.head # default first node if index == 0: __UpperCamelCase =self.head.next else: __UpperCamelCase =self.head for _ in range(index - 1 ): __UpperCamelCase =temp.next __UpperCamelCase =temp.next __UpperCamelCase =temp.next.next return delete_node.data def _a ( self ) -> bool: return self.head is None def _a ( self ) -> None: __UpperCamelCase =None __UpperCamelCase =self.head while current: # Store the current node's next node. __UpperCamelCase =current.next # Make the current node's next point backwards __UpperCamelCase =prev # Make the previous node be the current node __UpperCamelCase =current # Make the current node the next node (to progress iteration) __UpperCamelCase =next_node # Return prev in order to put the head at the end __UpperCamelCase =prev def _UpperCAmelCase ( ): __UpperCamelCase =LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(SCREAMING_SNAKE_CASE__ ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(SCREAMING_SNAKE_CASE__ ) == 9 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): __UpperCamelCase =-i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(-8 , 1 ) ) def _UpperCAmelCase ( ): __UpperCamelCase =[ -9, 1_00, Node(77_34_51_12 ), 'dlrow olleH', 7, 55_55, 0, -192.55555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] __UpperCamelCase =LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head __UpperCamelCase =linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail __UpperCamelCase =linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list __UpperCamelCase =linked_list.delete_nth(10 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _UpperCAmelCase ( ): from doctest import testmod testmod() __UpperCamelCase =LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(SCREAMING_SNAKE_CASE__ ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) __UpperCamelCase =input('Enter New Value: ' ).strip() print('New list:' ) print(SCREAMING_SNAKE_CASE__ ) print(F'length of linked_list is : {len(SCREAMING_SNAKE_CASE__ )}' ) if __name__ == "__main__": main()
682
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
1
from typing import TYPE_CHECKING from ...utils import _LazyModule _A = {'tokenization_byt5': ['ByT5Tokenizer']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _A = logging.get_logger('transformers.models.encodec') _A = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } _A = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } _A = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } _A = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } _A = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } _A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _A = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _A = [] _A = [] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ): for attribute in key.split('.' ): __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: __UpperCamelCase =getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: __UpperCamelCase =hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __UpperCamelCase =value elif weight_type == "weight_g": __UpperCamelCase =value elif weight_type == "weight_v": __UpperCamelCase =value elif weight_type == "bias": __UpperCamelCase =value elif weight_type == "running_mean": __UpperCamelCase =value elif weight_type == "running_var": __UpperCamelCase =value elif weight_type == "num_batches_tracked": __UpperCamelCase =value elif weight_type == "weight_ih_l0": __UpperCamelCase =value elif weight_type == "weight_hh_l0": __UpperCamelCase =value elif weight_type == "bias_ih_l0": __UpperCamelCase =value elif weight_type == "bias_hh_l0": __UpperCamelCase =value elif weight_type == "weight_ih_l1": __UpperCamelCase =value elif weight_type == "weight_hh_l1": __UpperCamelCase =value elif weight_type == "bias_ih_l1": __UpperCamelCase =value elif weight_type == "bias_hh_l1": __UpperCamelCase =value else: __UpperCamelCase =value logger.info(F'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __UpperCamelCase , __UpperCamelCase =key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =[] if model_name == "encodec_24khz" or "encodec_32khz": __UpperCamelCase =MAPPING_24K elif model_name == "encodec_48khz": __UpperCamelCase =MAPPING_48K else: raise ValueError(F'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): logger.info(F'{name} was ignored' ) continue __UpperCamelCase =False for key, mapped_key in MAPPING.items(): if "*" in key: __UpperCamelCase , __UpperCamelCase =key.split('.*.' ) if prefix in name and suffix in name: __UpperCamelCase =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue __UpperCamelCase =True if "*" in mapped_key: __UpperCamelCase =name.split(SCREAMING_SNAKE_CASE__ )[0].split('.' )[-2] __UpperCamelCase =mapped_key.replace('*' , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: __UpperCamelCase ='weight_g' elif "weight_v" in name: __UpperCamelCase ='weight_v' elif "weight_ih_l0" in name: __UpperCamelCase ='weight_ih_l0' elif "weight_hh_l0" in name: __UpperCamelCase ='weight_hh_l0' elif "bias_ih_l0" in name: __UpperCamelCase ='bias_ih_l0' elif "bias_hh_l0" in name: __UpperCamelCase ='bias_hh_l0' elif "weight_ih_l1" in name: __UpperCamelCase ='weight_ih_l1' elif "weight_hh_l1" in name: __UpperCamelCase ='weight_hh_l1' elif "bias_ih_l1" in name: __UpperCamelCase ='bias_ih_l1' elif "bias_hh_l1" in name: __UpperCamelCase ='bias_hh_l1' elif "bias" in name: __UpperCamelCase ='bias' elif "weight" in name: __UpperCamelCase ='weight' elif "running_mean" in name: __UpperCamelCase ='running_mean' elif "running_var" in name: __UpperCamelCase ='running_var' elif "num_batches_tracked" in name: __UpperCamelCase ='num_batches_tracked' else: __UpperCamelCase =None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(F'Unused weights: {unused_weights}' ) @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Tuple=None , ): if config_path is not None: __UpperCamelCase =EncodecConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __UpperCamelCase =[8, 5, 4, 4] __UpperCamelCase =[2.2] __UpperCamelCase =64 __UpperCamelCase =3_20_00 __UpperCamelCase =20_48 __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False elif model_name == "encodec_48khz": __UpperCamelCase =[8, 5, 4, 2] __UpperCamelCase =[3.0, 6.0, 12.0, 24.0] __UpperCamelCase =4_80_00 __UpperCamelCase =2 __UpperCamelCase =False __UpperCamelCase ='time_group_norm' __UpperCamelCase =True __UpperCamelCase =1.0 __UpperCamelCase =0.01 else: raise ValueError(F'Unknown model name: {model_name}' ) __UpperCamelCase =EncodecModel(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __UpperCamelCase =original_checkpoint['best_state'] recursively_load_weights(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(SCREAMING_SNAKE_CASE__ ) model.push_to_hub(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _A = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
682
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 50 ): __UpperCamelCase =[1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
682
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
1
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=2 , A_=24 , A_=16 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=None , A_=2 , A_=2 , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =patch_size __UpperCamelCase =max_length __UpperCamelCase =num_mel_bins __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =frequency_stride __UpperCamelCase =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase =(self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase =frequency_out_dimension * time_out_dimension __UpperCamelCase =num_patches + 2 def _a ( self ) -> Tuple: __UpperCamelCase =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, input_values, labels def _a ( self ) -> Optional[int]: return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _a ( self , A_ , A_ , A_ ) -> str: __UpperCamelCase =ASTModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_values': input_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCAmelCase__ : str = ( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Dict = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _a ( self ) -> Dict: __UpperCamelCase =ASTModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def _a ( self ) -> Tuple: pass def _a ( self ) -> Optional[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> List[str]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['input_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @slow def _a ( self ) -> str: for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ASTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) __UpperCamelCase , __UpperCamelCase =torchaudio.load(SCREAMING_SNAKE_CASE__ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> str: return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def _a ( self ) -> List[str]: __UpperCamelCase =self.default_feature_extractor __UpperCamelCase =ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(A_ ) __UpperCamelCase =self.default_feature_extractor __UpperCamelCase , __UpperCamelCase =prepare_audio() __UpperCamelCase =audio.squeeze().numpy() __UpperCamelCase =feature_extractor(A_ , sampling_rate=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-0.8760, -7.0042, -8.6602] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) )
682
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
1
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1000 , ) -> List[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =coordinate_size __UpperCamelCase =shape_size __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase =text_seq_length __UpperCamelCase =(image_size // patch_size) ** 2 + 1 __UpperCamelCase =self.text_seq_length + self.image_seq_length def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __UpperCamelCase =bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase =bbox[i, j, 3] __UpperCamelCase =bbox[i, j, 1] __UpperCamelCase =tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase =bbox[i, j, 2] __UpperCamelCase =bbox[i, j, 0] __UpperCamelCase =tmp_coordinate __UpperCamelCase =tf.constant(A_ ) __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFLayoutLMvaModel(config=A_ ) # text + image __UpperCamelCase =model(A_ , pixel_values=A_ , training=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , training=A_ , ) __UpperCamelCase =model(A_ , bbox=A_ , pixel_values=A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase =model(A_ , training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase =model({'pixel_values': pixel_values} , training=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =self.num_labels __UpperCamelCase =TFLayoutLMvaForSequenceClassification(config=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , training=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFLayoutLMvaForTokenClassification(config=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , training=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =2 __UpperCamelCase =TFLayoutLMvaForQuestionAnswering(config=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , training=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> str: __UpperCamelCase =self.prepare_config_and_inputs() ((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase__ : List[str] = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : int = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Dict: return True def _a ( self , A_ , A_ , A_=False ) -> dict: __UpperCamelCase =copy.deepcopy(A_ ) if model_class in get_values(A_ ): __UpperCamelCase ={ k: tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(A_ , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): __UpperCamelCase =tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): __UpperCamelCase =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(A_ ): __UpperCamelCase =tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def _a ( self ) -> List[str]: __UpperCamelCase =TFLayoutLMvaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> int: self.config_tester.run_common_tests() def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) if getattr(A_ , 'hf_compute_loss' , A_ ): # The number of elements in the loss should be the same as the number of elements in the label __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=A_ )[0] ] __UpperCamelCase =added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =prepared_for_class.pop('input_ids' ) __UpperCamelCase =model(A_ , **A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __UpperCamelCase =prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __UpperCamelCase =-100 __UpperCamelCase =tf.convert_to_tensor(A_ ) __UpperCamelCase =model(A_ , **A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) __UpperCamelCase =model(A_ )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __UpperCamelCase =self._prepare_for_class(inputs_dict.copy() , A_ , return_labels=A_ ) # Get keys that were added with the _prepare_for_class function __UpperCamelCase =prepared_for_class.keys() - inputs_dict.keys() __UpperCamelCase =inspect.signature(model.call ).parameters __UpperCamelCase =list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __UpperCamelCase ={0: 'input_ids'} for label_key in label_keys: __UpperCamelCase =signature_names.index(A_ ) __UpperCamelCase =label_key __UpperCamelCase =sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __UpperCamelCase =[] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __UpperCamelCase =prepared_for_class[value] __UpperCamelCase =tuple(A_ ) # Send to model __UpperCamelCase =model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def _a ( self ) -> Optional[int]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> List[Any]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> Optional[int]: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> int: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) def _a ( self ) -> Any: ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( A_ , A_ , A_ , A_ , A_ , A_ , A_ ) @slow def _a ( self ) -> str: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFLayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Optional[int]: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: __UpperCamelCase =TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='tf' ).pixel_values __UpperCamelCase =tf.constant([[1, 2]] ) __UpperCamelCase =tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __UpperCamelCase =model(input_ids=A_ , bbox=A_ , pixel_values=A_ , training=A_ ) # verify the logits __UpperCamelCase =(1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , A_ ) __UpperCamelCase =tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1E-4 ) )
682
