code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Any = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = 0 while number > 0: _lowerCAmelCase : Dict = number % 1_0 sum_of_digits += last_digit _lowerCAmelCase : Dict = number // 1_0 # Removing the last_digit from the given number return sum_of_digits def lowercase (_A = 1_0_0 ): """simple docstring""" _lowerCAmelCase : Optional[Any] = factorial(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = split_and_add(lowerCAmelCase__ ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=0.6 , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : List[Any] = num_channels _lowerCAmelCase : Union[str, Any] = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : str = intermediate_size _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = type_sequence_label_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Tuple = mask_ratio _lowerCAmelCase : str = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) _lowerCAmelCase : str = (image_size // patch_size) ** 2 _lowerCAmelCase : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Optional[Any] = self.get_config() return config, pixel_values, labels def a ( self ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = ViTMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowerCAmelCase : Any = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowerCAmelCase : Tuple = model(UpperCamelCase__ ) _lowerCAmelCase : str = (self.image_size // self.patch_size) ** 2 _lowerCAmelCase : Union[str, Any] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : Tuple = ViTMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _lowerCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = model(UpperCamelCase__ ) _lowerCAmelCase : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() _lowerCAmelCase : Dict = config_and_inputs _lowerCAmelCase : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __magic_name__ = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () __magic_name__ = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ViTMAEModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds' ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(UpperCamelCase__ ) _lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[str] = [*signature.parameters.keys()] _lowerCAmelCase : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase : int = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) _lowerCAmelCase : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) _lowerCAmelCase : int = torch.from_numpy(UpperCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument _lowerCAmelCase : Dict = pt_noise super().check_pt_tf_models(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) _lowerCAmelCase : List[str] = outputs[0].cpu().numpy() _lowerCAmelCase : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ ) _lowerCAmelCase : str = model_class.from_pretrained(UpperCamelCase__ ) model.to(UpperCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) # Make sure we don't have nans _lowerCAmelCase : Tuple = after_outputs[0].cpu().numpy() _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase__ , 1E-5 ) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def a ( self ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def a ( self ): '''simple docstring''' pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.' ) def a ( self ): '''simple docstring''' pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load' ) def a ( self ): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self ): '''simple docstring''' pass @slow def a ( self ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = ViTMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-mae-base' ) if is_vision_available() else None @slow def a ( self ): '''simple docstring''' np.random.seed(2 ) _lowerCAmelCase : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base' ).to(UpperCamelCase__ ) _lowerCAmelCase : Dict = self.default_image_processor _lowerCAmelCase : List[str] = prepare_img() _lowerCAmelCase : Tuple = image_processor(images=UpperCamelCase__ , return_tensors='pt' ).to(UpperCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) _lowerCAmelCase : int = ViTMAEConfig() _lowerCAmelCase : Optional[Any] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) _lowerCAmelCase : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): _lowerCAmelCase : List[Any] = model(**UpperCamelCase__ , noise=torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ ) ) # verify the logits _lowerCAmelCase : Any = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) _lowerCAmelCase : Dict = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCamelCase__ ) , atol=1E-4 ) )
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int lowerCAmelCase : Optional[Any] = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase__ ( datasets.BuilderConfig ): """simple docstring""" __magic_name__ = None def lowercase (_A , _A , ): """simple docstring""" import pyspark def generate_fn(): _lowerCAmelCase : List[Any] = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) ) for partition_id in partition_order: _lowerCAmelCase : Dict = df_with_partition_id.select('*' ).where(f'part_id = {partition_id}' ).drop('part_id' ) _lowerCAmelCase : List[Any] = partition_df.collect() _lowerCAmelCase : List[Any] = 0 for row in rows: yield f'{partition_id}_{row_id}', row.asDict() row_id += 1 return generate_fn class UpperCamelCase__ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : str = df _lowerCAmelCase : Tuple = partition_order or range(self.df.rdd.getNumPartitions() ) _lowerCAmelCase : Optional[int] = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): '''simple docstring''' yield from self.generate_examples_fn() def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(snake_case__ ) return SparkExamplesIterable(self.df , partition_order=snake_case__ ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = self.split_shard_indices_by_worker(snake_case__ , snake_case__ ) return SparkExamplesIterable(self.df , partition_order=snake_case__ ) @property def a ( self ): '''simple docstring''' return len(self.partition_order ) class UpperCamelCase__ ( datasets.DatasetBuilder ): """simple docstring""" __magic_name__ = SparkConfig def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' import pyspark _lowerCAmelCase : List[Any] = pyspark.sql.SparkSession.builder.getOrCreate() _lowerCAmelCase : List[Any] = df _lowerCAmelCase : List[str] = working_dir super().__init__( cache_dir=snake_case__ , config_name=str(self.df.semanticHash() ) , **snake_case__ , ) def a ( self ): '''simple docstring''' def create_cache_and_write_probe(snake_case__ ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=snake_case__ ) _lowerCAmelCase : Tuple = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(snake_case__ , 'a' ) return [probe_file] if self._spark.conf.get('spark.master' , '' ).startswith('local' ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: _lowerCAmelCase : Optional[int] = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(snake_case__ ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( 'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' ) def a ( self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def a ( self , snake_case__ ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def a ( self , snake_case__ ): '''simple docstring''' import pyspark def get_arrow_batch_size(snake_case__ ): for batch in it: yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} ) _lowerCAmelCase : Optional[Any] = self.df.count() _lowerCAmelCase : int = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. _lowerCAmelCase : int = ( self.df.limit(snake_case__ ) .repartition(1 ) .mapInArrow(snake_case__ , 'batch_bytes: long' ) .agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) ) .collect()[0] .sample_bytes / sample_num_rows ) _lowerCAmelCase : Dict = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. _lowerCAmelCase : List[Any] = min(snake_case__ , int(approx_total_size / max_shard_size ) ) _lowerCAmelCase : Tuple = self.df.repartition(snake_case__ ) def a ( self , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' import pyspark _lowerCAmelCase : Optional[int] = ParquetWriter if file_format == 'parquet' else ArrowWriter _lowerCAmelCase : Optional[int] = os.path.join(self._working_dir , os.path.basename(snake_case__ ) ) if self._working_dir else fpath _lowerCAmelCase : str = file_format == 'parquet' # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. _lowerCAmelCase : List[str] = self.config.features _lowerCAmelCase : str = self._writer_batch_size _lowerCAmelCase : Tuple = self._fs.storage_options def write_arrow(snake_case__ ): # Within the same SparkContext, no two task attempts will share the same attempt ID. _lowerCAmelCase : str = pyspark.TaskContext().taskAttemptId() _lowerCAmelCase : Dict = next(snake_case__ , snake_case__ ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , ) _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Any = writer_class( features=snake_case__ , path=working_fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , writer_batch_size=snake_case__ , storage_options=snake_case__ , embed_local_files=snake_case__ , ) _lowerCAmelCase : Union[str, Any] = pa.Table.from_batches([first_batch] ) writer.write_table(snake_case__ ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: _lowerCAmelCase : int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) shard_id += 1 _lowerCAmelCase : Optional[int] = writer_class( features=writer._features , path=working_fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , writer_batch_size=snake_case__ , storage_options=snake_case__ , embed_local_files=snake_case__ , ) _lowerCAmelCase : Any = pa.Table.from_batches([batch] ) writer.write_table(snake_case__ ) if writer._num_bytes > 0: _lowerCAmelCase : Optional[Any] = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(snake_case__ ) ): _lowerCAmelCase : Any = os.path.join(os.path.dirname(snake_case__ ) , os.path.basename(snake_case__ ) ) shutil.move(snake_case__ , snake_case__ ) _lowerCAmelCase : Union[str, Any] = ( self.df.mapInArrow(snake_case__ , 'task_id: long, num_examples: long, num_bytes: long' ) .groupBy('task_id' ) .agg( pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def a ( self , snake_case__ , snake_case__ = "arrow" , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' self._validate_cache_dir() _lowerCAmelCase : List[Any] = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(snake_case__ ) _lowerCAmelCase : Dict = not is_remote_filesystem(self._fs ) _lowerCAmelCase : Any = os.path.join if is_local else posixpath.join _lowerCAmelCase : List[str] = '-TTTTT-SSSSS-of-NNNNN' _lowerCAmelCase : List[Any] = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}' _lowerCAmelCase : Optional[int] = path_join(self._output_dir , snake_case__ ) _lowerCAmelCase : List[str] = 0 _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Tuple = [] for task_id, content in self._prepare_split_single(snake_case__ , snake_case__ , snake_case__ ): ( _lowerCAmelCase ) : Optional[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(snake_case__ ) _lowerCAmelCase : Union[str, Any] = total_num_examples _lowerCAmelCase : List[Any] = total_num_bytes # should rename everything at the end logger.debug(F'Renaming {total_shards} shards.' ) if total_shards > 1: _lowerCAmelCase : List[Any] = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. _lowerCAmelCase : Dict = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( snake_case__ , snake_case__ , snake_case__ , ): rename( snake_case__ , fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , fpath.replace('TTTTT-SSSSS' , F'{global_shard_id:05d}' ).replace('NNNNN' , F'{total_shards:05d}' ) , ) _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : int = 0 for i in range(len(snake_case__ ) ): _lowerCAmelCase : List[str] = task_id_and_num_shards[i] for shard_id in range(snake_case__ ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(snake_case__ , len(snake_case__ ) ).map(lambda snake_case__ : _rename_shard(*snake_case__ ) ).collect() else: # don't use any pattern _lowerCAmelCase : List[Any] = 0 _lowerCAmelCase : int = task_id_and_num_shards[0][0] self._rename( fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , fpath.replace(snake_case__ , '' ) , ) def a ( self , snake_case__ , ): '''simple docstring''' return SparkExamplesIterable(self.df )
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() # fmt: off _lowerCAmelCase : int = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on _lowerCAmelCase : Dict = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _lowerCAmelCase : int = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] _lowerCAmelCase : Tuple = {'unk_token': '<unk>'} _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) _lowerCAmelCase : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _lowerCAmelCase : Dict = os.path.join(self.tmpdirname , UpperCamelCase__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(UpperCamelCase__ , UpperCamelCase__ ) def a ( self , **snake_case__ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def a ( self , **snake_case__ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def a ( self , **snake_case__ ): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : List[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : List[Any] = self.get_rust_tokenizer() _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase__ ) _lowerCAmelCase : int = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase : str = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=UpperCamelCase__ , padding_value=1.0 ) _lowerCAmelCase : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : List[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : str = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(UpperCamelCase__ , return_tensors='np' ) _lowerCAmelCase : Dict = processor(images=UpperCamelCase__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Dict = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : Tuple = 'lower newer' _lowerCAmelCase : Optional[int] = processor(text=UpperCamelCase__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(UpperCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : Any = 'lower newer' _lowerCAmelCase : Optional[Any] = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : List[Any] = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : List[str] = processor.batch_decode(UpperCamelCase__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = CLIPProcessor(tokenizer=UpperCamelCase__ , image_processor=UpperCamelCase__ ) _lowerCAmelCase : str = 'lower newer' _lowerCAmelCase : Any = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=UpperCamelCase__ , images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' from collections.abc import Generator def lowercase (): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = 0, 1 while True: _lowerCAmelCase , _lowerCAmelCase : str = b, a + b yield b def lowercase (_A = 1_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = 1 _lowerCAmelCase : str = fibonacci_generator() while len(str(next(snake_case_ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/config.json""", """xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/config.json""", } class UpperCamelCase__ ( _a ): """simple docstring""" __magic_name__ = """xlnet""" __magic_name__ = ["""mems"""] __magic_name__ = { """n_token""": """vocab_size""", # Backward compatibility """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case__=3_2000 , snake_case__=1024 , snake_case__=24 , snake_case__=16 , snake_case__=4096 , snake_case__="gelu" , snake_case__=True , snake_case__="bi" , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=0.1 , snake_case__=512 , snake_case__=None , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=-1 , snake_case__=False , snake_case__="last" , snake_case__=True , snake_case__="tanh" , snake_case__=0.1 , snake_case__=5 , snake_case__=5 , snake_case__=5 , snake_case__=1 , snake_case__=2 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Union[str, Any] = d_model _lowerCAmelCase : Optional[Any] = n_layer _lowerCAmelCase : List[str] = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) _lowerCAmelCase : Tuple = d_model // n_head _lowerCAmelCase : Optional[int] = ff_activation _lowerCAmelCase : int = d_inner _lowerCAmelCase : Any = untie_r _lowerCAmelCase : List[Any] = attn_type _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : int = dropout _lowerCAmelCase : int = mem_len _lowerCAmelCase : Optional[Any] = reuse_len _lowerCAmelCase : List[Any] = bi_data _lowerCAmelCase : List[Any] = clamp_len _lowerCAmelCase : Tuple = same_length _lowerCAmelCase : Optional[Any] = summary_type _lowerCAmelCase : int = summary_use_proj _lowerCAmelCase : int = summary_activation _lowerCAmelCase : Any = summary_last_dropout _lowerCAmelCase : Dict = start_n_top _lowerCAmelCase : Dict = end_n_top _lowerCAmelCase : Dict = bos_token_id _lowerCAmelCase : Tuple = pad_token_id _lowerCAmelCase : Union[str, Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , __lowerCAmelCase , ) _lowerCAmelCase : Optional[int] = kwargs['use_cache'] _lowerCAmelCase : str = use_mems_eval _lowerCAmelCase : List[str] = use_mems_train super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def a ( self ): '''simple docstring''' logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def a ( self , snake_case__ ): '''simple docstring''' raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase__ ( snake_case_ , snake_case_ ): """simple docstring""" __magic_name__ = "pixel_values" __magic_name__ = False __magic_name__ = TimmBackboneConfig def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(self , 'timm' ) super().__init__(_A ) _lowerCAmelCase : Union[str, Any] = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(_A , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) _lowerCAmelCase : Tuple = getattr(_A , 'use_pretrained_backbone' , _A ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. _lowerCAmelCase : Union[str, Any] = config.out_indices if getattr(_A , 'out_indices' , _A ) is not None else (-1,) _lowerCAmelCase : Optional[int] = timm.create_model( config.backbone , pretrained=_A , features_only=config.features_only , in_chans=config.num_channels , out_indices=_A , **_A , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _lowerCAmelCase : Optional[int] = self._backbone.return_layers _lowerCAmelCase : Dict = {layer['module']: str(_A ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(_A ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig _lowerCAmelCase : int = kwargs.pop('config' , TimmBackboneConfig() ) _lowerCAmelCase : Optional[Any] = kwargs.pop('use_timm_backbone' , _A ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) _lowerCAmelCase : Tuple = kwargs.pop('num_channels' , config.num_channels ) _lowerCAmelCase : int = kwargs.pop('features_only' , config.features_only ) _lowerCAmelCase : str = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) _lowerCAmelCase : Optional[int] = kwargs.pop('out_indices' , config.out_indices ) _lowerCAmelCase : Optional[Any] = TimmBackboneConfig( backbone=_A , num_channels=_A , features_only=_A , use_pretrained_backbone=_A , out_indices=_A , ) return super()._from_config(_A , **_A ) def a ( self , snake_case__ ): '''simple docstring''' pass def a ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : Union[str, Any] = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _lowerCAmelCase : Optional[int] = self._all_layers _lowerCAmelCase : Any = self._backbone(_A , **_A ) _lowerCAmelCase : List[str] = self._return_layers _lowerCAmelCase : int = tuple(hidden_states[i] for i in self.out_indices ) else: _lowerCAmelCase : int = self._backbone(_A , **_A ) _lowerCAmelCase : Any = None _lowerCAmelCase : Any = tuple(_A ) _lowerCAmelCase : int = tuple(_A ) if hidden_states is not None else None if not return_dict: _lowerCAmelCase : Optional[int] = (feature_maps,) if output_hidden_states: _lowerCAmelCase : Union[str, Any] = output + (hidden_states,) return output return BackboneOutput(feature_maps=_A , hidden_states=_A , attentions=_A )
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 # [batch_size x 3] __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = 42 def a ( self ): '''simple docstring''' assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def a ( self ): '''simple docstring''' return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def a ( self ): '''simple docstring''' return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = torch.arange(self.height * self.width ) _lowerCAmelCase : int = torch.stack( [ pixel_indices % self.width, torch.div(snake_case_ , self.width , rounding_mode='trunc' ), ] , axis=1 , ) return coords @property def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.shape _lowerCAmelCase : Tuple = int(np.prod(snake_case_ ) ) _lowerCAmelCase : int = self.get_image_coords() _lowerCAmelCase : Optional[int] = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) _lowerCAmelCase : Union[str, Any] = self.get_camera_rays(snake_case_ ) _lowerCAmelCase : Tuple = rays.view(snake_case_ , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] _lowerCAmelCase : Optional[int] = coords.view(snake_case_ , -1 , 2 ) _lowerCAmelCase : Dict = self.resolution() _lowerCAmelCase : List[Any] = self.fov() _lowerCAmelCase : Any = (flat.float() / (res - 1)) * 2 - 1 _lowerCAmelCase : Any = fracs * torch.tan(fov / 2 ) _lowerCAmelCase : Tuple = fracs.view(snake_case_ , -1 , 2 ) _lowerCAmelCase : int = ( self.z.view(snake_case_ , 1 , 3 ) + self.x.view(snake_case_ , 1 , 3 ) * fracs[:, :, :1] + self.y.view(snake_case_ , 1 , 3 ) * fracs[:, :, 1:] ) _lowerCAmelCase : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=snake_case_ ) _lowerCAmelCase : List[Any] = torch.stack( [ torch.broadcast_to(self.origin.view(snake_case_ , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(snake_case_ , *snake_case_ , 2 , 3 ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=snake_case_ , height=snake_case_ , x_fov=self.x_fov , y_fov=self.y_fov , ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = [] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Any = [] _lowerCAmelCase : List[str] = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): _lowerCAmelCase : Optional[Any] = np.array([np.sin(lowerCAmelCase__ ), np.cos(lowerCAmelCase__ ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) _lowerCAmelCase : str = -z * 4 _lowerCAmelCase : Tuple = np.array([np.cos(lowerCAmelCase__ ), -np.sin(lowerCAmelCase__ ), 0.0] ) _lowerCAmelCase : Tuple = np.cross(lowerCAmelCase__ , lowerCAmelCase__ ) origins.append(lowerCAmelCase__ ) xs.append(lowerCAmelCase__ ) ys.append(lowerCAmelCase__ ) zs.append(lowerCAmelCase__ ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , x=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , y=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , z=torch.from_numpy(np.stack(lowerCAmelCase__ , axis=0 ) ).float() , width=lowerCAmelCase__ , height=lowerCAmelCase__ , x_fov=0.7 , y_fov=0.7 , shape=(1, len(lowerCAmelCase__ )) , )
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "facebook/bart-large-mnli" __magic_name__ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) __magic_name__ = "text_classifier" __magic_name__ = AutoTokenizer __magic_name__ = AutoModelForSequenceClassification __magic_name__ = ["text", ["text"]] __magic_name__ = ["text"] def a ( self ): '''simple docstring''' super().setup() _lowerCAmelCase : Any = self.model.config _lowerCAmelCase : List[str] = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('entail' ): _lowerCAmelCase : List[Any] = int(snake_case__ ) if self.entailment_id == -1: raise ValueError('Could not determine the entailment ID from the model config, please pass it at init.' ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = labels return self.pre_processor( [text] * len(snake_case__ ) , [F'This example is {label}' for label in labels] , return_tensors='pt' , padding='max_length' , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = outputs.logits _lowerCAmelCase : Union[str, Any] = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def lowercase (_A ): """simple docstring""" return EnvironmentCommand() class UpperCamelCase__ ( lowercase_ ): """simple docstring""" @staticmethod def a ( snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=a__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = huggingface_hub.__version__ _lowerCAmelCase : str = 'not installed' _lowerCAmelCase : List[Any] = 'NA' if is_torch_available(): import torch _lowerCAmelCase : Optional[int] = torch.__version__ _lowerCAmelCase : Union[str, Any] = torch.cuda.is_available() _lowerCAmelCase : Any = 'not installed' if is_transformers_available(): import transformers _lowerCAmelCase : Dict = transformers.__version__ _lowerCAmelCase : int = 'not installed' if is_accelerate_available(): import accelerate _lowerCAmelCase : int = accelerate.__version__ _lowerCAmelCase : str = 'not installed' if is_xformers_available(): import xformers _lowerCAmelCase : Optional[Any] = xformers.