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =0 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) for i in range(n - 1 ): for j in range(i + 1 , SCREAMING_SNAKE_CASE__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): if len(SCREAMING_SNAKE_CASE__ ) <= 1: return arr, 0 __UpperCamelCase =len(SCREAMING_SNAKE_CASE__ ) // 2 __UpperCamelCase =arr[0:mid] __UpperCamelCase =arr[mid:] __UpperCamelCase , __UpperCamelCase =count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =_count_cross_inversions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =inversion_p + inversions_q + cross_inversions return c, num_inversions def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[] __UpperCamelCase =__UpperCamelCase =__UpperCamelCase =0 while i < len(SCREAMING_SNAKE_CASE__ ) and j < len(SCREAMING_SNAKE_CASE__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(SCREAMING_SNAKE_CASE__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(SCREAMING_SNAKE_CASE__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _UpperCAmelCase ( ): __UpperCamelCase =[10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __UpperCamelCase =count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __UpperCamelCase =count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) # an empty list should also have zero inversions __UpperCamelCase =[] __UpperCamelCase =count_inversions_bf(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase =count_inversions_recursive(SCREAMING_SNAKE_CASE__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list[float] ): if point: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): __UpperCamelCase =( 'Expected a list of numbers as input, found ' F'{type(SCREAMING_SNAKE_CASE__ ).__name__}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =F'Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}' raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError('Missing an input' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
682
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Union[str, Any]: __UpperCamelCase =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __UpperCamelCase =get_activation('gelu' ) self.assertTrue(torch.allclose(gelu_python(A_ ) , torch_builtin(A_ ) ) ) self.assertFalse(torch.allclose(gelu_python(A_ ) , gelu_new(A_ ) ) ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) __UpperCamelCase =get_activation('gelu' ) __UpperCamelCase =get_activation('gelu_10' ) __UpperCamelCase =torch_builtin(A_ ) __UpperCamelCase =geluaa(A_ ) __UpperCamelCase =torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(A_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def _a ( self ) -> int: get_activation('gelu' ) get_activation('gelu_10' ) get_activation('gelu_fast' ) get_activation('gelu_new' ) get_activation('gelu_python' ) get_activation('gelu_pytorch_tanh' ) get_activation('linear' ) get_activation('mish' ) get_activation('quick_gelu' ) get_activation('relu' ) get_activation('sigmoid' ) get_activation('silu' ) get_activation('swish' ) get_activation('tanh' ) with self.assertRaises(A_ ): get_activation('bogus' ) with self.assertRaises(A_ ): get_activation(A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =get_activation('gelu' ) __UpperCamelCase =1 __UpperCamelCase =get_activation('gelu' ) self.assertEqual(acta.a , 1 ) with self.assertRaises(A_ ): __UpperCamelCase =acta.a
682
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
1
import os def _UpperCAmelCase ( ): with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + '/p022_names.txt' ) as file: __UpperCamelCase =str(file.readlines()[0] ) __UpperCamelCase =names.replace('"' , '' ).split(',' ) names.sort() __UpperCamelCase =0 __UpperCamelCase =0 for i, name in enumerate(SCREAMING_SNAKE_CASE__ ): for letter in name: name_score += ord(SCREAMING_SNAKE_CASE__ ) - 64 total_score += (i + 1) * name_score __UpperCamelCase =0 return total_score if __name__ == "__main__": print(solution())
682
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
1
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase__ : """simple docstring""" pass
682
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
1
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Optional[int]: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Any: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Tuple: pass def _a ( self ) -> Optional[int]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> str: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Tuple: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Dict: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
1
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str=32 , SCREAMING_SNAKE_CASE__ : Any=10 , SCREAMING_SNAKE_CASE__ : List[Any]=1_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=10_26 , SCREAMING_SNAKE_CASE__ : List[str]=True , SCREAMING_SNAKE_CASE__ : Tuple="data/tokenized_stories_train_wikitext103.jbl" , SCREAMING_SNAKE_CASE__ : Dict="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set __UpperCamelCase , __UpperCamelCase =generate_datasets( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __UpperCamelCase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model __UpperCamelCase =load_gpta('gpt2' ).to(SCREAMING_SNAKE_CASE__ ) print('computing perplexity on objective set' ) __UpperCamelCase =compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).item() print('perplexity on objective set:' , SCREAMING_SNAKE_CASE__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any]=15 , SCREAMING_SNAKE_CASE__ : Dict=1_28 , SCREAMING_SNAKE_CASE__ : List[str]=1_00 , SCREAMING_SNAKE_CASE__ : List[Any]="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model __UpperCamelCase =GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model __UpperCamelCase =SecondaryLearner(SCREAMING_SNAKE_CASE__ ) # Train secondary learner __UpperCamelCase =train_secondary_learner( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_epochs=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , eval_freq=1_00 , igf_model_path=SCREAMING_SNAKE_CASE__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int]=32 , SCREAMING_SNAKE_CASE__ : Optional[int]=10_00 , SCREAMING_SNAKE_CASE__ : Optional[int]=16 , SCREAMING_SNAKE_CASE__ : Dict=1.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=recopy_gpta , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=10 , SCREAMING_SNAKE_CASE__ : Union[str, Any]="gpt2_finetuned.pt" , ): __UpperCamelCase =torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) __UpperCamelCase =RandomSampler(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =max_steps // (len(SCREAMING_SNAKE_CASE__ )) + 1 __UpperCamelCase =0 __UpperCamelCase =torch.zeros((1, context_len) , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =recopy_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.train() if secondary_learner is not None: secondary_learner.to(SCREAMING_SNAKE_CASE__ ) secondary_learner.eval() __UpperCamelCase =[] __UpperCamelCase =0 __UpperCamelCase =[] __UpperCamelCase =[] # Compute the performance of the transformer model at the beginning __UpperCamelCase =compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_perps.append(SCREAMING_SNAKE_CASE__ ) print('Test perplexity, step' , SCREAMING_SNAKE_CASE__ , ':' , SCREAMING_SNAKE_CASE__ ) for epoch in range(int(SCREAMING_SNAKE_CASE__ ) ): for step, example in enumerate(SCREAMING_SNAKE_CASE__ ): torch.cuda.empty_cache() __UpperCamelCase =random.randint(0 , example.size(2 ) - context_len - 1 ) __UpperCamelCase =example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =True if secondary_learner is not None: __UpperCamelCase =secondary_learner.forward( torch.tensor(SCREAMING_SNAKE_CASE__ , dtype=torch.long , device=SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(SCREAMING_SNAKE_CASE__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __UpperCamelCase =-1 if predicted_q < threshold: __UpperCamelCase =False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __UpperCamelCase =outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __UpperCamelCase =0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __UpperCamelCase =compute_perplexity(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) test_perps.append(SCREAMING_SNAKE_CASE__ ) print('Test perplexity, step' , SCREAMING_SNAKE_CASE__ , ':' , SCREAMING_SNAKE_CASE__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def _UpperCAmelCase ( ): __UpperCamelCase =argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=SCREAMING_SNAKE_CASE__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=SCREAMING_SNAKE_CASE__ , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=SCREAMING_SNAKE_CASE__ , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=SCREAMING_SNAKE_CASE__ , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=SCREAMING_SNAKE_CASE__ , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=SCREAMING_SNAKE_CASE__ , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=SCREAMING_SNAKE_CASE__ , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=SCREAMING_SNAKE_CASE__ , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=SCREAMING_SNAKE_CASE__ , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=SCREAMING_SNAKE_CASE__ , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=SCREAMING_SNAKE_CASE__ , type=SCREAMING_SNAKE_CASE__ , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner __UpperCamelCase =joblib.load('data/IGF_values.jbl' ) # Train secondary learner __UpperCamelCase =training_secondary_learner( SCREAMING_SNAKE_CASE__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model __UpperCamelCase =GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __UpperCamelCase , __UpperCamelCase =generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=SCREAMING_SNAKE_CASE__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=SCREAMING_SNAKE_CASE__ , secondary_learner=SCREAMING_SNAKE_CASE__ , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
682
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = { 'configuration_xlm': ['XLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMConfig', 'XLMOnnxConfig'], 'tokenization_xlm': ['XLMTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMForMultipleChoice', 'XLMForQuestionAnswering', 'XLMForQuestionAnsweringSimple', 'XLMForSequenceClassification', 'XLMForTokenClassification', 'XLMModel', 'XLMPreTrainedModel', 'XLMWithLMHeadModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMForMultipleChoice', 'TFXLMForQuestionAnsweringSimple', 'TFXLMForSequenceClassification', 'TFXLMForTokenClassification', 'TFXLMMainLayer', 'TFXLMModel', 'TFXLMPreTrainedModel', 'TFXLMWithLMHeadModel', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_=1024 , A_=1024 , A_=3.6 ) -> Optional[int]: __UpperCamelCase =tokenizer __UpperCamelCase =tokenizer.bos_token_id __UpperCamelCase =dataset __UpperCamelCase =seq_length __UpperCamelCase =seq_length * chars_per_token * num_of_sequences def __iter__( self ) -> str: __UpperCamelCase =iter(self.dataset ) __UpperCamelCase =True while more_examples: __UpperCamelCase , __UpperCamelCase =[], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(A_ )['content'] ) buffer_len += len(buffer[-1] ) except StopIteration: __UpperCamelCase =False break __UpperCamelCase =tokenizer(A_ , truncation=A_ )['input_ids'] __UpperCamelCase =[] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0 , len(A_ ) , self.seq_length ): __UpperCamelCase =all_token_ids[i : i + self.seq_length] if len(A_ ) == self.seq_length: yield torch.tensor(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase ={'streaming': True} __UpperCamelCase =load_dataset(args.dataset_name , split='train' , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =ConstantLengthDataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , seq_length=args.seq_length ) __UpperCamelCase =DataLoader(SCREAMING_SNAKE_CASE__ , batch_size=args.batch_size ) return eval_dataloader def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): model.eval() __UpperCamelCase =[] for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): with torch.no_grad(): __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(SCREAMING_SNAKE_CASE__ ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break __UpperCamelCase =torch.mean(torch.cat(SCREAMING_SNAKE_CASE__ ) ) try: __UpperCamelCase =torch.exp(SCREAMING_SNAKE_CASE__ ) except OverflowError: __UpperCamelCase =float('inf' ) return loss.item(), perplexity.item() # Setup Accelerator _A = Accelerator() # Parse configuration _A = HfArgumentParser(EvaluationArguments) _A = parser.parse_args() set_seed(args.seed) # Logging _A = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer _A = AutoModelForCausalLM.from_pretrained(args.model_ckpt) _A = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader _A = create_dataloader(args) # Prepare everything with our `accelerator`. _A , _A = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') _A , _A = evaluate(args) logger.info(f"""loss/eval: {eval_loss}, perplexity: {perplexity}""")
682
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
1
from cva import destroyAllWindows, imread, imshow, waitKey def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): # getting number of pixels in the image __UpperCamelCase , __UpperCamelCase =img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image _A = imread('image_data/lena.jpg', 1) # convert to its negative _A = convert_to_negative(img) # show result image imshow('negative of original image', img) waitKey(0) destroyAllWindows()
682
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A = logging.get_logger(__name__) _A = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : str = "deta" UpperCAmelCase__ : List[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , A_=None , A_=900 , A_=2048 , A_=6 , A_=2048 , A_=8 , A_=6 , A_=1024 , A_=8 , A_=0.0 , A_=True , A_="relu" , A_=256 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.02 , A_=1.0 , A_=True , A_=False , A_="sine" , A_=5 , A_=4 , A_=4 , A_=True , A_=300 , A_=True , A_=True , A_=1 , A_=5 , A_=2 , A_=1 , A_=1 , A_=5 , A_=2 , A_=0.1 , A_=0.25 , **A_ , ) -> int: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase =CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(A_ , A_ ): __UpperCamelCase =backbone_config.pop('model_type' ) __UpperCamelCase =CONFIG_MAPPING[backbone_model_type] __UpperCamelCase =config_class.from_dict(A_ ) __UpperCamelCase =backbone_config __UpperCamelCase =num_queries __UpperCamelCase =max_position_embeddings __UpperCamelCase =d_model __UpperCamelCase =encoder_ffn_dim __UpperCamelCase =encoder_layers __UpperCamelCase =encoder_attention_heads __UpperCamelCase =decoder_ffn_dim __UpperCamelCase =decoder_layers __UpperCamelCase =decoder_attention_heads __UpperCamelCase =dropout __UpperCamelCase =attention_dropout __UpperCamelCase =activation_dropout __UpperCamelCase =activation_function __UpperCamelCase =init_std __UpperCamelCase =init_xavier_std __UpperCamelCase =encoder_layerdrop __UpperCamelCase =auxiliary_loss __UpperCamelCase =position_embedding_type # deformable attributes __UpperCamelCase =num_feature_levels __UpperCamelCase =encoder_n_points __UpperCamelCase =decoder_n_points __UpperCamelCase =two_stage __UpperCamelCase =two_stage_num_proposals __UpperCamelCase =with_box_refine __UpperCamelCase =assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __UpperCamelCase =class_cost __UpperCamelCase =bbox_cost __UpperCamelCase =giou_cost # Loss coefficients __UpperCamelCase =mask_loss_coefficient __UpperCamelCase =dice_loss_coefficient __UpperCamelCase =bbox_loss_coefficient __UpperCamelCase =giou_loss_coefficient __UpperCamelCase =eos_coefficient __UpperCamelCase =focal_alpha super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _a ( self ) -> int: return self.encoder_attention_heads @property def _a ( self ) -> int: return self.d_model def _a ( self ) -> Dict: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.backbone_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
1