__version__ _lowerCAmelCase : Union[str, Any] = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(a__ ) ) return info @staticmethod def a ( snake_case__ ): '''simple docstring''' return "\n".join([F'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" return base * power(_A , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") lowerCAmelCase : int = int(input("""Enter the base: """).strip()) lowerCAmelCase : Tuple = int(input("""Enter the exponent: """).strip()) lowerCAmelCase : Tuple = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents lowerCAmelCase : Optional[int] = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' def lowercase (_A , _A = False ): """simple docstring""" if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 1_0 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1 and not allow_probable: raise ValueError( 'Warning: upper bound of deterministic test is exceeded. ' 'Pass allow_probable=True to allow probabilistic test. ' 'A return value of True indicates a probable prime.' ) # array bounds provided by analysis _lowerCAmelCase : str = [ 2_0_4_7, 1_3_7_3_6_5_3, 2_5_3_2_6_0_0_1, 3_2_1_5_0_3_1_7_5_1, 2_1_5_2_3_0_2_8_9_8_7_4_7, 3_4_7_4_7_4_9_6_6_0_3_8_3, 3_4_1_5_5_0_0_7_1_7_2_8_3_2_1, 1, 3_8_2_5_1_2_3_0_5_6_5_4_6_4_1_3_0_5_1, 1, 1, 3_1_8_6_6_5_8_5_7_8_3_4_0_3_1_1_5_1_1_6_7_4_6_1, 3_3_1_7_0_4_4_0_6_4_6_7_9_8_8_7_3_8_5_9_6_1_9_8_1, ] _lowerCAmelCase : Union[str, Any] = [2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1] for idx, _p in enumerate(lowerCamelCase_ , 1 ): if n < _p: # then we have our last prime to check _lowerCAmelCase : List[Any] = primes[:idx] break _lowerCAmelCase : Any = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: _lowerCAmelCase : Tuple = False for r in range(lowerCamelCase_ ): _lowerCAmelCase : Optional[Any] = pow(lowerCamelCase_ , d * 2**r , lowerCamelCase_ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): _lowerCAmelCase : Tuple = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowercase (): """simple docstring""" assert not miller_rabin(5_6_1 ) assert miller_rabin(5_6_3 ) # 2047 assert not miller_rabin(8_3_8_2_0_1 ) assert miller_rabin(8_3_8_2_0_7 ) # 1_373_653 assert not miller_rabin(1_7_3_1_6_0_0_1 ) assert miller_rabin(1_7_3_1_6_0_1_7 ) # 25_326_001 assert not miller_rabin(3_0_7_8_3_8_6_6_4_1 ) assert miller_rabin(3_0_7_8_3_8_6_6_5_3 ) # 3_215_031_751 assert not miller_rabin(1_7_1_3_0_4_5_5_7_4_8_0_1 ) assert miller_rabin(1_7_1_3_0_4_5_5_7_4_8_1_9 ) # 2_152_302_898_747 assert not miller_rabin(2_7_7_9_7_9_9_7_2_8_3_0_7 ) assert miller_rabin(2_7_7_9_7_9_9_7_2_8_3_2_7 ) # 3_474_749_660_383 assert not miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_4_4_1 ) assert miller_rabin(1_1_3_8_5_0_0_2_3_9_0_9_5_2_7 ) # 341_550_071_728_321 assert not miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_5_1 ) assert miller_rabin(1_2_7_5_0_4_1_0_1_8_8_4_8_8_0_4_3_9_1 ) # 3_825_123_056_546_413_051 assert not miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_8_6_7 ) assert miller_rabin(7_9_6_6_6_4_6_4_4_5_8_5_0_7_7_8_7_7_9_1_9_5_1 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_3_3 ) assert miller_rabin(5_5_2_8_4_0_6_7_7_4_4_6_6_4_7_8_9_7_6_6_0_3_5_9 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Tuple = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = """megatron-bert""" def __init__( self , snake_case__=2_9056 , snake_case__=1024 , snake_case__=24 , snake_case__=16 , snake_case__=4096 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=0 , snake_case__="absolute" , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : List[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : Optional[Any] = position_embedding_type _lowerCAmelCase : Dict = use_cache
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase__ ) class UpperCamelCase__ ( lowerCamelCase__ ): """simple docstring""" __magic_name__ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) __magic_name__ = Features({"text": Value("string" )} ) __magic_name__ = Features({"labels": ClassLabel} ) __magic_name__ = "text" __magic_name__ = "labels" def a ( self , snake_case__ ): '''simple docstring''' if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __snake_case ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _lowerCAmelCase : List[Any] = copy.deepcopy(self ) _lowerCAmelCase : str = self.label_schema.copy() _lowerCAmelCase : List[Any] = features[self.label_column] _lowerCAmelCase : Optional[Any] = label_schema return task_template @property def a ( self ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFXLMRobertaModel.from_pretrained('jplu/tf-xlm-roberta-base' ) _lowerCAmelCase : Union[str, Any] = { 'input_ids': tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" 'attention_mask': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } _lowerCAmelCase : Optional[int] = model(A__ )['last_hidden_state'] _lowerCAmelCase : Optional[int] = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , A__ ) # compare the actual values for a slice. _lowerCAmelCase : Optional[int] = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class UpperCamelCase__ ( __a , __a ): """simple docstring""" __magic_name__ = 1 @register_to_config def __init__( self , snake_case__=2000 , snake_case__=0.1 , snake_case__=20 , snake_case__=1E-3 ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : List[Any] = None _lowerCAmelCase : List[str] = None def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Any = torch.linspace(1 , self.config.sampling_eps , a__ , device=a__ ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowerCAmelCase : Optional[int] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowerCAmelCase : Any = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _lowerCAmelCase : Optional[int] = std.flatten() while len(std.shape ) < len(score.shape ): _lowerCAmelCase : List[Any] = std.unsqueeze(-1 ) _lowerCAmelCase : int = -score / std # compute _lowerCAmelCase : Tuple = -1.0 / len(self.timesteps ) _lowerCAmelCase : str = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowerCAmelCase : Union[str, Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _lowerCAmelCase : List[Any] = beta_t.unsqueeze(-1 ) _lowerCAmelCase : List[Any] = -0.5 * beta_t * x _lowerCAmelCase : Optional[Any] = torch.sqrt(a__ ) _lowerCAmelCase : Any = drift - diffusion**2 * score _lowerCAmelCase : Any = x + drift * dt # add noise _lowerCAmelCase : Optional[int] = randn_tensor(x.shape , layout=x.layout , generator=a__ , device=x.device , dtype=x.dtype ) _lowerCAmelCase : Optional[Any] = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=2 , snake_case__=32 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=4 , snake_case__=[0, 1, 2, 3] , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=3 , snake_case__=[1, 384, 24, 24] , snake_case__=True , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : List[str] = parent _lowerCAmelCase : List[Any] = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Dict = patch_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Tuple = is_training _lowerCAmelCase : Optional[Any] = use_labels _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : str = backbone_out_indices _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Optional[int] = num_labels _lowerCAmelCase : int = backbone_featmap_shape _lowerCAmelCase : Union[str, Any] = scope _lowerCAmelCase : int = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Any = (image_size // patch_size) ** 2 _lowerCAmelCase : Optional[Any] = num_patches + 1 def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Union[str, Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__A , backbone_featmap_shape=self.backbone_featmap_shape , ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = DPTModel(config=__A ) model.to(__A ) model.eval() _lowerCAmelCase : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : List[Any] = DPTForDepthEstimation(__A ) model.to(__A ) model.eval() _lowerCAmelCase : Tuple = model(__A ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Tuple = DPTForSemanticSegmentation(__A ) model.to(__A ) model.eval() _lowerCAmelCase : Dict = model(__A , labels=__A ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.prepare_config_and_inputs() _lowerCAmelCase : Union[str, Any] = config_and_inputs _lowerCAmelCase : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __magic_name__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __magic_name__ = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : int = DPTModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DPT does not use inputs_embeds' ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__A ) _lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Optional[int] = [*signature.parameters.keys()] _lowerCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __A ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__A ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A ) def a ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : str = True if model_class in get_values(__A ): continue _lowerCAmelCase : Union[str, Any] = model_class(__A ) model.to(__A ) model.train() _lowerCAmelCase : str = self._prepare_for_class(__A , __A , return_labels=__A ) _lowerCAmelCase : Union[str, Any] = model(**__A ).loss loss.backward() def a ( self ): '''simple docstring''' for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = False _lowerCAmelCase : int = True if model_class in get_values(__A ) or not model_class.supports_gradient_checkpointing: continue _lowerCAmelCase : Dict = model_class(__A ) model.to(__A ) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : List[str] = self._prepare_for_class(__A , __A , return_labels=__A ) _lowerCAmelCase : Any = model(**__A ).loss loss.backward() def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[Any] = _config_zero_init(__A ) for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(config=__A ) # Skip the check for the backbone _lowerCAmelCase : Dict = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _lowerCAmelCase : Optional[Any] = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a ( self ): '''simple docstring''' pass @slow def a ( self ): '''simple docstring''' for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _lowerCAmelCase : Optional[int] = DPTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = '''add''' with self.assertRaises(__A ): _lowerCAmelCase : Dict = DPTForDepthEstimation(__A ) def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision @slow class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' ) _lowerCAmelCase : Tuple = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(__A ) _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : Union[str, Any] = image_processor(images=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**__A ) _lowerCAmelCase : int = outputs.predicted_depth # verify the predicted depth _lowerCAmelCase : Tuple = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __A ) _lowerCAmelCase : Dict = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__A ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __A , atol=1E-4 ) )
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : Tuple = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def lowercase (_A , _A , _A=8 ): """simple docstring""" _lowerCAmelCase : Optional[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 _lowerCAmelCase : List[Any] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() self.register_modules( text_encoder=__a , tokenizer=__a , unet=__a , scheduler=__a , movq=__a , ) _lowerCAmelCase : str = 2 ** (len(self.movq.config.block_out_channels ) - 1) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if latents is None: _lowerCAmelCase : int = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _lowerCAmelCase : List[str] = latents.to(__a ) _lowerCAmelCase : List[str] = latents * scheduler.init_noise_sigma return latents def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : Any = len(__a ) if isinstance(__a , __a ) else 1 # get prompt text embeddings _lowerCAmelCase : Dict = self.tokenizer( __a , padding='max_length' , truncation=__a , max_length=77 , return_attention_mask=__a , add_special_tokens=__a , return_tensors='pt' , ) _lowerCAmelCase : Optional[Any] = text_inputs.input_ids _lowerCAmelCase : Optional[int] = self.tokenizer(__a , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__a , __a ): _lowerCAmelCase : Tuple = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCAmelCase : Optional[Any] = text_input_ids.to(__a ) _lowerCAmelCase : str = text_inputs.attention_mask.to(__a ) _lowerCAmelCase , _lowerCAmelCase : Dict = self.text_encoder( input_ids=__a , attention_mask=__a ) _lowerCAmelCase : Union[str, Any] = prompt_embeds.repeat_interleave(__a , dim=0 ) _lowerCAmelCase : List[str] = text_encoder_hidden_states.repeat_interleave(__a , dim=0 ) _lowerCAmelCase : str = text_mask.repeat_interleave(__a , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : Optional[int] = 42 if negative_prompt is None: _lowerCAmelCase : Union[str, Any] = [''] * batch_size elif type(__a ) is not type(__a ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(__a )} !