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): __UpperCamelCase =[ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase , __UpperCamelCase =emb.weight.shape __UpperCamelCase =nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =emb.weight.data return lin_layer def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location='cpu' ) __UpperCamelCase =Namespace(**checkpoint['cfg']['model'] ) __UpperCamelCase =checkpoint['model'] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =state_dict['decoder.embed_tokens.weight'].shape[0] __UpperCamelCase ={key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} __UpperCamelCase =XGLMConfig( vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __UpperCamelCase =XGLMForCausalLM(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A = parser.parse_args() _A = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
682
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
1
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __UpperCamelCase =SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase ={'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __UpperCamelCase =features.copy() if features else default_expected_features __UpperCamelCase =( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: __UpperCamelCase =con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp.sql' ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp.sql' ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =tmp_path / 'cache' __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , 'tmp.sql' ) __UpperCamelCase =SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
682
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('env' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate env command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help='The config file to use for the default values in the launching script.' ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Dict ): __UpperCamelCase =torch.__version__ __UpperCamelCase =torch.cuda.is_available() __UpperCamelCase =is_xpu_available() __UpperCamelCase =is_npu_available() __UpperCamelCase ='Not found' # Get the default from the config file. if args.config_file is not None or os.path.isfile(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =load_config_from_file(args.config_file ).to_dict() __UpperCamelCase ={ '`Accelerate` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'Numpy version': np.__version__, 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'PyTorch XPU available': str(SCREAMING_SNAKE_CASE__ ), 'PyTorch NPU available': str(SCREAMING_SNAKE_CASE__ ), 'System RAM': F'{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB', } if pt_cuda_available: __UpperCamelCase =torch.cuda.get_device_name() print('\nCopy-and-paste the text below in your GitHub issue\n' ) print('\n'.join([F'- {prop}: {val}' for prop, val in info.items()] ) ) print('- `Accelerate` default config:' if args.config_file is None else '- `Accelerate` config passed:' ) __UpperCamelCase =( '\n'.join([F'\t- {prop}: {val}' for prop, val in accelerate_config.items()] ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else F'\t{accelerate_config}' ) print(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =accelerate_config return info def _UpperCAmelCase ( ): __UpperCamelCase =env_command_parser() __UpperCamelCase =parser.parse_args() env_command(SCREAMING_SNAKE_CASE__ ) return 0 if __name__ == "__main__": raise SystemExit(main())
682
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
1
import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @property def _a ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.dummy_uncond_unet __UpperCamelCase =PNDMScheduler() __UpperCamelCase =PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =pndm(generator=A_ , num_inference_steps=20 , output_type='numpy' ).images __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =pndm(generator=A_ , num_inference_steps=20 , output_type='numpy' , return_dict=A_ )[0] __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase =np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Dict: __UpperCamelCase ='google/ddpm-cifar10-32' __UpperCamelCase =UNetaDModel.from_pretrained(A_ ) __UpperCamelCase =PNDMScheduler() __UpperCamelCase =PNDMPipeline(unet=A_ , scheduler=A_ ) pndm.to(A_ ) pndm.set_progress_bar_config(disable=A_ ) __UpperCamelCase =torch.manual_seed(0 ) __UpperCamelCase =pndm(generator=A_ , output_type='numpy' ).images __UpperCamelCase =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase =np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
682
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
1
_A = { 'A': '.-', 'B': '-...', 'C': '-.-.', 'D': '-..', 'E': '.', 'F': '..-.', 'G': '--.', 'H': '....', 'I': '..', 'J': '.---', 'K': '-.-', 'L': '.-..', 'M': '--', 'N': '-.', 'O': '---', 'P': '.--.', 'Q': '--.-', 'R': '.-.', 'S': '...', 'T': '-', 'U': '..-', 'V': '...-', 'W': '.--', 'X': '-..-', 'Y': '-.--', 'Z': '--..', '1': '.----', '2': '..---', '3': '...--', '4': '....-', '5': '.....', '6': '-....', '7': '--...', '8': '---..', '9': '----.', '0': '-----', '&': '.-...', '@': '.--.-.', ':': '---...', ',': '--..--', '.': '.-.-.-', '\'': '.----.', '"': '.-..-.', '?': '..--..', '/': '-..-.', '=': '-...-', '+': '.-.-.', '-': '-....-', '(': '-.--.', ')': '-.--.-', '!': '-.-.--', ' ': '/' } # Exclamation mark is not in ITU-R recommendation # fmt: on _A = {value: key for key, value in MORSE_CODE_DICT.items()} def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): return "".join(REVERSE_DICT[char] for char in message.split() ) def _UpperCAmelCase ( ): __UpperCamelCase ='Morse code here!' print(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =encrypt(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =decrypt(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = RoCBertTokenizer UpperCAmelCase__ : Optional[Any] = None UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : int = filter_non_english def _a ( self ) -> Optional[Any]: super().setUp() __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '你', '好', '是', '谁', 'a', 'b', 'c', 'd'] __UpperCamelCase ={} __UpperCamelCase ={} for i, value in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =i __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_shape_file'] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['word_pronunciation_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.word_shape_file , 'w' , encoding='utf-8' ) as word_shape_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) with open(self.word_pronunciation_file , 'w' , encoding='utf-8' ) as word_pronunciation_writer: json.dump(A_ , A_ , ensure_ascii=A_ ) def _a ( self ) -> int: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.tokenize('你好[SEP]你是谁' ) self.assertListEqual(A_ , ['你', '好', '[SEP]', '你', '是', '谁'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(A_ ) , [5, 6, 2, 5, 7, 8] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def _a ( self ) -> List[Any]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> str: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Optional[int]: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , strip_accents=A_ ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def _a ( self ) -> Any: __UpperCamelCase =RoCBertBasicTokenizer(do_lower_case=A_ , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __UpperCamelCase ={} for i, token in enumerate(A_ ): __UpperCamelCase =i __UpperCamelCase =RoCBertWordpieceTokenizer(vocab=A_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) def _a ( self ) -> Dict: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def _a ( self ) -> Tuple: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def _a ( self ) -> int: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) if self.test_rust_tokenizer: __UpperCamelCase =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(A_ ) for t in ['Test', '\xad', 'test']] , [['[UNK]'], [], ['[UNK]']] ) def _a ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' __UpperCamelCase =tokenizer_r.encode_plus( A_ , return_attention_mask=A_ , return_token_type_ids=A_ , return_offsets_mapping=A_ , add_special_tokens=A_ , ) __UpperCamelCase =tokenizer_r.do_lower_case if hasattr(A_ , 'do_lower_case' ) else False __UpperCamelCase =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'A'), ((1, 2), ','), ((3, 5), 'na'), ((5, 6), '##ï'), ((6, 8), '##ve'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'Allen'), ((21, 23), '##NL'), ((23, 24), '##P'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), 'a'), ((1, 2), ','), ((3, 8), 'naive'), ((9, 15), tokenizer_r.mask_token), ((16, 21), 'allen'), ((21, 23), '##nl'), ((23, 24), '##p'), ((25, 33), 'sentence'), ((33, 34), '.'), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['input_ids'] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['offset_mapping'] ) def _a ( self ) -> List[str]: __UpperCamelCase =['的', '人', '有'] __UpperCamelCase =''.join(A_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __UpperCamelCase =True __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) __UpperCamelCase =False __UpperCamelCase =self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =self.tokenizer_class.from_pretrained(A_ , **A_ ) __UpperCamelCase =tokenizer_r.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_p.encode(A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer_r.convert_ids_to_tokens(A_ ) __UpperCamelCase =tokenizer_p.convert_ids_to_tokens(A_ ) # it is expected that only the first Chinese character is not preceded by "##". __UpperCamelCase =[ f'##{token}' if idx != 0 else token for idx, token in enumerate(A_ ) ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , A_ ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) __UpperCamelCase =tokenizer.encode('你好' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode('你是谁' , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ ) __UpperCamelCase =tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def _a ( self ) -> Optional[int]: __UpperCamelCase =self.get_tokenizers(do_lower_case=A_ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): __UpperCamelCase ='你好,你是谁' __UpperCamelCase =tokenizer.tokenize(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_shape_ids(A_ ) __UpperCamelCase =tokenizer.convert_tokens_to_pronunciation_ids(A_ ) __UpperCamelCase =tokenizer.prepare_for_model( A_ , A_ , A_ , add_special_tokens=A_ ) __UpperCamelCase =tokenizer.encode_plus(A_ , add_special_tokens=A_ ) self.assertEqual(A_ , A_ )
682
1
_A = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): # Return True if there is node that has not iterated. __UpperCamelCase =[False] * len(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[s] __UpperCamelCase =True while queue: __UpperCamelCase =queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =True __UpperCamelCase =u return visited[t] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase =[-1] * (len(SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =0 __UpperCamelCase =[] __UpperCamelCase =[i[:] for i in graph] # Record original cut, copy. while bfs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =float('Inf' ) __UpperCamelCase =sink while s != source: # Find the minimum value in select path __UpperCamelCase =min(SCREAMING_SNAKE_CASE__ , graph[parent[s]][s] ) __UpperCamelCase =parent[s] max_flow += path_flow __UpperCamelCase =sink while v != source: __UpperCamelCase =parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __UpperCamelCase =parent[v] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
682
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : List[str]=1.0 , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if rng is None: __UpperCamelCase =global_rng __UpperCamelCase =[] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=10 , A_=160 , A_=8 , A_=0.0 , A_=4000 , A_=False , A_=True , ) -> Optional[Any]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =min_seq_length __UpperCamelCase =max_seq_length __UpperCamelCase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCamelCase =padding_value __UpperCamelCase =sampling_rate __UpperCamelCase =return_attention_mask __UpperCamelCase =do_normalize __UpperCamelCase =feature_size __UpperCamelCase =chunk_length __UpperCamelCase =hop_length def _a ( self ) -> int: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _a ( self , A_=False , A_=False ) -> Any: def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: __UpperCamelCase =[floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __UpperCamelCase =[ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __UpperCamelCase =[np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = WhisperFeatureExtractor if is_speech_available() else None def _a ( self ) -> Optional[int]: __UpperCamelCase =WhisperFeatureExtractionTester(self ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =feat_extract_first.save_pretrained(A_ )[0] check_json_file_has_correct_format(A_ ) __UpperCamelCase =self.feature_extraction_class.from_pretrained(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase =os.path.join(A_ , 'feat_extract.json' ) feat_extract_first.to_json_file(A_ ) __UpperCamelCase =self.feature_extraction_class.from_json_file(A_ ) __UpperCamelCase =feat_extract_first.to_dict() __UpperCamelCase =feat_extract_second.to_dict() __UpperCamelCase =feat_extract_first.mel_filters __UpperCamelCase =feat_extract_second.mel_filters self.assertTrue(np.allclose(A_ , A_ ) ) self.assertEqual(A_ , A_ ) def _a ( self ) -> Tuple: # Tests that all call wrap to encode_plus and batch_encode_plus __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __UpperCamelCase =[floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] # Test feature size __UpperCamelCase =feature_extractor(A_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __UpperCamelCase =feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test batched __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __UpperCamelCase =[floats_list((1, x) )[0] for x in (800, 800, 800)] __UpperCamelCase =np.asarray(A_ ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) # Test truncation required __UpperCamelCase =[floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs] __UpperCamelCase =[x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCamelCase =[np.asarray(A_ ) for speech_input in speech_inputs_truncated] __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1E-3 ) ) def _a ( self ) -> Dict: import torch __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =np.random.rand(100 , 32 ).astype(np.floataa ) __UpperCamelCase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __UpperCamelCase =feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech __UpperCamelCase =ds.sort('id' ).select(range(A_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def _a ( self ) -> Optional[int]: # fmt: off __UpperCamelCase =torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __UpperCamelCase =self._load_datasamples(1 ) __UpperCamelCase =WhisperFeatureExtractor() __UpperCamelCase =feature_extractor(A_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , A_ , atol=1E-4 ) ) def _a ( self ) -> Tuple: __UpperCamelCase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __UpperCamelCase =self._load_datasamples(1 )[0] __UpperCamelCase =((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCamelCase =feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=A_ )[0] self.assertTrue(np.all(np.mean(A_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(A_ ) - 1 ) < 1E-3 ) )
682
1