=' F' {type(__a )}.' ) elif isinstance(__a , __a ): _lowerCAmelCase : Tuple = [negative_prompt] elif batch_size != len(__a ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(__a )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: _lowerCAmelCase : Optional[int] = negative_prompt _lowerCAmelCase : Dict = self.tokenizer( __a , padding='max_length' , max_length=77 , truncation=__a , return_attention_mask=__a , add_special_tokens=__a , return_tensors='pt' , ) _lowerCAmelCase : Optional[Any] = uncond_input.input_ids.to(__a ) _lowerCAmelCase : Dict = uncond_input.attention_mask.to(__a ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.text_encoder( input_ids=__a , attention_mask=__a ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase : int = negative_prompt_embeds.shape[1] _lowerCAmelCase : List[Any] = negative_prompt_embeds.repeat(1 , __a ) _lowerCAmelCase : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __a ) _lowerCAmelCase : Dict = uncond_text_encoder_hidden_states.shape[1] _lowerCAmelCase : List[Any] = uncond_text_encoder_hidden_states.repeat(1 , __a , 1 ) _lowerCAmelCase : List[str] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , __a , -1 ) _lowerCAmelCase : Tuple = uncond_text_mask.repeat_interleave(__a , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : List[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) _lowerCAmelCase : Dict = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) _lowerCAmelCase : Optional[int] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def a ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _lowerCAmelCase : Dict = torch.device(F'cuda:{gpu_id}' ) _lowerCAmelCase : List[str] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__a , __a ) def a ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _lowerCAmelCase : Dict = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=__a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _lowerCAmelCase : Union[str, Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: _lowerCAmelCase , _lowerCAmelCase : List[str] = cpu_offload_with_hook(__a , __a , prev_module_hook=__a ) if self.safety_checker is not None: _lowerCAmelCase , _lowerCAmelCase : Tuple = cpu_offload_with_hook(self.safety_checker , __a , prev_module_hook=__a ) # We'll offload the last model manually. _lowerCAmelCase : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def a ( self ): '''simple docstring''' if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(__a , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__a ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 100 , snake_case__ = 4.0 , snake_case__ = 1 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' if isinstance(__a , __a ): _lowerCAmelCase : Optional[Any] = 1 elif isinstance(__a , __a ): _lowerCAmelCase : Union[str, Any] = len(__a ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(__a )}' ) _lowerCAmelCase : Tuple = self._execution_device _lowerCAmelCase : Dict = batch_size * num_images_per_prompt _lowerCAmelCase : List[str] = guidance_scale > 1.0 _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self._encode_prompt( __a , __a , __a , __a , __a ) if isinstance(__a , __a ): _lowerCAmelCase : Tuple = torch.cat(__a , dim=0 ) if isinstance(__a , __a ): _lowerCAmelCase : Dict = torch.cat(__a , dim=0 ) if do_classifier_free_guidance: _lowerCAmelCase : Dict = image_embeds.repeat_interleave(__a , dim=0 ) _lowerCAmelCase : Dict = negative_image_embeds.repeat_interleave(__a , dim=0 ) _lowerCAmelCase : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=__a ) self.scheduler.set_timesteps(__a , device=__a ) _lowerCAmelCase : Optional[int] = self.scheduler.timesteps _lowerCAmelCase : Union[str, Any] = self.unet.config.in_channels _lowerCAmelCase , _lowerCAmelCase : Any = get_new_h_w(__a , __a , self.movq_scale_factor ) # create initial latent _lowerCAmelCase : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , __a , __a , __a , self.scheduler , ) for i, t in enumerate(self.progress_bar(__a ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : Tuple = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} _lowerCAmelCase : Union[str, Any] = self.unet( sample=__a , timestep=__a , encoder_hidden_states=__a , added_cond_kwargs=__a , return_dict=__a , )[0] if do_classifier_free_guidance: _lowerCAmelCase , _lowerCAmelCase : Tuple = noise_pred.split(latents.shape[1] , dim=1 ) _lowerCAmelCase , _lowerCAmelCase : int = noise_pred.chunk(2 ) _lowerCAmelCase , _lowerCAmelCase : Any = variance_pred.chunk(2 ) _lowerCAmelCase : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _lowerCAmelCase : Dict = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _lowerCAmelCase , _lowerCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : Optional[Any] = self.scheduler.step( __a , __a , __a , generator=__a , ).prev_sample # post-processing _lowerCAmelCase : List[Any] = self.movq.decode(__a , force_not_quantize=__a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _lowerCAmelCase : int = image * 0.5 + 0.5 _lowerCAmelCase : List[str] = image.clamp(0 , 1 ) _lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _lowerCAmelCase : Tuple = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : int = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Union[str, Any] = { """vocab_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/vocab.txt""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/vocab.txt""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt""" ), """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt""" ), """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt""", """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json""", """bert-base-multilingual-uncased""": ( """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json""" ), """bert-base-multilingual-cased""": ( """https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json""" ), """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json""" ), """bert-base-cased-finetuned-mrpc""": ( """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-cased""": ( """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json""" ), """bert-base-german-dbmdz-uncased""": ( """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json""" ), """wietsedv/bert-base-dutch-cased""": ( """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Optional[Any] = { """bert-base-uncased""": 5_12, """bert-large-uncased""": 5_12, """bert-base-cased""": 5_12, """bert-large-cased""": 5_12, """bert-base-multilingual-uncased""": 5_12, """bert-base-multilingual-cased""": 5_12, """bert-base-chinese""": 5_12, """bert-base-german-cased""": 5_12, """bert-large-uncased-whole-word-masking""": 5_12, """bert-large-cased-whole-word-masking""": 5_12, """bert-large-uncased-whole-word-masking-finetuned-squad""": 5_12, """bert-large-cased-whole-word-masking-finetuned-squad""": 5_12, """bert-base-cased-finetuned-mrpc""": 5_12, """bert-base-german-dbmdz-cased""": 5_12, """bert-base-german-dbmdz-uncased""": 5_12, """TurkuNLP/bert-base-finnish-cased-v1""": 5_12, """TurkuNLP/bert-base-finnish-uncased-v1""": 5_12, """wietsedv/bert-base-dutch-cased""": 5_12, } lowerCAmelCase : List[Any] = { """bert-base-uncased""": {"""do_lower_case""": True}, """bert-large-uncased""": {"""do_lower_case""": True}, """bert-base-cased""": {"""do_lower_case""": False}, """bert-large-cased""": {"""do_lower_case""": False}, """bert-base-multilingual-uncased""": {"""do_lower_case""": True}, """bert-base-multilingual-cased""": {"""do_lower_case""": False}, """bert-base-chinese""": {"""do_lower_case""": False}, """bert-base-german-cased""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking""": {"""do_lower_case""": False}, """bert-large-uncased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": True}, """bert-large-cased-whole-word-masking-finetuned-squad""": {"""do_lower_case""": False}, """bert-base-cased-finetuned-mrpc""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-cased""": {"""do_lower_case""": False}, """bert-base-german-dbmdz-uncased""": {"""do_lower_case""": True}, """TurkuNLP/bert-base-finnish-cased-v1""": {"""do_lower_case""": False}, """TurkuNLP/bert-base-finnish-uncased-v1""": {"""do_lower_case""": True}, """wietsedv/bert-base-dutch-cased""": {"""do_lower_case""": False}, } class UpperCamelCase__ ( _snake_case ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = BertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) _lowerCAmelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , UpperCamelCase__ ) != do_lower_case or normalizer_state.get('strip_accents' , UpperCamelCase__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , UpperCamelCase__ ) != tokenize_chinese_chars ): _lowerCAmelCase : List[str] = getattr(UpperCamelCase__ , normalizer_state.pop('type' ) ) _lowerCAmelCase : Union[str, Any] = do_lower_case _lowerCAmelCase : int = strip_accents _lowerCAmelCase : int = tokenize_chinese_chars _lowerCAmelCase : Any = normalizer_class(**UpperCamelCase__ ) _lowerCAmelCase : List[str] = do_lower_case def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[str] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' import hashlib import unittest from typing import Dict import numpy as np from transformers import ( MODEL_FOR_MASK_GENERATION_MAPPING, TF_MODEL_FOR_MASK_GENERATION_MAPPING, is_vision_available, pipeline, ) from transformers.pipelines import MaskGenerationPipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) if is_vision_available(): from PIL import Image else: class UpperCamelCase__ : """simple docstring""" @staticmethod def a ( *snake_case__ , **snake_case__ ): '''simple docstring''' pass def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = hashlib.mda(image.tobytes() ) return m.hexdigest()[:1_0] def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = np.array(snake_case__ ) _lowerCAmelCase : Dict = npimg.shape return {"hash": hashimage(snake_case__ ), "shape": shape} @is_pipeline_test @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = dict( (list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) ) __magic_name__ = dict( (list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = MaskGenerationPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return image_segmenter, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' pass @require_tf @unittest.skip('Image segmentation not implemented in TF' ) def a ( self ): '''simple docstring''' pass @slow @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = pipeline('mask-generation' , model='facebook/sam-vit-huge' ) _lowerCAmelCase : List[Any] = image_segmenter('http://images.cocodataset.org/val2017/000000039769.jpg' , points_per_batch=256 ) # Shortening by hashing _lowerCAmelCase : Tuple = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] # fmt: off self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.021}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, {'mask': {'hash': 'e2d0b7a0b7', 'shape': (480, 640)}, 'scores': 0.9967}, {'mask': {'hash': '453c7844bd', 'shape': (480, 640)}, 'scores': 0.993}, {'mask': {'hash': '3d44f2926d', 'shape': (480, 640)}, 'scores': 0.9909}, {'mask': {'hash': '64033ddc3f', 'shape': (480, 640)}, 'scores': 0.9879}, {'mask': {'hash': '801064ff79', 'shape': (480, 640)}, 'scores': 0.9834}, {'mask': {'hash': '6172f276ef', 'shape': (480, 640)}, 'scores': 0.9716}, {'mask': {'hash': 'b49e60e084', 'shape': (480, 640)}, 'scores': 0.9612}, {'mask': {'hash': 'a811e775fd', 'shape': (480, 640)}, 'scores': 0.9599}, {'mask': {'hash': 'a6a8ebcf4b', 'shape': (480, 640)}, 'scores': 0.9552}, {'mask': {'hash': '9d8257e080', 'shape': (480, 640)}, 'scores': 0.9532}, {'mask': {'hash': '32de6454a8', 'shape': (480, 640)}, 'scores': 0.9516}, {'mask': {'hash': 'af3d4af2c8', 'shape': (480, 640)}, 'scores': 0.9499}, {'mask': {'hash': '3c6db475fb', 'shape': (480, 640)}, 'scores': 0.9483}, {'mask': {'hash': 'c290813fb9', 'shape': (480, 640)}, 'scores': 0.9464}, {'mask': {'hash': 'b6f0b8f606', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': '92ce16bfdf', 'shape': (480, 640)}, 'scores': 0.943}, {'mask': {'hash': 'c749b25868', 'shape': (480, 640)}, 'scores': 0.9408}, {'mask': {'hash': 'efb6cab859', 'shape': (480, 640)}, 'scores': 0.9335}, {'mask': {'hash': '1ff2eafb30', 'shape': (480, 640)}, 'scores': 0.9326}, {'mask': {'hash': '788b798e24', 'shape': (480, 640)}, 'scores': 0.9262}, {'mask': {'hash': 'abea804f0e', 'shape': (480, 640)}, 'scores': 0.8999}, {'mask': {'hash': '7b9e8ddb73', 'shape': (480, 640)}, 'scores': 0.8986}, {'mask': {'hash': 'cd24047c8a', 'shape': (480, 640)}, 'scores': 0.8984}, {'mask': {'hash': '6943e6bcbd', 'shape': (480, 640)}, 'scores': 0.8873}, {'mask': {'hash': 'b5f47c9191', 'shape': (480, 640)}, 'scores': 0.8871} ] , ) # fmt: on @require_torch @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'facebook/sam-vit-huge' _lowerCAmelCase : List[Any] = pipeline('mask-generation' , model=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase : List[str] = image_segmenter( 'http://images.cocodataset.org/val2017/000000039769.jpg' , pred_iou_thresh=1 , points_per_batch=256 ) # Shortening by hashing _lowerCAmelCase : Dict = [] for i, o in enumerate(outputs['masks'] ): new_outupt += [{"mask": mask_to_test_readable(SCREAMING_SNAKE_CASE_ ), "scores": outputs["scores"][i]}] self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {'mask': {'hash': '115ad19f5f', 'shape': (480, 640)}, 'scores': 1.0444}, {'mask': {'hash': '6affa964c6', 'shape': (480, 640)}, 'scores': 1.0210}, {'mask': {'hash': 'dfe28a0388', 'shape': (480, 640)}, 'scores': 1.0167}, {'mask': {'hash': 'c0a5f4a318', 'shape': (480, 640)}, 'scores': 1.0132}, {'mask': {'hash': 'fe8065c197', 'shape': (480, 640)}, 'scores': 1.0053}, ] , )