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int | float | str , SCREAMING_SNAKE_CASE__ : int | float | str ): if nth_term == "": return [""] __UpperCamelCase =int(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =int(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[] for temp in range(int(SCREAMING_SNAKE_CASE__ ) ): series.append(F'1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE__ ) )}' if series else '1' ) return series if __name__ == "__main__": import doctest doctest.testmod() _A = int(input('Enter the last number (nth term) of the P-Series')) _A = int(input('Enter the power for P-Series')) print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p') print(p_series(nth_term, power))
682
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> List[str]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =2 __UpperCamelCase =99 __UpperCamelCase =0 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase ='last' __UpperCamelCase =True __UpperCamelCase =None __UpperCamelCase =0 def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase =None if self.use_input_lengths: __UpperCamelCase =( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Any: __UpperCamelCase =TFFlaubertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertWithLMHeadModel(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: __UpperCamelCase =TFFlaubertForQuestionAnsweringSimple(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =TFFlaubertForSequenceClassification(A_ ) __UpperCamelCase ={'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFFlaubertForTokenClassification(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFFlaubertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Optional[int] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase__ : Any = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Optional[int] = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _a ( self ) -> Dict: __UpperCamelCase =TFFlaubertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , emb_dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Optional[int]: for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =TFFlaubertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> int: __UpperCamelCase =TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase =tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase =model(A_ )[0] __UpperCamelCase =tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , A_ ) # compare the actual values for a slice. __UpperCamelCase =tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
682
1
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _A = logging.get_logger(__name__) _A = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "gptj" UpperCAmelCase__ : Tuple = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , A_=50400 , A_=2048 , A_=4096 , A_=28 , A_=16 , A_=64 , A_=None , A_="gelu_new" , A_=0.0 , A_=0.0 , A_=0.0 , A_=1E-5 , A_=0.02 , A_=True , A_=50256 , A_=50256 , A_=False , **A_ , ) -> Tuple: __UpperCamelCase =vocab_size __UpperCamelCase =n_positions __UpperCamelCase =n_embd __UpperCamelCase =n_layer __UpperCamelCase =n_head __UpperCamelCase =n_inner __UpperCamelCase =rotary_dim __UpperCamelCase =activation_function __UpperCamelCase =resid_pdrop __UpperCamelCase =embd_pdrop __UpperCamelCase =attn_pdrop __UpperCamelCase =layer_norm_epsilon __UpperCamelCase =initializer_range __UpperCamelCase =use_cache __UpperCamelCase =bos_token_id __UpperCamelCase =eos_token_id super().__init__( bos_token_id=A_ , eos_token_id=A_ , tie_word_embeddings=A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = "default" , A_ = None , A_ = False , ) -> Optional[int]: super().__init__(A_ , task=A_ , patching_specs=A_ , use_past=A_ ) if not getattr(self._config , 'pad_token_id' , A_ ): # TODO: how to do that better? __UpperCamelCase =0 @property def _a ( self ) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase =OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(A_ , direction='inputs' ) __UpperCamelCase ={0: 'batch', 1: 'past_sequence + sequence'} else: __UpperCamelCase ={0: 'batch', 1: 'sequence'} return common_inputs @property def _a ( self ) -> int: return self._config.n_layer @property def _a ( self ) -> int: return self._config.n_head def _a ( self , A_ , A_ = -1 , A_ = -1 , A_ = False , A_ = None , ) -> Mapping[str, Any]: __UpperCamelCase =super(A_ , self ).generate_dummy_inputs( A_ , batch_size=A_ , seq_length=A_ , is_pair=A_ , framework=A_ ) # We need to order the input in the way they appears in the forward() __UpperCamelCase =OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __UpperCamelCase , __UpperCamelCase =common_inputs['input_ids'].shape # Not using the same length for past_key_values __UpperCamelCase =seqlen + 2 __UpperCamelCase =( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase =[ (torch.zeros(A_ ), torch.zeros(A_ )) for _ in range(self.num_layers ) ] __UpperCamelCase =common_inputs['attention_mask'] if self.use_past: __UpperCamelCase =ordered_inputs['attention_mask'].dtype __UpperCamelCase =torch.cat( [ordered_inputs['attention_mask'], torch.ones(A_ , A_ , dtype=A_ )] , dim=1 ) return ordered_inputs @property def _a ( self ) -> int: return 13
682
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('socket.socket' ) @patch('builtins.open' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): # ===== initialization ===== __UpperCamelCase =Mock() __UpperCamelCase =conn, Mock() __UpperCamelCase =iter([1, None] ) __UpperCamelCase =lambda SCREAMING_SNAKE_CASE__ : next(SCREAMING_SNAKE_CASE__ ) # ===== invoke ===== send_file(filename='mytext.txt' , testing=SCREAMING_SNAKE_CASE__ ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
682
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "" UpperCAmelCase__ : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) UpperCAmelCase__ : str = None # compression type in fsspec. ex: "gzip" UpperCAmelCase__ : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , A_ = "" , A_ = None , A_ = None , **A_ ) -> Optional[Any]: super().__init__(self , **A_ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCamelCase =fsspec.open( A_ , mode='rb' , protocol=A_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCamelCase =os.path.basename(self.file.path.split('::' )[0] ) __UpperCamelCase =( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) __UpperCamelCase =None @classmethod def _a ( cls , A_ ) -> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(A_ ).lstrip('/' ) def _a ( self ) -> List[str]: if self.dir_cache is None: __UpperCamelCase ={**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} __UpperCamelCase ={f['name']: f} def _a ( self , A_ ) -> Dict: return self.file.open().read() def _a ( self , A_ , A_ = "rb" , A_=None , A_=True , A_=None , **A_ , ) -> Union[str, Any]: __UpperCamelCase =self._strip_protocol(A_ ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "bz2" UpperCAmelCase__ : Union[str, Any] = "bz2" UpperCAmelCase__ : Dict = ".bz2" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = "gzip" UpperCAmelCase__ : Optional[int] = "gzip" UpperCAmelCase__ : List[Any] = ".gz" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Union[str, Any] = "lz4" UpperCAmelCase__ : List[Any] = "lz4" UpperCAmelCase__ : Optional[int] = ".lz4" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "xz" UpperCAmelCase__ : Optional[Any] = "xz" UpperCAmelCase__ : Dict = ".xz" class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = "zstd" UpperCAmelCase__ : Optional[int] = "zstd" UpperCAmelCase__ : Union[str, Any] = ".zst" def __init__( self , A_ , A_ = "rb" , A_ = None , A_ = None , A_ = DEFAULT_BLOCK_SIZE , **A_ , ) -> str: super().__init__( fo=A_ , mode=A_ , target_protocol=A_ , target_options=A_ , block_size=A_ , **A_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCamelCase =self.file.__enter__ class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> Union[str, Any]: __UpperCamelCase =file_ def __enter__( self ) -> Any: self._file.__enter__() return self def __exit__( self , *A_ , **A_ ) -> List[str]: self._file.__exit__(*A_ , **A_ ) def __iter__( self ) -> List[str]: return iter(self._file ) def _a ( self ) -> List[str]: return next(self._file ) def __getattr__( self , A_ ) -> List[Any]: return getattr(self._file , A_ ) def fixed_enter(*A_ , **A_ ): return WrappedFile(_enter(*A_ , **A_ ) ) __UpperCamelCase =fixed_enter
682
import math from collections.abc import Callable def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Callable[[float], float] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =xa __UpperCamelCase =xa while True: if x_n == x_na or function(SCREAMING_SNAKE_CASE__ ) == function(SCREAMING_SNAKE_CASE__ ): raise ZeroDivisionError('float division by zero, could not find root' ) __UpperCamelCase =x_na - ( function(SCREAMING_SNAKE_CASE__ ) / ((function(SCREAMING_SNAKE_CASE__ ) - function(SCREAMING_SNAKE_CASE__ )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na __UpperCamelCase =x_na __UpperCamelCase =x_na def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
682
1
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex _A = logging.getLogger(__name__) class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> int: __UpperCamelCase =False def _a ( self , A_ , A_ , A_ , A_ ) -> List[Any]: if not self.initialized: __UpperCamelCase =RagRetriever( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =True def _a ( self ) -> Optional[Any]: self.retriever.index.init_index() def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase , __UpperCamelCase =self.retriever._main_retrieve(A_ , A_ ) return doc_ids, retrieved_doc_embeds class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ , A_ , A_ , A_=None ) -> Dict: if index is not None and index.is_initialized() and len(A_ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , index=A_ , init_retrieval=A_ , ) __UpperCamelCase =retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(A_ , A_ , A_ , A_ ) for worker in self.retrieval_workers ] ) def _a ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _a ( self , A_ , A_ ) -> Optional[int]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __UpperCamelCase =self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __UpperCamelCase , __UpperCamelCase =ray.get(random_worker.retrieve.remote(A_ , A_ ) ) else: __UpperCamelCase , __UpperCamelCase =self._main_retrieve(A_ , A_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(A_ ) @classmethod def _a ( cls , A_ , A_=None , **A_ ) -> List[str]: return super(A_ , cls ).get_tokenizers(A_ , A_ , **A_ ) @classmethod def _a ( cls , A_ , A_ , A_=None , **A_ ) -> str: __UpperCamelCase =kwargs.pop('config' , A_ ) or RagConfig.from_pretrained(A_ , **A_ ) __UpperCamelCase =RagTokenizer.from_pretrained(A_ , config=A_ ) __UpperCamelCase =rag_tokenizer.question_encoder __UpperCamelCase =rag_tokenizer.generator if indexed_dataset is not None: __UpperCamelCase ='custom' __UpperCamelCase =CustomHFIndex(config.retrieval_vector_size , A_ ) else: __UpperCamelCase =cls._build_index(A_ ) return cls( A_ , question_encoder_tokenizer=A_ , generator_tokenizer=A_ , retrieval_workers=A_ , index=A_ , )
682
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline _A = logging.get_logger(__name__) @add_end_docstrings(A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , **A_ ) -> Optional[int]: super().__init__(**A_ ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , A_ , **A_ ) -> List[str]: return super().__call__(A_ , **A_ ) def _a ( self , **A_ ) -> Dict: __UpperCamelCase ={} if "candidate_labels" in kwargs: __UpperCamelCase =kwargs['candidate_labels'] if "hypothesis_template" in kwargs: __UpperCamelCase =kwargs['hypothesis_template'] return preprocess_params, {}, {} def _a ( self , A_ , A_=None , A_="This is a sound of {}." ) -> Union[str, Any]: if isinstance(A_ , A_ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __UpperCamelCase =requests.get(A_ ).content else: with open(A_ , 'rb' ) as f: __UpperCamelCase =f.read() if isinstance(A_ , A_ ): __UpperCamelCase =ffmpeg_read(A_ , self.feature_extractor.sampling_rate ) if not isinstance(A_ , np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) __UpperCamelCase =self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='pt' ) __UpperCamelCase =candidate_labels __UpperCamelCase =[hypothesis_template.format(A_ ) for x in candidate_labels] __UpperCamelCase =self.tokenizer(A_ , return_tensors=self.framework , padding=A_ ) __UpperCamelCase =[text_inputs] return inputs def _a ( self , A_ ) -> List[str]: __UpperCamelCase =model_inputs.pop('candidate_labels' ) __UpperCamelCase =model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , A_ ): __UpperCamelCase =text_inputs[0] else: # Batching case. __UpperCamelCase =text_inputs[0][0] __UpperCamelCase =self.model(**A_ , **A_ ) __UpperCamelCase ={ 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def _a ( self , A_ ) -> Tuple: __UpperCamelCase =model_outputs.pop('candidate_labels' ) __UpperCamelCase =model_outputs['logits'][0] if self.framework == "pt": __UpperCamelCase =logits.softmax(dim=0 ) __UpperCamelCase =probs.tolist() else: raise ValueError('`tf` framework not supported.' ) __UpperCamelCase =[ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(A_ , A_ ) , key=lambda A_ : -x[0] ) ] return result
682
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=[1, 16, 4, 4] , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =num_channels __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =scope __UpperCamelCase =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size __UpperCamelCase =(self.image_size // 32) ** 2 __UpperCamelCase =num_patches + 1 def _a ( self ) -> str: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Union[str, Any]: __UpperCamelCase ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=A_ , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =ViTHybridModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.type_sequence_label_size __UpperCamelCase =ViTHybridForImageClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] = ( {"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[Any]: __UpperCamelCase =ViTHybridModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def _a ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> List[Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def _a ( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =_config_zero_init(A_ ) for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": __UpperCamelCase =[f'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _a ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =ViTHybridModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> str: __UpperCamelCase =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A_ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A_ ) __UpperCamelCase =torch.tensor([-1.9090, -0.4993, -0.2389] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1E-4 ) ) @slow @require_accelerate def _a ( self ) -> Optional[int]: __UpperCamelCase =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) __UpperCamelCase =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ) __UpperCamelCase =model(**A_ ) __UpperCamelCase =outputs.logits # model predicts one of the 1000 ImageNet classes __UpperCamelCase =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
682
1