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' from math import loga def lowercase (_A ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('Input value must be a \'int\' type' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase : int = """Run commands across TPU VMs for initial setup before running `accelerate launch`.""" def lowercase (_A=None ): """simple docstring""" if subparsers is not None: _lowerCAmelCase : Optional[Any] = subparsers.add_parser('tpu-config' , description=_description ) else: _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _lowerCAmelCase : List[Any] = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=_A , default=_A , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=_A , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=_A , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _lowerCAmelCase : List[str] = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=_A , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): _lowerCAmelCase : Optional[int] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _lowerCAmelCase : Tuple = defaults.command_file if not args.command and defaults.commands is not None: _lowerCAmelCase : Optional[int] = defaults.commands if not args.tpu_name: _lowerCAmelCase : Union[str, Any] = defaults.tpu_name if not args.tpu_zone: _lowerCAmelCase : Tuple = defaults.tpu_zone if args.accelerate_version == "dev": _lowerCAmelCase : List[Any] = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": _lowerCAmelCase : List[str] = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , _A ): _lowerCAmelCase : List[str] = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _lowerCAmelCase : str = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): _lowerCAmelCase : List[Any] = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _lowerCAmelCase : Union[str, Any] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command _lowerCAmelCase : int = '''; '''.join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _lowerCAmelCase : Optional[Any] = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(_A )}' ) return subprocess.run(_A ) print('Successfully setup pod.' ) def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = tpu_command_parser() _lowerCAmelCase : List[str] = parser.parse_args() tpu_command_launcher(_A )
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Any = FileLock(str(tmpdir / 'foo.lock' ) ) _lowerCAmelCase : int = FileLock(str(tmpdir / 'foo.lock' ) ) _lowerCAmelCase : str = 0.01 with locka.acquire(): with pytest.raises(snake_case_ ): _lowerCAmelCase : List[Any] = time.time() locka.acquire(snake_case_ ) assert time.time() - _start > timeout def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = 'a' * 1_0_0_0 + '.lock' _lowerCAmelCase : str = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(snake_case_ ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _lowerCAmelCase : Optional[int] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(snake_case_ ): locka.acquire(0 )
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase : List[str] = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase : List[Any] = ["""text""", """image""", """audio"""] def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): inputs.append(create_inputs(__SCREAMING_SNAKE_CASE ) ) else: raise ValueError(f'Invalid type requested: {input_type}' ) return inputs def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Any = [] for output in outputs: if isinstance(__SCREAMING_SNAKE_CASE , (str, AgentText) ): output_types.append('text' ) elif isinstance(__SCREAMING_SNAKE_CASE , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(__SCREAMING_SNAKE_CASE , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f'Invalid output: {output}' ) return output_types @is_tool_test class UpperCamelCase__ : """simple docstring""" def a ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'inputs' ) ) self.assertTrue(hasattr(self.tool , 'outputs' ) ) _lowerCAmelCase : str = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCamelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _lowerCAmelCase : Tuple = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = create_inputs(self.tool.inputs ) _lowerCAmelCase : Dict = self.tool(*UpperCamelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: _lowerCAmelCase : Dict = [outputs] self.assertListEqual(output_types(UpperCamelCase__ ) , self.tool.outputs ) def a ( self ): '''simple docstring''' self.assertTrue(hasattr(self.tool , 'description' ) ) self.assertTrue(hasattr(self.tool , 'default_checkpoint' ) ) self.assertTrue(self.tool.description.startswith('This is a tool that' ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = create_inputs(self.tool.inputs ) _lowerCAmelCase : str = self.tool(*UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _lowerCAmelCase : Any = [outputs] self.assertEqual(len(UpperCamelCase__ ) , len(self.tool.outputs ) ) for output, output_type in zip(UpperCamelCase__ , self.tool.outputs ): _lowerCAmelCase : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCamelCase__ , UpperCamelCase__ ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = create_inputs(self.tool.inputs ) _lowerCAmelCase : List[Any] = [] for _input, input_type in zip(UpperCamelCase__ , self.tool.inputs ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _lowerCAmelCase : Union[str, Any] = self.tool(*UpperCamelCase__ ) if not isinstance(UpperCamelCase__ , UpperCamelCase__ ): _lowerCAmelCase : Union[str, Any] = [outputs] self.assertEqual(len(UpperCamelCase__ ) , len(self.tool.outputs ) )
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[str] = { '''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''], '''processing_git''': ['''GitProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ '''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GitForCausalLM''', '''GitModel''', '''GitPreTrainedModel''', '''GitVisionModel''', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' import torch from diffusers import DiffusionPipeline class UpperCamelCase__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() self.register_modules(unet=A_ , scheduler=A_ ) def __call__( self ): '''simple docstring''' _lowerCAmelCase : List[str] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[Any] = self.unet(A_ , A_ ).sample _lowerCAmelCase : Optional[int] = self.scheduler.step(A_ , A_ , A_ ).prev_sample _lowerCAmelCase : Any = scheduler_output - scheduler_output + torch.ones_like(A_ ) return result
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" create_state_space_tree(_A , [] , 0 ) def lowercase (_A , _A , _A ): """simple docstring""" if index == len(_A ): print(_A ) return create_state_space_tree(_A , _A , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_A , _A , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name def lowercase (_A ): """simple docstring""" if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(_A ): return ext raise Exception( f'Unable to determine file format from file extension {path}. ' f'Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}' ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) _lowerCAmelCase : List[Any] = try_infer_format_from_ext(args.input ) if args.format == 'infer' else args.format _lowerCAmelCase : Dict = PipelineDataFormat.from_str( format=_A , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(_A , _A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = nlp _lowerCAmelCase : List[str] = reader @staticmethod def a ( snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = parser.add_parser('run' , help='Run a pipeline through the CLI' ) run_parser.add_argument('--task' , choices=get_supported_tasks() , help='Task to run' ) run_parser.add_argument('--input' , type=snake_case__ , help='Path to the file to use for inference' ) run_parser.add_argument('--output' , type=snake_case__ , help='Path to the file that will be used post to write results.' ) run_parser.add_argument('--model' , type=snake_case__ , help='Name or path to the model to instantiate.' ) run_parser.add_argument('--config' , type=snake_case__ , help='Name or path to the model\'s config to instantiate.' ) run_parser.add_argument( '--tokenizer' , type=snake_case__ , help='Name of the tokenizer to use. (default: same as the model name)' ) run_parser.add_argument( '--column' , type=snake_case__ , help='Name of the column to use as input. (For multi columns input as QA use column1,columns2)' , ) run_parser.add_argument( '--format' , type=snake_case__ , default='infer' , choices=PipelineDataFormat.SUPPORTED_FORMATS , help='Input format to read from' , ) run_parser.add_argument( '--device' , type=snake_case__ , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) run_parser.add_argument('--overwrite' , action='store_true' , help='Allow overwriting the output file.' ) run_parser.set_defaults(func=snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self._nlp, [] for entry in self._reader: _lowerCAmelCase : Optional[int] = nlp(**snake_case__ ) if self._reader.is_multi_columns else nlp(snake_case__ ) if isinstance(snake_case__ , snake_case__ ): outputs.append(snake_case__ ) else: outputs += output # Saving data if self._nlp.binary_output: _lowerCAmelCase : str = self._reader.save_binary(snake_case__ ) logger.warning(F'Current pipeline requires output to be in binary format, saving at {binary_path}' ) else: self._reader.save(snake_case__ )
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = 4_2 __magic_name__ = None __magic_name__ = None lowerCAmelCase : Any = namedtuple("""CoinsDistribResult""", """moves excess""") def lowercase (_A ): """simple docstring""" if root is None: return 0 # Validation def count_nodes(_A ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_A ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_A ) != count_coins(_A ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(_A ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) _lowerCAmelCase : Optional[Any] = get_distrib(node.left ) _lowerCAmelCase : int = get_distrib(node.right ) _lowerCAmelCase : int = 1 - left_distrib_excess _lowerCAmelCase : int = 1 - right_distrib_excess _lowerCAmelCase : str = ( left_distrib_moves + right_distrib_moves + abs(_A ) + abs(_A ) ) _lowerCAmelCase : Any = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_A , _A ) return get_distrib(_A )[0] if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __get__( self , snake_case__ , snake_case__=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute' ) _lowerCAmelCase : Optional[int] = '__cached_' + self.fget.__name__ _lowerCAmelCase : List[Any] = getattr(snake_case__ , snake_case__ , snake_case__ ) if cached is None: _lowerCAmelCase : Any = self.fget(snake_case__ ) setattr(snake_case__ , snake_case__ , snake_case__ ) return cached def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def lowercase (_A ): """simple docstring""" if is_torch_fx_proxy(_A ): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer) ): return True return isinstance(_A , np.ndarray ) def lowercase (_A ): """simple docstring""" return isinstance(_A , np.ndarray ) def lowercase (_A ): """simple docstring""" return _is_numpy(_A ) def lowercase (_A ): """simple docstring""" import torch return isinstance(_A , torch.Tensor ) def lowercase (_A ): """simple docstring""" return False if not is_torch_available() else _is_torch(_A ) def lowercase (_A ): """simple docstring""" import torch return isinstance(_A , torch.device ) def lowercase (_A ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(_A ) def lowercase (_A ): """simple docstring""" import torch if isinstance(_A , _A ): if hasattr(_A , _A ): _lowerCAmelCase : Optional[Any] = getattr(_A , _A ) else: return False return isinstance(_A , torch.dtype ) def lowercase (_A ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(_A ) def lowercase (_A ): """simple docstring""" import tensorflow as tf return isinstance(_A , tf.Tensor ) def lowercase (_A ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(_A ) def lowercase (_A ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(_A ) return type(_A ) == tf.Tensor def lowercase (_A ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(_A ) def lowercase (_A ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray ) def lowercase (_A ): """simple docstring""" return False if not is_flax_available() else _is_jax(_A ) def lowercase (_A ): """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_py_obj(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return [to_py_obj(_A ) for o in obj] elif is_tf_tensor(_A ): return obj.numpy().tolist() elif is_torch_tensor(_A ): return obj.detach().cpu().tolist() elif is_jax_tensor(_A ): return np.asarray(_A ).tolist() elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase (_A ): """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_numpy(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return np.array(_A ) elif is_tf_tensor(_A ): return obj.numpy() elif is_torch_tensor(_A ): return obj.detach().cpu().numpy() elif is_jax_tensor(_A ): return np.asarray(_A ) else: return obj class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = fields(self ) # Safety and consistency checks if not len(snake_case__ ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) _lowerCAmelCase : List[str] = getattr(self , class_fields[0].name ) _lowerCAmelCase : str = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(snake_case__ ): if isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Any = first_field.items() _lowerCAmelCase : Any = True else: try: _lowerCAmelCase : List[Any] = iter(snake_case__ ) _lowerCAmelCase : int = True except TypeError: _lowerCAmelCase : List[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(snake_case__ ): if ( not isinstance(snake_case__ , (list, tuple) ) or not len(snake_case__ ) == 2 or not isinstance(element[0] , snake_case__ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase : Optional[int] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _lowerCAmelCase : Dict = element[1] elif first_field is not None: _lowerCAmelCase : List[Any] = first_field else: for field in class_fields: _lowerCAmelCase : str = getattr(self , field.name ) if v is not None: _lowerCAmelCase : Any = v def __delitem__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , snake_case__ ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Optional[Any] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , snake_case__ , snake_case__ ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(snake_case__ , snake_case__ ) super().__setattr__(snake_case__ , snake_case__ ) def __setitem__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__setitem__(snake_case__ , snake_case__ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" @classmethod def a ( cls , snake_case__ ): '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "longest" __magic_name__ = "max_length" __magic_name__ = "do_not_pad" class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "pt" __magic_name__ = "tf" __magic_name__ = "np" __magic_name__ = "jax" class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = context_managers _lowerCAmelCase : str = ExitStack() def __enter__( self ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(snake_case__ ) def __exit__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' self.stack.__exit__(*snake_case__ , **snake_case__ ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = infer_framework(_A ) if framework == "tf": _lowerCAmelCase : Optional[int] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : List[str] = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = model_class.__name__ _lowerCAmelCase : Dict = infer_framework(_A ) if framework == "tf": _lowerCAmelCase : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase : Any = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase (_A , _A = "" , _A = "." ): """simple docstring""" def _flatten_dict(_A , _A="" , _A="." ): for k, v in d.items(): _lowerCAmelCase : Dict = str(_A ) + delimiter + str(_A ) if parent_key else k if v and isinstance(_A , _A ): yield from flatten_dict(_A , _A , delimiter=_A ).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A ) ) @contextmanager def lowercase (_A , _A = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase (_A , _A=None ): """simple docstring""" if is_numpy_array(_A ): return np.transpose(_A , axes=_A ) elif is_torch_tensor(_A ): return array.T if axes is None else array.permute(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.transpose(_A , perm=_A ) elif is_jax_tensor(_A ): return jnp.transpose(_A , axes=_A ) else: raise ValueError(f'Type not supported for transpose: {type(_A )}.' ) def lowercase (_A , _A ): """simple docstring""" if is_numpy_array(_A ): return np.reshape(_A , _A ) elif is_torch_tensor(_A ): return array.reshape(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.reshape(_A , _A ) elif is_jax_tensor(_A ): return jnp.reshape(_A , _A ) else: raise ValueError(f'Type not supported for reshape: {type(_A )}.' ) def lowercase (_A , _A=None ): """simple docstring""" if is_numpy_array(_A ): return np.squeeze(_A , axis=_A ) elif is_torch_tensor(_A ): return array.squeeze() if axis is None else array.squeeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.squeeze(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.squeeze(_A , axis=_A ) else: raise ValueError(f'Type not supported for squeeze: {type(_A )}.' ) def lowercase (_A , _A ): """simple docstring""" if is_numpy_array(_A ): return np.expand_dims(_A , _A ) elif is_torch_tensor(_A ): return array.unsqueeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.expand_dims(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.expand_dims(_A , axis=_A ) else: raise ValueError(f'Type not supported for expand_dims: {type(_A )}.' ) def lowercase (_A ): """simple docstring""" if is_numpy_array(_A ): return np.size(_A ) elif is_torch_tensor(_A ): return array.numel() elif is_tf_tensor(_A ): import tensorflow as tf return tf.size(_A ) elif is_jax_tensor(_A ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(_A )}.' ) def lowercase (_A , _A ): """simple docstring""" for key, value in auto_map.items(): if isinstance(_A , (tuple, list) ): _lowerCAmelCase : str = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase : Dict = f'{repo_id}--{value}' return auto_map def lowercase (_A ): """simple docstring""" for base_class in inspect.getmro(_A ): _lowerCAmelCase : List[Any] = base_class.__module__ _lowerCAmelCase : str = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(_A , _A ): raise TypeError('Input value must be a \'int\' type' ) return bin(_A ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowerCAmelCase : Tuple = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE_ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(*snake_case__ , **snake_case__ ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self , snake_case__ , **snake_case__ ): '''simple docstring''' return super().__call__(snake_case__ , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' return {}, {}, {} def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = load_image(snake_case__ ) _lowerCAmelCase : Optional[int] = image.size _lowerCAmelCase : Union[str, Any] = self.image_processor(images=snake_case__ , return_tensors=self.framework ) return model_inputs def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = self.model(**snake_case__ ) return model_outputs def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = model_outputs.predicted_depth _lowerCAmelCase : Union[str, Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=snake_case__ ) _lowerCAmelCase : Dict = prediction.squeeze().cpu().numpy() _lowerCAmelCase : Union[str, Any] = (output * 255 / np.max(snake_case__ )).astype('uint8' ) _lowerCAmelCase : Union[str, Any] = Image.fromarray(snake_case__ ) _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Tuple = predicted_depth _lowerCAmelCase : Union[str, Any] = depth return output_dict
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Any = { """MIT/ast-finetuned-audioset-10-10-0.4593""": ( """https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json""" ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "audio-spectrogram-transformer" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=16 , snake_case__=True , snake_case__=10 , snake_case__=10 , snake_case__=1024 , snake_case__=128 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Dict = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : Optional[int] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Dict = qkv_bias _lowerCAmelCase : Any = frequency_stride _lowerCAmelCase : List[Any] = time_stride _lowerCAmelCase : Any = max_length _lowerCAmelCase : Optional[Any] = num_mel_bins
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase : str = random.Random() if is_torch_available(): import torch def lowercase (_A , _A=1.0 , _A=None , _A=None ): """simple docstring""" if rng is None: _lowerCAmelCase : List[Any] = global_rng _lowerCAmelCase : int = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=400 , snake_case__=2000 , snake_case__=1 , snake_case__=0.0 , snake_case__=1_6000 , snake_case__=True , snake_case__=True , ): '''simple docstring''' _lowerCAmelCase : Tuple = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : str = min_seq_length _lowerCAmelCase : Any = max_seq_length _lowerCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowerCAmelCase : Tuple = feature_size _lowerCAmelCase : Union[str, Any] = padding_value _lowerCAmelCase : Dict = sampling_rate _lowerCAmelCase : Dict = return_attention_mask _lowerCAmelCase : str = do_normalize def a ( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a ( self , snake_case__=False , snake_case__=False ): '''simple docstring''' def _flatten(snake_case__ ): return list(itertools.chain(*snake_case__ ) ) if equal_length: _lowerCAmelCase : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size _lowerCAmelCase : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowerCAmelCase : str = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ASTFeatureExtractor def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ASTFeatureExtractionTester(self ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _lowerCAmelCase : Optional[int] = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input _lowerCAmelCase : str = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values _lowerCAmelCase : List[str] = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) # Test batched _lowerCAmelCase : str = feat_extract(snake_case__ , padding=snake_case__ , return_tensors='np' ).input_values _lowerCAmelCase : List[Any] = feat_extract(snake_case__ , padding=snake_case__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] _lowerCAmelCase : Any = np.asarray(snake_case__ ) _lowerCAmelCase : Optional[Any] = feat_extract(snake_case__ , return_tensors='np' ).input_values _lowerCAmelCase : str = feat_extract(snake_case__ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ): self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) ) @require_torch def a ( self ): '''simple docstring''' import torch _lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowerCAmelCase : str = np.random.rand(100 ).astype(np.floataa ) _lowerCAmelCase : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowerCAmelCase : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) _lowerCAmelCase : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a ( self , snake_case__ ): '''simple docstring''' from datasets import load_dataset _lowerCAmelCase : Any = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _lowerCAmelCase : Union[str, Any] = ds.sort('id' ).select(range(snake_case__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on _lowerCAmelCase : List[Any] = self._load_datasamples(1 ) _lowerCAmelCase : Dict = ASTFeatureExtractor() _lowerCAmelCase : str = feature_extractor(snake_case__ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , snake_case__ , atol=1E-4 ) )
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase : int = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase : Optional[Any] = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def lowercase (_A , _A , _A , _A , _A = None , _A = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _lowerCAmelCase : Tuple = new_id # turn into Numpy arrays _lowerCAmelCase : Dict = np.array(_A ) _lowerCAmelCase : Any = np.array(_A ) if reduce_labels: _lowerCAmelCase : Optional[int] = 2_5_5 _lowerCAmelCase : Optional[int] = label - 1 _lowerCAmelCase : Optional[int] = 2_5_5 _lowerCAmelCase : Any = label != ignore_index _lowerCAmelCase : Dict = np.not_equal(_A , _A ) _lowerCAmelCase : Dict = pred_label[mask] _lowerCAmelCase : Union[str, Any] = np.array(_A )[mask] _lowerCAmelCase : Dict = pred_label[pred_label == label] _lowerCAmelCase : str = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] _lowerCAmelCase : Union[str, Any] = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] _lowerCAmelCase : int = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] _lowerCAmelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowercase (_A , _A , _A , _A , _A = None , _A = False , ): """simple docstring""" _lowerCAmelCase : Dict = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): _lowerCAmelCase : int = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowercase (_A , _A , _A , _A , _A = None , _A = None , _A = False , ): """simple docstring""" _lowerCAmelCase : int = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : str = total_area_intersect.sum() / total_area_label.sum() _lowerCAmelCase : str = total_area_intersect / total_area_union _lowerCAmelCase : Dict = total_area_intersect / total_area_label _lowerCAmelCase : Optional[int] = np.nanmean(_A ) _lowerCAmelCase : int = np.nanmean(_A ) _lowerCAmelCase : Optional[int] = all_acc _lowerCAmelCase : str = iou _lowerCAmelCase : Any = acc if nan_to_num is not None: _lowerCAmelCase : int = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def a ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): '''simple docstring''' _lowerCAmelCase : Tuple = mean_iou( results=snake_case__ , gt_seg_maps=snake_case__ , num_labels=snake_case__ , ignore_index=snake_case__ , nan_to_num=snake_case__ , label_map=snake_case__ , reduce_labels=snake_case__ , ) return iou_result