import os import pytest from attr import dataclass _A = 'us-east-1' # defaults region @dataclass class UpperCAmelCase__ : """simple docstring""" UpperCAmelCase__ : str UpperCAmelCase__ : Union[str, Any] = "arn:aws:iam::558105141721:role/sagemaker_execution_role" UpperCAmelCase__ : Tuple = { "task_name": "mnli", "per_device_train_batch_size": 1_6, "per_device_eval_batch_size": 1_6, "do_train": True, "do_eval": True, "do_predict": True, "output_dir": "/opt/ml/model", "overwrite_output_dir": True, "max_steps": 5_0_0, "save_steps": 5_5_0_0, } UpperCAmelCase__ : Union[str, Any] = {**hyperparameters, "max_steps": 1_0_0_0} @property def _a ( self ) -> str: if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def _a ( self ) -> str: return f'{self.framework}-transfromers-test' @property def _a ( self ) -> str: return f'./tests/sagemaker/scripts/{self.framework}' @property def _a ( self ) -> str: if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase =SageMakerTestEnvironment(framework=request.cls.framework )
682
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : LevitConfig , SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : bool = True ): print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __UpperCamelCase =timm.create_model('levit_128s' , pretrained=SCREAMING_SNAKE_CASE__ ) else: __UpperCamelCase =timm.create_model('levit_128' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 1_92: __UpperCamelCase =timm.create_model('levit_192' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 2_56: __UpperCamelCase =timm.create_model('levit_256' , pretrained=SCREAMING_SNAKE_CASE__ ) if hidden_sizes == 3_84: __UpperCamelCase =timm.create_model('levit_384' , pretrained=SCREAMING_SNAKE_CASE__ ) from_model.eval() __UpperCamelCase =LevitForImageClassificationWithTeacher(SCREAMING_SNAKE_CASE__ ).eval() __UpperCamelCase =OrderedDict() __UpperCamelCase =from_model.state_dict() __UpperCamelCase =list(from_model.state_dict().keys() ) __UpperCamelCase =list(our_model.state_dict().keys() ) print(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __UpperCamelCase =weights[og_keys[i]] our_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =torch.randn((2, 3, 2_24, 2_24) ) __UpperCamelCase =from_model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =our_model(SCREAMING_SNAKE_CASE__ ).logits assert torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "The model logits don't match the original one." __UpperCamelCase =name print(SCREAMING_SNAKE_CASE__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __UpperCamelCase =LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Path , SCREAMING_SNAKE_CASE__ : str = None , SCREAMING_SNAKE_CASE__ : bool = True ): __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =10_00 __UpperCamelCase =(1, num_labels) __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =num_labels __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} __UpperCamelCase =partial(SCREAMING_SNAKE_CASE__ , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase ={ 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __UpperCamelCase ={ 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , names_to_config[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, expected_shape if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) _A = parser.parse_args() _A = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
682
1
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging _A = logging.get_logger(__name__) _A = R'\n Args:\n input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax\n or scores for each vocabulary token after SoftMax.\n kwargs (`Dict[str, Any]`, *optional*):\n Additional stopping criteria specific kwargs.\n\n Return:\n `bool`. `False` indicates we should continue, `True` indicates we should stop.\n\n' class UpperCAmelCase__ ( A_ ): """simple docstring""" @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ) -> bool: raise NotImplementedError('StoppingCriteria needs to be subclassed' ) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = None ) -> Any: __UpperCamelCase =max_length __UpperCamelCase =max_position_embeddings @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ) -> bool: __UpperCamelCase =input_ids.shape[-1] __UpperCamelCase =cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( 'This is a friendly reminder - the current text generation call will exceed the model\'s predefined ' f'maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ' 'exceptions, performance degradation, or nothing at all.' ) return is_done class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ ) -> Any: warnings.warn( 'The class `MaxNewTokensCriteria` is deprecated. ' f'Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ' 'with `max_length = start_length + max_new_tokens` instead.' , A_ , ) __UpperCamelCase =start_length __UpperCamelCase =max_new_tokens __UpperCamelCase =start_length + max_new_tokens @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ) -> bool: return input_ids.shape[-1] >= self.max_length class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ = None ) -> Dict: __UpperCamelCase =max_time __UpperCamelCase =time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ) -> bool: return time.time() - self.initial_timestamp > self.max_time class UpperCAmelCase__ ( A_ ): """simple docstring""" @add_start_docstrings(A_ ) def __call__( self , A_ , A_ , **A_ ) -> bool: return any(criteria(A_ , A_ ) for criteria in self ) @property def _a ( self ) -> Optional[int]: for stopping_criterium in self: if isinstance(A_ , A_ ): return stopping_criterium.max_length elif isinstance(A_ , A_ ): return stopping_criterium.max_length return None def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : StoppingCriteriaList , SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =stopping_criteria.max_length __UpperCamelCase =deepcopy(SCREAMING_SNAKE_CASE__ ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn('You set different `max_length` for stopping criteria and `max_length` parameter' , SCREAMING_SNAKE_CASE__ ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=SCREAMING_SNAKE_CASE__ ) ) return new_stopping_criteria
682
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Any: __UpperCamelCase ='laion/clap-htsat-unfused' __UpperCamelCase =tempfile.mkdtemp() def _a ( self , **A_ ) -> List[Any]: return RobertaTokenizer.from_pretrained(self.checkpoint , **A_ ) def _a ( self , **A_ ) -> Dict: return ClapFeatureExtractor.from_pretrained(self.checkpoint , **A_ ) def _a ( self ) -> int: shutil.rmtree(self.tmpdirname ) def _a ( self ) -> str: __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> int: __UpperCamelCase =ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase =self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase =self.get_feature_extractor(do_normalize=A_ , padding_value=1.0 ) __UpperCamelCase =ClapProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , A_ ) def _a ( self ) -> str: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =floats_list((3, 1000) ) __UpperCamelCase =feature_extractor(A_ , return_tensors='np' ) __UpperCamelCase =processor(audios=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ) -> int: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase ='This is a test string' __UpperCamelCase =processor(text=A_ ) __UpperCamelCase =tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _a ( self ) -> List[str]: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) __UpperCamelCase =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase =processor.batch_decode(A_ ) __UpperCamelCase =tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.get_feature_extractor() __UpperCamelCase =self.get_tokenizer() __UpperCamelCase =ClapProcessor(tokenizer=A_ , feature_extractor=A_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , )
682
1
'''simple docstring''' import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[8, 16, 32, 64] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=1 , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =image_size __UpperCamelCase =num_channels __UpperCamelCase =embeddings_size __UpperCamelCase =hidden_sizes __UpperCamelCase =depths __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =hidden_act __UpperCamelCase =num_labels __UpperCamelCase =scope __UpperCamelCase =len(A__ ) __UpperCamelCase =out_features __UpperCamelCase =out_indices __UpperCamelCase =num_groups def _a ( self ) -> Dict: __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.num_labels ) __UpperCamelCase =self.get_config() return config, pixel_values, labels def _a ( self ) -> Optional[int]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def _a ( self , A_ , A_ , A_ ) -> str: __UpperCamelCase =BitModel(config=A__ ) model.to(A__ ) model.eval() __UpperCamelCase =model(A__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _a ( self , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =BitForImageClassification(A__ ) model.to(A__ ) model.eval() __UpperCamelCase =model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =BitBackbone(config=A__ ) model.to(A__ ) model.eval() __UpperCamelCase =model(A__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __UpperCamelCase =None __UpperCamelCase =BitBackbone(config=A__ ) model.to(A__ ) model.eval() __UpperCamelCase =model(A__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase =config_and_inputs __UpperCamelCase ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : str = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () UpperCAmelCase__ : Dict = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : str = False UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Dict = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Dict: __UpperCamelCase =BitModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A__ , has_text_modality=A__ ) def _a ( self ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a ( self ) -> Tuple: return @unittest.skip(reason='Bit does not output attentions' ) def _a ( self ) -> Optional[Any]: pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def _a ( self ) -> str: pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def _a ( self ) -> Any: pass def _a ( self ) -> str: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(A__ ) __UpperCamelCase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase =[*signature.parameters.keys()] __UpperCamelCase =['pixel_values'] self.assertListEqual(arg_names[:1] , A__ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A__ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase =model_class(config=A__ ) for name, module in model.named_modules(): if isinstance(A__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) def _a ( self ) -> List[str]: def check_hidden_states_output(A_ , A_ , A_ ): __UpperCamelCase =model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): __UpperCamelCase =model(**self._prepare_for_class(A__ , A__ ) ) __UpperCamelCase =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase =self.model_tester.num_stages self.assertEqual(len(A__ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __UpperCamelCase =layer_type __UpperCamelCase =True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase =True check_hidden_states_output(A__ , A__ , A__ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def _a ( self ) -> List[str]: pass def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def _a ( self ) -> Optional[int]: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =BitModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> int: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _a ( self ) -> Any: __UpperCamelCase =BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A__ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A__ , return_tensors='pt' ).to(A__ ) # forward pass with torch.no_grad(): __UpperCamelCase =model(**A__ ) # verify the logits __UpperCamelCase =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , A__ ) __UpperCamelCase =torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1E-4 ) ) @require_torch class UpperCAmelCase__ ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = (BitBackbone,) if is_torch_available() else () UpperCAmelCase__ : Any = BitConfig UpperCAmelCase__ : str = False def _a ( self ) -> Optional[int]: __UpperCamelCase =BitModelTester(self )
700
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any]=None ): if subparsers is not None: __UpperCamelCase =subparsers.add_parser('test' ) else: __UpperCamelCase =argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=SCREAMING_SNAKE_CASE__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=SCREAMING_SNAKE_CASE__ ) return parser def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: __UpperCamelCase =script_name else: __UpperCamelCase =F'--config_file={args.config_file} {script_name}' __UpperCamelCase =['accelerate-launch'] + test_args.split() __UpperCamelCase =execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def _UpperCAmelCase ( ): __UpperCamelCase =test_command_parser() __UpperCamelCase =parser.parse_args() test_command(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
682
0
import math def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): return math.pow(__A , 2 ) - a def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): return 2 * x def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): __UpperCamelCase =2.0 while start <= a: __UpperCamelCase =math.pow(__A , 2 ) return start def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any = 99_99 , SCREAMING_SNAKE_CASE__ : Optional[int] = 0.00000000000001 ): if a < 0: raise ValueError('math domain error' ) __UpperCamelCase =get_initial_point(__A ) for _ in range(__A ): __UpperCamelCase =value __UpperCamelCase =value - fx(__A , __A ) / fx_derivative(__A ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
701
import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flatten_dict(SCREAMING_SNAKE_CASE__ ) return flax_params def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] ): __UpperCamelCase ={} __UpperCamelCase ={ 'token_embedder': 'embeddings', 'encoder_norm': 'layernorm', 'kernel': 'weight', '.out': '.output', 'scale': 'weight', 'embedders_0.pos_embedding': 'row_embedder.weight', 'embedders_1.pos_embedding': 'column_embedder.weight', } __UpperCamelCase ={ 'query': 'attention.query', 'key': 'attention.key', 'value': 'attention.value', 'output.dense': 'output', 'encoder_decoder_attention.o': 'encoder_decoder_attention.attention.o', 'pre_self_attention_layer_norm': 'self_attention.layer_norm', 'pre_cross_attention_layer_norm': 'encoder_decoder_attention.layer_norm', 'mlp.': 'mlp.DenseReluDense.', 'pre_mlp_layer_norm': 'mlp.layer_norm', 'self_attention.o': 'self_attention.attention.o', 'decoder.embeddings.embedding': 'decoder.embed_tokens.weight', 'decoder.relpos_bias.rel_embedding': 'decoder.layer.0.self_attention.attention.relative_attention_bias.weight', 'decoder.decoder_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.logits_dense.weight': 'decoder.lm_head.weight', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key __UpperCamelCase ='.'.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): __UpperCamelCase =new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_key.replace('encoder' , 'encoder.encoder' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number __UpperCamelCase =re.sub(r'layers_(\d+)' , r'layer.\1' , SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =flax_dict[key] __UpperCamelCase ={} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): __UpperCamelCase =torch.from_numpy(converted_dict[key].T ) else: __UpperCamelCase =torch.from_numpy(converted_dict[key] ) return converted_torch_dict def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple=False , SCREAMING_SNAKE_CASE__ : str=False ): __UpperCamelCase =get_flax_param(SCREAMING_SNAKE_CASE__ ) if not use_large: __UpperCamelCase =PixaStructVisionConfig() __UpperCamelCase =PixaStructTextConfig() else: __UpperCamelCase =PixaStructVisionConfig( hidden_size=15_36 , d_ff=39_68 , num_attention_heads=24 , num_hidden_layers=18 ) __UpperCamelCase =PixaStructTextConfig(hidden_size=15_36 , d_ff=39_68 , num_heads=24 , num_layers=18 ) __UpperCamelCase =PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =PixaStructForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =rename_and_convert_flax_params(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =AutoTokenizer.from_pretrained('ybelkada/test-pix2struct-tokenizer' ) __UpperCamelCase =PixaStructImageProcessor() __UpperCamelCase =PixaStructProcessor(image_processor=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ ) if use_large: __UpperCamelCase =40_96 __UpperCamelCase =True # mkdir if needed os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) print('Model saved in {}'.format(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--use_large', action='store_true', help='Use large model.') parser.add_argument('--is_vqa', action='store_true', help='Use large model.') _A = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