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[Any] = SwinvaConfig() _lowerCAmelCase : Any = swinva_name.split('_' ) _lowerCAmelCase : Dict = name_split[1] if "to" in name_split[3]: _lowerCAmelCase : Tuple = int(name_split[3][-3:] ) else: _lowerCAmelCase : Any = int(name_split[3] ) if "to" in name_split[2]: _lowerCAmelCase : int = int(name_split[2][-2:] ) else: _lowerCAmelCase : int = int(name_split[2][6:] ) if model_size == "tiny": _lowerCAmelCase : Union[str, Any] = 9_6 _lowerCAmelCase : List[str] = (2, 2, 6, 2) _lowerCAmelCase : str = (3, 6, 1_2, 2_4) elif model_size == "small": _lowerCAmelCase : str = 9_6 _lowerCAmelCase : List[str] = (2, 2, 1_8, 2) _lowerCAmelCase : List[str] = (3, 6, 1_2, 2_4) elif model_size == "base": _lowerCAmelCase : int = 1_2_8 _lowerCAmelCase : Any = (2, 2, 1_8, 2) _lowerCAmelCase : str = (4, 8, 1_6, 3_2) else: _lowerCAmelCase : Union[str, Any] = 1_9_2 _lowerCAmelCase : Dict = (2, 2, 1_8, 2) _lowerCAmelCase : List[Any] = (6, 1_2, 2_4, 4_8) if "to" in swinva_name: _lowerCAmelCase : List[Any] = (1_2, 1_2, 1_2, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _lowerCAmelCase : List[str] = 2_1_8_4_1 _lowerCAmelCase : List[Any] = 'huggingface/label-files' _lowerCAmelCase : str = 'imagenet-22k-id2label.json' _lowerCAmelCase : int = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : Optional[Any] = {int(_A ): v for k, v in idalabel.items()} _lowerCAmelCase : List[str] = idalabel _lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} else: _lowerCAmelCase : List[Any] = 1_0_0_0 _lowerCAmelCase : Any = 'huggingface/label-files' _lowerCAmelCase : Union[str, Any] = 'imagenet-1k-id2label.json' _lowerCAmelCase : List[Any] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : Optional[Any] = {int(_A ): v for k, v in idalabel.items()} _lowerCAmelCase : Tuple = idalabel _lowerCAmelCase : Any = {v: k for k, v in idalabel.items()} _lowerCAmelCase : int = img_size _lowerCAmelCase : int = num_classes _lowerCAmelCase : Dict = embed_dim _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : List[Any] = window_size return config def lowercase (_A ): """simple docstring""" if "patch_embed.proj" in name: _lowerCAmelCase : List[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowerCAmelCase : List[str] = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowerCAmelCase : str = 'encoder.' + name if "attn.proj" in name: _lowerCAmelCase : Optional[int] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _lowerCAmelCase : Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: _lowerCAmelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCAmelCase : List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _lowerCAmelCase : Any = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCAmelCase : List[Any] = name.replace('mlp.fc2' , 'output.dense' ) if "q_bias" in name: _lowerCAmelCase : List[Any] = name.replace('q_bias' , 'query.bias' ) if "k_bias" in name: _lowerCAmelCase : List[Any] = name.replace('k_bias' , 'key.bias' ) if "v_bias" in name: _lowerCAmelCase : List[Any] = name.replace('v_bias' , 'value.bias' ) if "cpb_mlp" in name: _lowerCAmelCase : Tuple = name.replace('cpb_mlp' , 'continuous_position_bias_mlp' ) if name == "norm.weight": _lowerCAmelCase : str = 'layernorm.weight' if name == "norm.bias": _lowerCAmelCase : int = 'layernorm.bias' if "head" in name: _lowerCAmelCase : Tuple = name.replace('head' , 'classifier' ) else: _lowerCAmelCase : Optional[int] = 'swinv2.' + name return name def lowercase (_A , _A ): """simple docstring""" for key in orig_state_dict.copy().keys(): _lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_A ) if "mask" in key: continue elif "qkv" in key: _lowerCAmelCase : Union[str, Any] = key.split('.' ) _lowerCAmelCase : List[str] = int(key_split[1] ) _lowerCAmelCase : Optional[Any] = int(key_split[3] ) _lowerCAmelCase : Optional[Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _lowerCAmelCase : List[Any] = val[:dim, :] _lowerCAmelCase : List[str] = val[dim : dim * 2, :] _lowerCAmelCase : Union[str, Any] = val[-dim:, :] else: _lowerCAmelCase : List[Any] = val[:dim] _lowerCAmelCase : Union[str, Any] = val[ dim : dim * 2 ] _lowerCAmelCase : Tuple = val[-dim:] else: _lowerCAmelCase : Union[str, Any] = val return orig_state_dict def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = timm.create_model(_A , pretrained=_A ) timm_model.eval() _lowerCAmelCase : Any = get_swinva_config(_A ) _lowerCAmelCase : Union[str, Any] = SwinvaForImageClassification(_A ) model.eval() _lowerCAmelCase : Any = convert_state_dict(timm_model.state_dict() , _A ) model.load_state_dict(_A ) _lowerCAmelCase : Union[str, Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Tuple = AutoImageProcessor.from_pretrained('microsoft/{}'.format(swinva_name.replace('_' , '-' ) ) ) _lowerCAmelCase : List[Any] = Image.open(requests.get(_A , stream=_A ).raw ) _lowerCAmelCase : int = image_processor(images=_A , return_tensors='pt' ) _lowerCAmelCase : Any = timm_model(inputs['pixel_values'] ) _lowerCAmelCase : Dict = model(**_A ).logits assert torch.allclose(_A , _A , atol=1E-3 ) print(f'Saving model {swinva_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization='nandwalritik' , commit_message='Add model' , ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase : str = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = ["torch", "torchsde"] def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(self , ['torch', 'torchsde'] ) @classmethod def a ( cls , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def a ( cls , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] )
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_albert""": ["""ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AlbertConfig""", """AlbertOnnxConfig"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = ["""AlbertTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ["""AlbertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """AlbertForMaskedLM""", """AlbertForMultipleChoice""", """AlbertForPreTraining""", """AlbertForQuestionAnswering""", """AlbertForSequenceClassification""", """AlbertForTokenClassification""", """AlbertModel""", """AlbertPreTrainedModel""", """load_tf_weights_in_albert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ """TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAlbertForMaskedLM""", """TFAlbertForMultipleChoice""", """TFAlbertForPreTraining""", """TFAlbertForQuestionAnswering""", """TFAlbertForSequenceClassification""", """TFAlbertForTokenClassification""", """TFAlbertMainLayer""", """TFAlbertModel""", """TFAlbertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """FlaxAlbertForMaskedLM""", """FlaxAlbertForMultipleChoice""", """FlaxAlbertForPreTraining""", """FlaxAlbertForQuestionAnswering""", """FlaxAlbertForSequenceClassification""", """FlaxAlbertForTokenClassification""", """FlaxAlbertModel""", """FlaxAlbertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : int = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' import torch from diffusers import StableDiffusionPipeline lowerCAmelCase : Any = """path-to-your-trained-model""" lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""") lowerCAmelCase : str = """A photo of sks dog in a bucket""" lowerCAmelCase : List[str] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("""dog-bucket.png""")
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py lowerCAmelCase : Dict = """\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\", author = \"Lin, Chin-Yew and Och, Franz Josef\", booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\", month = \"aug 23{--}aug 27\", year = \"2004\", address = \"Geneva, Switzerland\", publisher = \"COLING\", url = \"https://www.aclweb.org/anthology/C04-1072\", pages = \"501--507\", } """ lowerCAmelCase : str = """\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation, the better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. """ lowerCAmelCase : Optional[int] = """ Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 'bleu': bleu score, 'precisions': geometric mean of n-gram precisions, 'brevity_penalty': brevity penalty, 'length_ratio': ratio of lengths, 'translation_length': translation_length, 'reference_length': reference_length Examples: >>> predictions = [ ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample ... ] >>> references = [ ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references) ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric(\"bleu\") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results[\"bleu\"]) 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def a ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py'] , reference_urls=[ 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def a ( self , snake_case__ , snake_case__ , snake_case__=4 , snake_case__=False ): '''simple docstring''' _lowerCAmelCase : Any = compute_bleu( reference_corpus=snake_case__ , translation_corpus=snake_case__ , max_order=snake_case__ , smooth=snake_case__ ) (_lowerCAmelCase) : int = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "yolos" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=[512, 864] , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=100 , snake_case__=True , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Tuple = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : int = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Union[str, Any] = qkv_bias _lowerCAmelCase : Union[str, Any] = num_detection_tokens _lowerCAmelCase : List[str] = use_mid_position_embeddings _lowerCAmelCase : Dict = auxiliary_loss # Hungarian matcher _lowerCAmelCase : int = class_cost _lowerCAmelCase : List[str] = bbox_cost _lowerCAmelCase : List[Any] = giou_cost # Loss coefficients _lowerCAmelCase : Union[str, Any] = bbox_loss_coefficient _lowerCAmelCase : Union[str, Any] = giou_loss_coefficient _lowerCAmelCase : Optional[int] = eos_coefficient class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a ( self ): '''simple docstring''' return 1E-4 @property def a ( self ): '''simple docstring''' return 12
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "linear" __magic_name__ = "cosine" __magic_name__ = "cosine_with_restarts" __magic_name__ = "polynomial" __magic_name__ = "constant" __magic_name__ = "constant_with_warmup" __magic_name__ = "piecewise_constant" def lowercase (_A , _A = -1 ): """simple docstring""" return LambdaLR(_A , lambda _A : 1 , last_epoch=_A ) def lowercase (_A , _A , _A = -1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1.0 , _A ) ) return 1.0 return LambdaLR(_A , _A , last_epoch=_A ) def lowercase (_A , _A , _A = -1 ): """simple docstring""" _lowerCAmelCase : Tuple = {} _lowerCAmelCase : List[Any] = step_rules.split(',' ) for rule_str in rule_list[:-1]: _lowerCAmelCase : int = rule_str.split(':' ) _lowerCAmelCase : int = int(_A ) _lowerCAmelCase : str = float(_A ) _lowerCAmelCase : Optional[Any] = value _lowerCAmelCase : List[Any] = float(rule_list[-1] ) def create_rules_function(_A , _A ): def rule_func(_A ) -> float: _lowerCAmelCase : List[Any] = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(_A ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func _lowerCAmelCase : Dict = create_rules_function(_A , _A ) return LambdaLR(_A , _A , last_epoch=_A ) def lowercase (_A , _A , _A , _A=-1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(_A , _A , _A ) def lowercase (_A , _A , _A , _A = 0.5 , _A = -1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) _lowerCAmelCase : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_A ) * 2.0 * progress )) ) return LambdaLR(_A , _A , _A ) def lowercase (_A , _A , _A , _A = 1 , _A = -1 ): """simple docstring""" def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) _lowerCAmelCase : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_A ) * progress) % 1.0) )) ) return LambdaLR(_A , _A , _A ) def lowercase (_A , _A , _A , _A=1E-7 , _A=1.0 , _A=-1 ): """simple docstring""" _lowerCAmelCase : Optional[int] = optimizer.defaults['lr'] if not (lr_init > lr_end): raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' ) def lr_lambda(_A ): if current_step < num_warmup_steps: return float(_A ) / float(max(1 , _A ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: _lowerCAmelCase : List[str] = lr_init - lr_end _lowerCAmelCase : Optional[int] = num_training_steps - num_warmup_steps _lowerCAmelCase : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps _lowerCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(_A , _A , _A ) lowerCAmelCase : List[str] = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def lowercase (_A , _A , _A = None , _A = None , _A = None , _A = 1 , _A = 1.0 , _A = -1 , ): """simple docstring""" _lowerCAmelCase : str = SchedulerType(_A ) _lowerCAmelCase : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(_A , last_epoch=_A ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(_A , step_rules=_A , last_epoch=_A ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(_A , num_warmup_steps=_A , last_epoch=_A ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , num_cycles=_A , last_epoch=_A , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , power=_A , last_epoch=_A , ) return schedule_func( _A , num_warmup_steps=_A , num_training_steps=_A , last_epoch=_A )