682
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _A = '\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n' _A = '\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n' _A = '\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for \'record\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'prediction_text\': the predicted answer text\n - for \'multirc\': list of question-answer dictionaries with the following keys:\n - \'idx\': index of the question-answer pair as specified by the dataset\n - \'prediction\': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for \'record\': list of question-answers dictionaries with the following keys:\n - \'idx\': index of the question as specified by the dataset\n - \'answers\': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for \'record\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1\': F1 score\n - for \'multirc\':\n - \'exact_match\': Exact match between answer and gold answer\n - \'f1_m\': Per-question macro-F1 score\n - \'f1_a\': Average F1 score over all answers\n - for \'axb\':\n \'matthews_correlation\': Matthew Correlation\n - for \'cb\':\n - \'accuracy\': Accuracy\n - \'f1\': F1 score\n - for all others:\n - \'accuracy\': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\')\n >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}]\n >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\')\n >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0}\n\n >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Any ): return float((preds == labels).mean() ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int="binary" ): __UpperCamelCase =simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __UpperCamelCase =float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average=_SCREAMING_SNAKE_CASE ) ) return { "accuracy": acc, "f1": fa, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): __UpperCamelCase ={} for id_pred, label in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __UpperCamelCase =F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' __UpperCamelCase =id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __UpperCamelCase =[(pred, label)] __UpperCamelCase , __UpperCamelCase =[], [] for question, preds_labels in question_map.items(): __UpperCamelCase , __UpperCamelCase =zip(*_SCREAMING_SNAKE_CASE ) __UpperCamelCase =fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=_SCREAMING_SNAKE_CASE , average='macro' ) fas.append(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =int(sum(pred == label for pred, label in preds_labels ) == len(_SCREAMING_SNAKE_CASE ) ) ems.append(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =float(sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase =sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE ) __UpperCamelCase =float(fa_score(y_true=_SCREAMING_SNAKE_CASE , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase__ ( datasets.Metric ): """simple docstring""" def _a ( self ) -> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def _a ( self ) -> Any: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def _a ( self , A_ , A_ ) -> Dict: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(UpperCAmelCase_ , UpperCAmelCase_ )} elif self.config_name == "cb": return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ , fa_avg='macro' ) elif self.config_name == "record": __UpperCamelCase =[ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] __UpperCamelCase ={pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(UpperCAmelCase_ , UpperCAmelCase_ )[0] elif self.config_name == "multirc": return evaluate_multirc(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]' )
702
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _A = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
682
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Any: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =384 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =128 __UpperCamelCase =2 __UpperCamelCase =9 __UpperCamelCase =1 __UpperCamelCase =None def _a ( self ) -> List[str]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =TFConvBertModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: __UpperCamelCase =TFConvBertForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFConvBertForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =self.num_choices __UpperCamelCase =TFConvBertForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_labels __UpperCamelCase =TFConvBertForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =TFConvBertForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> str: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Any = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : Any = False UpperCAmelCase__ : Optional[int] = False def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFConvBertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Tuple: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> int: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =True __UpperCamelCase =True if hasattr(A_ , 'use_cache' ): __UpperCamelCase =True __UpperCamelCase =getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __UpperCamelCase =getattr(self.model_tester , 'key_length' , A_ ) for model_class in self.all_model_classes: __UpperCamelCase =self._prepare_for_class(A_ , A_ ) __UpperCamelCase =model_class(A_ ) __UpperCamelCase =len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) __UpperCamelCase =os.path.join(A_ , 'saved_model' , '1' ) __UpperCamelCase =tf.keras.models.load_model(A_ ) __UpperCamelCase =model(A_ ) if self.is_encoder_decoder: __UpperCamelCase =outputs['encoder_hidden_states'] __UpperCamelCase =outputs['encoder_attentions'] else: __UpperCamelCase =outputs['hidden_states'] __UpperCamelCase =outputs['attentions'] self.assertEqual(len(A_ ) , A_ ) __UpperCamelCase =getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def _a ( self ) -> Optional[int]: __UpperCamelCase =TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(A_ ) def _a ( self ) -> Any: __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =True __UpperCamelCase =getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __UpperCamelCase =getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __UpperCamelCase =getattr(self.model_tester , 'key_length' , A_ ) __UpperCamelCase =getattr(self.model_tester , 'key_length' , A_ ) def check_decoder_attentions_output(A_ ): __UpperCamelCase =len(A_ ) self.assertEqual(out_len % 2 , 0 ) __UpperCamelCase =outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): __UpperCamelCase =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =model_class(A_ ) __UpperCamelCase =model(self._prepare_for_class(A_ , A_ ) ) __UpperCamelCase =len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: __UpperCamelCase =model_class(A_ ) __UpperCamelCase =model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase =True __UpperCamelCase =model_class(A_ ) __UpperCamelCase =model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =model_class(A_ ) __UpperCamelCase =model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] __UpperCamelCase =[1, 6, 768] self.assertEqual(output.shape , A_ ) __UpperCamelCase =tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 )
703
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='gelu' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Tuple: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerModel(config=A_ ) __UpperCamelCase ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =True __UpperCamelCase =TFRoFormerForCausalLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =TFRoFormerForMaskedLM(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForSequenceClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: __UpperCamelCase =self.num_choices __UpperCamelCase =TFRoFormerForMultipleChoice(config=A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFRoFormerForTokenClassification(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerForQuestionAnswering(config=A_ ) __UpperCamelCase ={ 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase__ : Tuple = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Tuple = False def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _a ( self ) -> str: __UpperCamelCase =TFRoFormerModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Tuple: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Dict: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def _a ( self ) -> int: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def _a ( self ) -> Union[str, Any]: __UpperCamelCase =TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[str]: __UpperCamelCase =TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] # TODO Replace vocab size __UpperCamelCase =50000 __UpperCamelCase =[1, 6, vocab_size] self.assertEqual(output.shape , A_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __UpperCamelCase =tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = 1e-4 def _a ( self ) -> int: __UpperCamelCase =tf.constant([[4, 10]] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __UpperCamelCase =emba(input_ids.shape ) __UpperCamelCase =tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) def _a ( self ) -> int: __UpperCamelCase =tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) __UpperCamelCase =emba.weight[:3, :5] tf.debugging.assert_near(A_ , A_ , atol=self.tolerance ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = 1e-4 def _a ( self ) -> List[Any]: # 2,12,16,64 __UpperCamelCase =tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =-tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 __UpperCamelCase =TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) __UpperCamelCase =embed_positions([2, 16, 768] )[None, None, :, :] __UpperCamelCase , __UpperCamelCase =TFRoFormerSelfAttention.apply_rotary_position_embeddings( A_ , A_ , A_ ) __UpperCamelCase =tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) __UpperCamelCase =tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , A_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , A_ , atol=self.tolerance )
682
0
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _A = '''bert-base-cased''' _A = '''fp16''' _A = '''bf16''' _A = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self ) -> int: super().setUp() __UpperCamelCase =dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def _a ( self ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCamelCase_ ): __UpperCamelCase =self.dist_env.copy() __UpperCamelCase =f'{i + 1}' __UpperCamelCase =strategy with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _a ( self ) -> Optional[int]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCamelCase_ ): __UpperCamelCase =self.dist_env.copy() __UpperCamelCase =prefetch_policy with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _a ( self ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCamelCase_ ): __UpperCamelCase =self.dist_env.copy() __UpperCamelCase =state_dict_type with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _a ( self ) -> str: __UpperCamelCase =AutoModel.from_pretrained(UpperCamelCase_ ) for policy in FSDP_AUTO_WRAP_POLICY: __UpperCamelCase =self.dist_env.copy() __UpperCamelCase =policy if policy == "TRANSFORMER_BASED_WRAP": __UpperCamelCase ='BertLayer' elif policy == "SIZE_BASED_WRAP": __UpperCamelCase ='2000' with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCamelCase_ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) __UpperCamelCase =self.dist_env.copy() __UpperCamelCase ='TRANSFORMER_BASED_WRAP' __UpperCamelCase ='T5Layer' with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() with self.assertRaises(UpperCamelCase_ ) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCamelCase_ ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) __UpperCamelCase =self.dist_env.copy() __UpperCamelCase ='SIZE_BASED_WRAP' __UpperCamelCase ='0' with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCamelCase_ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _a ( self ) -> Any: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: __UpperCamelCase =self.dist_env.copy() __UpperCamelCase =mp_dtype with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =Accelerator() if mp_dtype == "fp16": __UpperCamelCase =torch.floataa elif mp_dtype == "bf16": __UpperCamelCase =torch.bfloataa __UpperCamelCase =MixedPrecision(param_dtype=UpperCamelCase_ , reduce_dtype=UpperCamelCase_ , buffer_dtype=UpperCamelCase_ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCamelCase_ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCamelCase_ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(UpperCamelCase_ ) def _a ( self ) -> str: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: __UpperCamelCase =self.dist_env.copy() __UpperCamelCase =str(UpperCamelCase_ ).lower() with mockenv_context(**UpperCamelCase_ ): __UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCamelCase_ ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase__ ( A_ ): """simple docstring""" def _a ( self ) -> Union[str, Any]: super().setUp() __UpperCamelCase =0.82 __UpperCamelCase =[ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] __UpperCamelCase ={ 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } __UpperCamelCase =160 __UpperCamelCase =160 __UpperCamelCase =inspect.getfile(accelerate.test_utils ) __UpperCamelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =os.path.join(self.test_scripts_folder , 'test_performance.py' ) __UpperCamelCase =['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: __UpperCamelCase =cmd.copy() for i, strategy in enumerate(UpperCamelCase_ ): if strategy.lower() in config: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) __UpperCamelCase =[ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(UpperCamelCase_ ): __UpperCamelCase =cmd.copy() cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue __UpperCamelCase =len(UpperCamelCase_ ) for state_dict_type in FSDP_STATE_DICT_TYPE: __UpperCamelCase =cmd_config[:state_dict_config_index] cmd_config.append(f'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) __UpperCamelCase =cmd_config[:-1] __UpperCamelCase =os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ f'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) def _a ( self ) -> Dict: __UpperCamelCase =os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) __UpperCamelCase =[ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): __UpperCamelCase =cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(UpperCamelCase_ ): if strategy.lower() in spec: cmd_config.append(f'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, f'--output_dir={self.tmpdir}', f'--peak_memory_upper_bound={peak_mem_upper_bound}', f'--n_train={self.n_train}', f'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() )
704
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ = None ) -> None: if components is None: __UpperCamelCase =[] __UpperCamelCase =list(A_ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception('must have the same size' ) def __sub__( self , A_ ) -> Vector: __UpperCamelCase =len(self ) if size == len(A_ ): __UpperCamelCase =[self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception('must have the same size' ) @overload def __mul__( self , A_ ) -> Vector: ... @overload def __mul__( self , A_ ) -> float: ... def __mul__( self , A_ ) -> float | Vector: if isinstance(A_ , (float, int) ): __UpperCamelCase =[c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): __UpperCamelCase =len(self ) __UpperCamelCase =[self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception('invalid operand!' ) def _a ( self ) -> Vector: return Vector(self.__components ) def _a ( self , A_ ) -> float: if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('index out of range' ) def _a ( self , A_ , A_ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __UpperCamelCase =value def _a ( self ) -> float: if len(self.__components ) == 0: raise Exception('Vector is empty' ) __UpperCamelCase =[c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _a ( self , A_ , A_ = False ) -> float: __UpperCamelCase =self * other __UpperCamelCase =self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return Vector([0] * dimension ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )) __UpperCamelCase =[0] * dimension __UpperCamelCase =1 return Vector(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : Vector , SCREAMING_SNAKE_CASE__ : Vector ): assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (isinstance(SCREAMING_SNAKE_CASE__ , (int, float) )) ) return x * scalar + y def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> None: __UpperCamelCase =matrix __UpperCamelCase =w __UpperCamelCase =h def __str__( self ) -> str: __UpperCamelCase ='' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrix must have the same dimension!' ) def __sub__( self , A_ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __UpperCamelCase =[] for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception('matrices must have the same dimension!' ) @overload def __mul__( self , A_ ) -> Matrix: ... @overload def __mul__( self , A_ ) -> Vector: ... def __mul__( self , A_ ) -> Vector | Matrix: if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: __UpperCamelCase =zero_vector(self.__height ) for i in range(self.__height ): __UpperCamelCase =[ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( 'vector must have the same size as the ' 'number of columns of the matrix!' ) elif isinstance(A_ , (int, float) ): # matrix-scalar __UpperCamelCase =[ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _a ( self ) -> int: return self.__height def _a ( self ) -> int: return self.__width def _a ( self , A_ , A_ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ , A_ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __UpperCamelCase =value else: raise Exception('change_component: indices out of bounds' ) def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) __UpperCamelCase =self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): __UpperCamelCase =minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _a ( self , A_ , A_ ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception('Indices out of bounds' ) def _a ( self ) -> float: if self.__height != self.__width: raise Exception('Matrix is not square' ) if self.__height < 1: raise Exception('Matrix has no element' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __UpperCamelCase =[ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =[[0] * n for _ in range(SCREAMING_SNAKE_CASE__ )] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): random.seed(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =[ [random.randint(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] for _ in range(SCREAMING_SNAKE_CASE__ ) ] return Matrix(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
682
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _A = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" UpperCAmelCase__ : str = ["pixel_values"] def __init__( self , A_ = True , A_ = 32 , A_=PILImageResampling.BILINEAR , A_ = True , **A_ , ) -> Dict: __UpperCamelCase =do_resize __UpperCamelCase =do_rescale __UpperCamelCase =size_divisor __UpperCamelCase =resample super().__init__(**__lowerCamelCase ) def _a ( self , A_ , A_ , A_ , A_ = None , **A_ ) -> Dict: __UpperCamelCase =get_image_size(__lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor __UpperCamelCase =height // size_divisor * size_divisor __UpperCamelCase =width // size_divisor * size_divisor __UpperCamelCase =resize(__lowerCamelCase , (new_h, new_w) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) return image def _a ( self , A_ , A_ , A_ = None , **A_ ) -> List[str]: return rescale(image=__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def _a ( self , A_ , A_ = None , A_ = None , A_=None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> Dict: __UpperCamelCase =do_resize if do_resize is not None else self.do_resize __UpperCamelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase =size_divisor if size_divisor is not None else self.size_divisor __UpperCamelCase =resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) __UpperCamelCase =make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. __UpperCamelCase =[to_numpy_array(__lowerCamelCase ) for img in images] if do_resize: __UpperCamelCase =[self.resize(__lowerCamelCase , size_divisor=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: __UpperCamelCase =[self.rescale(__lowerCamelCase , scale=1 / 255 ) for image in images] __UpperCamelCase =[to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] __UpperCamelCase ={"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
705
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
0
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _a ( self ) -> int: __UpperCamelCase =1 __UpperCamelCase =3 __UpperCamelCase =(32, 32) __UpperCamelCase =floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(UpperCAmelCase_ ) return image @property def _a ( self ) -> Any: torch.manual_seed(0 ) __UpperCamelCase =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def _a ( self ) -> Any: torch.manual_seed(0 ) __UpperCamelCase =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def _a ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(UpperCAmelCase_ ) @property def _a ( self ) -> Optional[int]: def extract(*A_ , **A_ ): class UpperCAmelCase__ : """simple docstring""" def __init__( self ) -> List[Any]: __UpperCamelCase =torch.ones([0] ) def _a ( self , A_ ) -> List[Any]: self.pixel_values.to(UpperCAmelCase_ ) return self return Out() return extract def _a ( self ) -> Optional[int]: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.dummy_cond_unet __UpperCamelCase =DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) __UpperCamelCase =self.dummy_vae __UpperCamelCase =self.dummy_text_encoder __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __UpperCamelCase =StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) __UpperCamelCase =sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCamelCase ='A painting of a squirrel eating a burger' __UpperCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __UpperCamelCase =output.images __UpperCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase =np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> str: __UpperCamelCase ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase =self.dummy_cond_unet __UpperCamelCase =PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) __UpperCamelCase =self.dummy_vae __UpperCamelCase =self.dummy_text_encoder __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # make sure here that pndm scheduler skips prk __UpperCamelCase =StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) __UpperCamelCase =sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCamelCase ='A painting of a squirrel eating a burger' __UpperCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' ) __UpperCamelCase =output.images __UpperCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(0 ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __UpperCamelCase =np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Optional[Any]: __UpperCamelCase =StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_ ) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert isinstance(pipe.scheduler , UpperCAmelCase_ ) assert pipe.safety_checker is None __UpperCamelCase =pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_ ) __UpperCamelCase =StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase =pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _a ( self ) -> List[str]: __UpperCamelCase =self.dummy_cond_unet __UpperCamelCase =PNDMScheduler(skip_prk_steps=UpperCAmelCase_ ) __UpperCamelCase =self.dummy_vae __UpperCamelCase =self.dummy_text_encoder __UpperCamelCase =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) # put models in fp16 __UpperCamelCase =unet.half() __UpperCamelCase =vae.half() __UpperCamelCase =bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase =StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) __UpperCamelCase =sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCamelCase ='A painting of a squirrel eating a burger' __UpperCamelCase =sd_pipe([prompt] , num_inference_steps=2 , output_type='np' ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _a ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ) -> int: __UpperCamelCase =StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_ ) __UpperCamelCase =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase =sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCamelCase =( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) __UpperCamelCase =4003660346 __UpperCamelCase =7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase =torch.manual_seed(UpperCAmelCase_ ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =[0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase =torch.manual_seed(UpperCAmelCase_ ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =[0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Any: __UpperCamelCase =StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_ ) __UpperCamelCase =LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase =sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCamelCase ='padme amidala taking a bath artwork, safe for work, no nudity' __UpperCamelCase =2734971755 __UpperCamelCase =7 __UpperCamelCase =torch.manual_seed(UpperCAmelCase_ ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =[0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase =torch.manual_seed(UpperCAmelCase_ ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =[0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _a ( self ) -> Dict: __UpperCamelCase =StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' ) __UpperCamelCase =sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) __UpperCamelCase =( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) __UpperCamelCase =1044355234 __UpperCamelCase =12 __UpperCamelCase =torch.manual_seed(UpperCAmelCase_ ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase =torch.manual_seed(UpperCAmelCase_ ) __UpperCamelCase =sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase =output.images __UpperCamelCase =image[0, -3:, -3:, -1] __UpperCamelCase =np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =original_name.split('.' )[0] __UpperCamelCase =key.split('.' ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 2] ) __UpperCamelCase =int(key_list[key_list.index(SCREAMING_SNAKE_CASE__ ) - 1] ) __UpperCamelCase =orig_block_num - offset __UpperCamelCase =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =OrderedDict() __UpperCamelCase , __UpperCamelCase =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase =key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase =key[: key.find('proj' )] __UpperCamelCase =key.replace(SCREAMING_SNAKE_CASE__ , F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase =key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm1' , 'before_norm' ) if "norm2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase =replace_key_with_offset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: __UpperCamelCase =key.replace('head' , 'classifier' ) __UpperCamelCase =value return new_state_dict def _UpperCAmelCase ( ): __UpperCamelCase ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase =Image.open(requests.get(SCREAMING_SNAKE_CASE__ , stream=SCREAMING_SNAKE_CASE__ ).raw ) return image @torch.no_grad() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): __UpperCamelCase =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase ='huggingface/label-files' __UpperCamelCase =model_name[-3:] __UpperCamelCase =10_00 __UpperCamelCase ='imagenet-1k-id2label.json' __UpperCamelCase =(1, 10_00) # set config attributes __UpperCamelCase =json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase ={int(SCREAMING_SNAKE_CASE__ ): v for k, v in idalabel.items()} __UpperCamelCase =idalabel __UpperCamelCase ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase =[2, 2, 6, 2] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s24": __UpperCamelCase =[4, 4, 12, 4] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =0.9 elif size == "s36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[64, 1_28, 3_20, 5_12] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.9 elif size == "m36": __UpperCamelCase =[6, 6, 18, 6] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 elif size == "m48": __UpperCamelCase =[8, 8, 24, 8] __UpperCamelCase =[96, 1_92, 3_84, 7_68] __UpperCamelCase =4.0 __UpperCamelCase =1E-6 __UpperCamelCase =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) # Prepare image __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase =torch.load(SCREAMING_SNAKE_CASE__ , map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase =rename_keys(SCREAMING_SNAKE_CASE__ ) # create HuggingFace model and load state dict __UpperCamelCase =PoolFormerForImageClassification(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) model.eval() # Define image processor __UpperCamelCase =PoolFormerImageProcessor(crop_pct=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase =model(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase =torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": __UpperCamelCase =torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": __UpperCamelCase =torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": __UpperCamelCase =torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": __UpperCamelCase =torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _A = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
682
0
import math from numpy import inf from scipy.integrate import quad def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float ): if num <= 0: raise ValueError('math domain error' ) return quad(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , args=(SCREAMING_SNAKE_CASE__) )[0] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): return math.pow(SCREAMING_SNAKE_CASE__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
707
from math import asin, atan, cos, radians, sin, sqrt, tan _A = 6_378_137.0 _A = 6_356_752.314_245 _A = 637_8137 def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float ): __UpperCamelCase =(AXIS_A - AXIS_B) / AXIS_A __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =atan((1 - flattening) * tan(radians(SCREAMING_SNAKE_CASE__ ) ) ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =radians(SCREAMING_SNAKE_CASE__ ) # Equation __UpperCamelCase =sin((phi_a - phi_a) / 2 ) __UpperCamelCase =sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda __UpperCamelCase =sqrt(sin_sq_phi + (cos(SCREAMING_SNAKE_CASE__ ) * cos(SCREAMING_SNAKE_CASE__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , ) -> Union[str, Any]: __UpperCamelCase =parent __UpperCamelCase =13 __UpperCamelCase =7 __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =True __UpperCamelCase =99 __UpperCamelCase =32 __UpperCamelCase =2 __UpperCamelCase =4 __UpperCamelCase =37 __UpperCamelCase ='''gelu''' __UpperCamelCase =0.1 __UpperCamelCase =0.1 __UpperCamelCase =512 __UpperCamelCase =16 __UpperCamelCase =2 __UpperCamelCase =0.02 __UpperCamelCase =3 __UpperCamelCase =4 __UpperCamelCase =None def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =TFDistilBertModel(config=A_ ) __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCamelCase =model(A_ ) __UpperCamelCase =[input_ids, input_mask] __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =TFDistilBertForMaskedLM(config=A_ ) __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: __UpperCamelCase =TFDistilBertForQuestionAnswering(config=A_ ) __UpperCamelCase ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =TFDistilBertForSequenceClassification(A_ ) __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: __UpperCamelCase =self.num_choices __UpperCamelCase =TFDistilBertForMultipleChoice(A_ ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase =tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, } __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =TFDistilBertForTokenClassification(A_ ) __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} __UpperCamelCase =model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self ) -> Dict: __UpperCamelCase =self.prepare_config_and_inputs() (__UpperCamelCase) =config_and_inputs __UpperCamelCase ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCAmelCase__ ( __A , __A , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase__ : Union[str, Any] = ( { "feature-extraction": TFDistilBertModel, "fill-mask": TFDistilBertForMaskedLM, "question-answering": TFDistilBertForQuestionAnswering, "text-classification": TFDistilBertForSequenceClassification, "token-classification": TFDistilBertForTokenClassification, "zero-shot": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Dict = False def _a ( self ) -> str: __UpperCamelCase =TFDistilBertModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , dim=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> Tuple: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*A_ ) def _a ( self ) -> List[Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*A_ ) def _a ( self ) -> Union[str, Any]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*A_ ) @slow def _a ( self ) -> Dict: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): __UpperCamelCase =TFDistilBertModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_tf class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ) -> List[Any]: __UpperCamelCase =TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) __UpperCamelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase =model(A_ )[0] __UpperCamelCase =[1, 6, 768] self.assertEqual(output.shape , A_ ) __UpperCamelCase =tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1E-4 )
708
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): return 1 if input_a == input_a else 0 def _UpperCAmelCase ( ): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
682
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure)
709
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int = 0 , SCREAMING_SNAKE_CASE__ : int = 0 ): __UpperCamelCase =right or len(SCREAMING_SNAKE_CASE__ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
682
0
import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =multiprocessing.Manager() __UpperCamelCase =manager.list() __UpperCamelCase =multiprocessing.Process(target=lowerCamelCase__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __UpperCamelCase =shutil.rmtree __UpperCamelCase =os.rmdir __UpperCamelCase =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __UpperCamelCase ={} with swallow_io(): with time_limit(lowerCamelCase__ ): exec(lowerCamelCase__ , lowerCamelCase__ ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. __UpperCamelCase =rmtree __UpperCamelCase =rmdir __UpperCamelCase =chdir @contextlib.contextmanager def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): def signal_handler(SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL , lowerCamelCase__ ) signal.signal(signal.SIGALRM , lowerCamelCase__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def _UpperCAmelCase ( ): __UpperCamelCase =WriteOnlyStringIO() with contextlib.redirect_stdout(lowerCamelCase__ ): with contextlib.redirect_stderr(lowerCamelCase__ ): with redirect_stdin(lowerCamelCase__ ): yield @contextlib.contextmanager def _UpperCAmelCase ( ): with tempfile.TemporaryDirectory() as dirname: with chdir(lowerCamelCase__ ): yield dirname class UpperCAmelCase__ ( A_ ): """simple docstring""" pass class UpperCAmelCase__ ( io.StringIO ): """simple docstring""" def _a ( self , *A_ , **A_ ) -> Dict: raise OSError def _a ( self , *A_ , **A_ ) -> Optional[Any]: raise OSError def _a ( self , *A_ , **A_ ) -> str: raise OSError def _a ( self , *A_ , **A_ ) -> Optional[Any]: return False class UpperCAmelCase__ ( contextlib._RedirectStream ): # type: ignore """simple docstring""" UpperCAmelCase__ : List[str] = "stdin" @contextlib.contextmanager def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): if root == ".": yield return __UpperCamelCase =os.getcwd() os.chdir(lowerCamelCase__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(lowerCamelCase__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ): if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __UpperCamelCase =None __UpperCamelCase =None import os __UpperCamelCase ="1" __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None import shutil __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None import subprocess __UpperCamelCase =None # type: ignore __UpperCamelCase =None import sys __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None
710
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , ) -> List[Any]: __UpperCamelCase =size if size is not None else {'height': 18, 'width': 18} __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =min_resolution __UpperCamelCase =max_resolution __UpperCamelCase =do_resize __UpperCamelCase =size __UpperCamelCase =apply_ocr def _a ( self ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class UpperCAmelCase__ ( A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _a ( self ) -> Optional[Any]: __UpperCamelCase =LayoutLMvaImageProcessingTester(self ) @property def _a ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def _a ( self ) -> List[Any]: __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'apply_ocr' ) ) def _a ( self ) -> Dict: __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) __UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def _a ( self ) -> Dict: pass def _a ( self ) -> Optional[Any]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , A_ ) self.assertIsInstance(encoding.boxes , A_ ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> int: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> List[str]: # Initialize image_processing __UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input __UpperCamelCase =image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __UpperCamelCase =image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def _a ( self ) -> Any: # with apply_OCR = True __UpperCamelCase =LayoutLMvaImageProcessor() from datasets import load_dataset __UpperCamelCase =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) __UpperCamelCase =Image.open(ds[0]['file'] ).convert('RGB' ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __UpperCamelCase =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __UpperCamelCase =[[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , A_ ) self.assertListEqual(encoding.boxes , A_ ) # with apply_OCR = False __UpperCamelCase =LayoutLMvaImageProcessor(apply_ocr=A_ ) __UpperCamelCase =image_processing(A_ , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
682
0
import requests _A = 'YOUR API KEY' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str = giphy_api_key ): __UpperCamelCase ="+".join(query.split() ) __UpperCamelCase =F'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' __UpperCamelCase =requests.get(_lowerCAmelCase ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
711
import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _A = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : bool = field(default=A_ , metadata={"help": "Whether to use SortishSampler or not."} ) UpperCAmelCase__ : bool = field( default=A_ , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[int] = field( default=A_ , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) UpperCAmelCase__ : Optional[Union[str, Path, GenerationConfig]] = field( default=A_ , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def _a ( self ) -> Dict: __UpperCamelCase =super().to_dict() for k, v in d.items(): if isinstance(A_ , A_ ): __UpperCamelCase =v.to_dict() return d
682
0
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Any ): __UpperCamelCase =filter(lambda SCREAMING_SNAKE_CASE__ : p.requires_grad , model.parameters() ) __UpperCamelCase =sum([np.prod(p.size() ) for p in model_parameters] ) return params _A = logging.getLogger(__name__) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): if metric == "rouge2": __UpperCamelCase ="""{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": __UpperCamelCase ="""{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": __UpperCamelCase ="""{val_avg_em:.4f}-{step_count}""" elif metric == "loss": __UpperCamelCase ="""{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( F'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) __UpperCamelCase =ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return EarlyStopping( monitor=F'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class UpperCAmelCase__ ( pl.Callback ): """simple docstring""" def _a ( self , A_ , A_ ) -> Dict: __UpperCamelCase ={f'lr_group_{i}': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def _a ( self , A_ , A_ , A_ , A_=True ) -> None: logger.info(f'***** {type_path} results at step {trainer.global_step:05d} *****' ) __UpperCamelCase =trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results __UpperCamelCase =Path(pl_module.hparams.output_dir ) if type_path == "test": __UpperCamelCase =od / """test_results.txt""" __UpperCamelCase =od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. __UpperCamelCase =od / f'{type_path}_results/{trainer.global_step:05d}.txt' __UpperCamelCase =od / f'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , 'a+' ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue __UpperCamelCase =metrics[key] if isinstance(_a , torch.Tensor ): __UpperCamelCase =val.item() __UpperCamelCase =f'{key}: {val:.6f}\n' writer.write(_a ) if not save_generations: return if "preds" in metrics: __UpperCamelCase ="""\n""".join(metrics['preds'] ) generations_file.open('w+' ).write(_a ) @rank_zero_only def _a ( self , A_ , A_ ) -> Tuple: try: __UpperCamelCase =pl_module.model.model.num_parameters() except AttributeError: __UpperCamelCase =pl_module.model.num_parameters() __UpperCamelCase =count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def _a ( self , A_ , A_ ) -> str: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , 'test' ) @rank_zero_only def _a ( self , A_ , A_ ) -> Union[str, Any]: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
712
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Dict = "blip_text_model" def __init__( self , A_=30524 , A_=768 , A_=768 , A_=3072 , A_=768 , A_=12 , A_=8 , A_=512 , A_="gelu" , A_=1E-12 , A_=0.0 , A_=0.0 , A_=0.02 , A_=30522 , A_=2 , A_=0 , A_=102 , A_=True , A_=True , **A_ , ) -> Optional[int]: super().__init__( pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , sep_token_id=A_ , **A_ , ) __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =encoder_hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =max_position_embeddings __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act __UpperCamelCase =initializer_range __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =is_decoder __UpperCamelCase =use_cache @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = "blip_vision_model" def __init__( self , A_=768 , A_=3072 , A_=512 , A_=12 , A_=12 , A_=384 , A_=16 , A_="gelu" , A_=1E-5 , A_=0.0 , A_=1E-10 , **A_ , ) -> Optional[Any]: super().__init__(**A_ ) __UpperCamelCase =hidden_size __UpperCamelCase =intermediate_size __UpperCamelCase =projection_dim __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =patch_size __UpperCamelCase =image_size __UpperCamelCase =initializer_range __UpperCamelCase =attention_dropout __UpperCamelCase =layer_norm_eps __UpperCamelCase =hidden_act @classmethod def _a ( cls , A_ , **A_ ) -> "PretrainedConfig": cls._set_token_in_kwargs(A_ ) __UpperCamelCase , __UpperCamelCase =cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase =config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(A_ , **A_ ) class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : int = "blip" UpperCAmelCase__ : Optional[int] = True def __init__( self , A_=None , A_=None , A_=512 , A_=2.6592 , A_=256 , **A_ , ) -> Union[str, Any]: super().__init__(**A_ ) if text_config is None: __UpperCamelCase ={} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase ={} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase =BlipTextConfig(**A_ ) __UpperCamelCase =BlipVisionConfig(**A_ ) __UpperCamelCase =self.vision_config.hidden_size __UpperCamelCase =projection_dim __UpperCamelCase =logit_scale_init_value __UpperCamelCase =1.0 __UpperCamelCase =0.02 __UpperCamelCase =image_text_hidden_size @classmethod def _a ( cls , A_ , A_ , **A_ ) -> str: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **A_ ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =copy.deepcopy(self.__dict__ ) __UpperCamelCase =self.text_config.to_dict() __UpperCamelCase =self.vision_config.to_dict() __UpperCamelCase =self.__class__.model_type return output
682
0