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""", """roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "roberta" def __init__( self , snake_case__=5_0265 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : int = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Optional[int] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = max_position_embeddings _lowerCAmelCase : str = type_vocab_size _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Optional[int] = position_embedding_type _lowerCAmelCase : Optional[Any] = use_cache _lowerCAmelCase : Dict = classifier_dropout class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def a ( self ): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = LEDTokenizer __magic_name__ = LEDTokenizerFast __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCAmelCase : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase : str = {'unk_token': '<unk>'} _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def a ( self ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def a ( self ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase : Optional[Any] = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Dict = tokenizer(snake_case__ , max_length=len(snake_case__ ) , padding=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Dict = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) self.assertIn('input_ids' , snake_case__ ) self.assertIn('attention_mask' , snake_case__ ) self.assertNotIn('labels' , snake_case__ ) self.assertNotIn('decoder_attention_mask' , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = tokenizer(text_target=snake_case__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : List[Any] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['A long paragraph for summarization.'] _lowerCAmelCase : str = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = tokenizer(snake_case__ , return_tensors='pt' ) _lowerCAmelCase : List[Any] = tokenizer(text_target=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : str = inputs['input_ids'] _lowerCAmelCase : int = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def a ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = ['Summary of the text.', 'Another summary.'] _lowerCAmelCase : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowerCAmelCase : List[Any] = tokenizer(snake_case__ , padding=snake_case__ ) _lowerCAmelCase : Tuple = [[0] * len(snake_case__ ) for x in encoded_output['input_ids']] _lowerCAmelCase : Optional[Any] = tokenizer.pad(snake_case__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , snake_case__ ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = 'A, <mask> AllenNLP sentence.' _lowerCAmelCase : Union[str, Any] = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) _lowerCAmelCase : Dict = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' import mpmath # for roots of unity import numpy as np class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__=None , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Optional[int] = list(poly_a or [0] )[:] _lowerCAmelCase : Union[str, Any] = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _lowerCAmelCase : int = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _lowerCAmelCase : Dict = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _lowerCAmelCase : Dict = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _lowerCAmelCase : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _lowerCAmelCase : Union[str, Any] = self.__multiply() def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(snake_case__ ) <= 1: return dft[0] # _lowerCAmelCase : Union[str, Any] = self.c_max_length // 2 while next_ncol > 0: _lowerCAmelCase : List[str] = [[] for i in range(snake_case__ )] _lowerCAmelCase : str = self.root**next_ncol # First half of next step _lowerCAmelCase : str = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(snake_case__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _lowerCAmelCase : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(snake_case__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _lowerCAmelCase : Optional[int] = new_dft _lowerCAmelCase : Dict = next_ncol // 2 return dft[0] def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.__dft('A' ) _lowerCAmelCase : int = self.__dft('B' ) _lowerCAmelCase : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _lowerCAmelCase : List[Any] = 2 while next_ncol <= self.c_max_length: _lowerCAmelCase : Optional[int] = [[] for i in range(snake_case__ )] _lowerCAmelCase : List[Any] = self.root ** (next_ncol // 2) _lowerCAmelCase : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _lowerCAmelCase : Tuple = new_inverse_c next_ncol *= 2 # Unpack _lowerCAmelCase : Dict = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _lowerCAmelCase : Optional[int] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _lowerCAmelCase : int = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product ) ) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if len(_A ) < 2: return collection def circle_sort_util(_A , _A , _A ) -> bool: _lowerCAmelCase : Optional[Any] = False if low == high: return swapped _lowerCAmelCase : Optional[int] = low _lowerCAmelCase : Dict = high while left < right: if collection[left] > collection[right]: _lowerCAmelCase : Optional[int] = ( collection[right], collection[left], ) _lowerCAmelCase : Tuple = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowerCAmelCase : Dict = ( collection[right + 1], collection[left], ) _lowerCAmelCase : int = True _lowerCAmelCase : List[Any] = low + int((high - low) / 2 ) _lowerCAmelCase : Any = circle_sort_util(_A , _A , _A ) _lowerCAmelCase : Optional[Any] = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap _lowerCAmelCase : Any = True while is_not_sorted is True: _lowerCAmelCase : Dict = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": lowerCAmelCase : List[str] = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase : Union[str, Any] = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = { """speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mctct" def __init__( self , snake_case__=8065 , snake_case__=1536 , snake_case__=36 , snake_case__=6144 , snake_case__=4 , snake_case__=384 , snake_case__=920 , snake_case__=1E-5 , snake_case__=0.3 , snake_case__="relu" , snake_case__=0.02 , snake_case__=0.3 , snake_case__=0.3 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=1 , snake_case__=0.3 , snake_case__=1 , snake_case__=(7,) , snake_case__=(3,) , snake_case__=80 , snake_case__=1 , snake_case__=None , snake_case__="sum" , snake_case__=False , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Any = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Dict = attention_head_dim _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : Optional[Any] = layerdrop _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = pad_token_id _lowerCAmelCase : Optional[Any] = bos_token_id _lowerCAmelCase : Dict = eos_token_id _lowerCAmelCase : Optional[int] = conv_glu_dim _lowerCAmelCase : List[str] = conv_dropout _lowerCAmelCase : Tuple = num_conv_layers _lowerCAmelCase : Optional[Any] = input_feat_per_channel _lowerCAmelCase : Union[str, Any] = input_channels _lowerCAmelCase : Optional[int] = conv_channels _lowerCAmelCase : Optional[int] = ctc_loss_reduction _lowerCAmelCase : Any = ctc_zero_infinity # prevents config testing fail with exporting to json _lowerCAmelCase : Union[str, Any] = list(snake_case__ ) _lowerCAmelCase : Dict = list(snake_case__ ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' )
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = params _lowerCAmelCase : Dict = np.array(snake_case__ ) _lowerCAmelCase : Optional[Any] = np.array([len(snake_case__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , snake_case__ ): '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ): '''simple docstring''' return len(self.lengths ) def a ( self ): '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.params.max_model_input_size _lowerCAmelCase : int = self.lengths > max_len logger.info(F'Splitting {sum(snake_case__ )} too long sequences.' ) def divide_chunks(snake_case__ , snake_case__ ): return [l[i : i + n] for i in range(0 , len(snake_case__ ) , snake_case__ )] _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : str = [] if self.params.mlm: _lowerCAmelCase : Union[str, Any] = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: _lowerCAmelCase : str = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _lowerCAmelCase : str = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _lowerCAmelCase : Optional[Any] = np.insert(snake_case__ , 0 , snake_case__ ) if sub_s[-1] != sep_id: _lowerCAmelCase : str = np.insert(snake_case__ , len(snake_case__ ) , snake_case__ ) assert len(snake_case__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(snake_case__ ) new_tok_ids.extend(snake_case__ ) new_lengths.extend([len(snake_case__ ) for l in sub_seqs] ) _lowerCAmelCase : int = np.array(snake_case__ ) _lowerCAmelCase : Any = np.array(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = len(self ) _lowerCAmelCase : List[str] = self.lengths > 11 _lowerCAmelCase : Optional[Any] = self.token_ids[indices] _lowerCAmelCase : List[Any] = self.lengths[indices] _lowerCAmelCase : Optional[int] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def a ( self ): '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: _lowerCAmelCase : Any = self.params.special_tok_ids['unk_token'] _lowerCAmelCase : Tuple = len(self ) _lowerCAmelCase : Any = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _lowerCAmelCase : Tuple = (unk_occs / self.lengths) < 0.5 _lowerCAmelCase : Union[str, Any] = self.token_ids[indices] _lowerCAmelCase : Tuple = self.lengths[indices] _lowerCAmelCase : Union[str, Any] = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def a ( self ): '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [t[0] for t in batch] _lowerCAmelCase : str = [t[1] for t in batch] assert len(snake_case__ ) == len(snake_case__ ) # Max for paddings _lowerCAmelCase : Dict = max(snake_case__ ) # Pad token ids if self.params.mlm: _lowerCAmelCase : Any = self.params.special_tok_ids['pad_token'] else: _lowerCAmelCase : Any = self.params.special_tok_ids['unk_token'] _lowerCAmelCase : Tuple = [list(t.astype(snake_case__ ) ) + [pad_idx] * (max_seq_len_ - len(snake_case__ )) for t in token_ids] assert len(tk_ ) == len(snake_case__ ) assert all(len(snake_case__ ) == max_seq_len_ for t in tk_ ) _lowerCAmelCase : Optional[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) _lowerCAmelCase : List[str] = torch.tensor(snake_case__ ) # (bs) return tk_t, lg_t
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 5_00_03 lowerCAmelCase : Optional[Any] = 5_00_02 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = PLBartTokenizer __magic_name__ = None __magic_name__ = False def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : Optional[int] = PLBartTokenizer(snake_case__ , language_codes='base' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = PLBartTokenizer(snake_case__ , language_codes='base' , keep_accents=snake_case__ ) _lowerCAmelCase : Dict = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCAmelCase : str = tokenizer.vocab_size _lowerCAmelCase : Tuple = [tokenizer.convert_ids_to_tokens(snake_case__ ) for x in range(end - 4 , snake_case__ )] self.assertListEqual(snake_case__ , ['__java__', '__python__', '__en_XX__', '<mask>'] ) _lowerCAmelCase : Optional[int] = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCAmelCase : List[Any] = tokenizer(snake_case__ ).input_ids self.assertEqual( tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) , snake_case__ , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PLBartTokenizer(snake_case__ , language_codes='multi' , keep_accents=snake_case__ ) _lowerCAmelCase : List[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) _lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) _lowerCAmelCase : Any = tokenizer.vocab_size _lowerCAmelCase : int = [tokenizer.convert_ids_to_tokens(snake_case__ ) for x in range(end - 7 , snake_case__ )] self.assertListEqual( snake_case__ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] ) _lowerCAmelCase : List[str] = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go' _lowerCAmelCase : str = tokenizer(snake_case__ ).input_ids self.assertEqual( tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) , snake_case__ , ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "uclanlp/plbart-python-en_XX" __magic_name__ = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] __magic_name__ = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] __magic_name__ = [ 1_3_4, 5_4_5_2, 3_3_4_6_0, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 9_8_8, 2_0, 3_3_4_5_6, 1_9, 3_3_4_5_6, 7_7_1, 3_9, 4_2_5_8, 8_8_9, 3_3_1_8, 3_3_4_4_1, 3_3_4_6_3, 3_3_4_6_5, 3_3_4_6_3, 3_3_4_4_9, 2_4_7_1, 2, PYTHON_CODE, ] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : PLBartTokenizer = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' ) _lowerCAmelCase : Optional[int] = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2] _lowerCAmelCase : Optional[Any] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20] self.assertIsInstance(src_text[0] , snake_case__ ) _lowerCAmelCase : int = 10 _lowerCAmelCase : str = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , snake_case__ ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : str = PLBartTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Union[str, Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , snake_case__ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : List[str] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) _lowerCAmelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : int = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : Optional[Any] = targets['input_ids'] _lowerCAmelCase : Optional[int] = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' ) self.assertEqual( nested_simplify(snake_case__ ) , { # A, test, EOS, en_XX 'input_ids': [[150, 242, 2, 5_0003]], 'attention_mask': [[1, 1, 1, 1]], # java 'forced_bos_token_id': 5_0001, } , )
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' from PIL import Image def lowercase (_A , _A ): """simple docstring""" def brightness(_A ) -> float: return 1_2_8 + level + (c - 1_2_8) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowerCAmelCase : Optional[int] = change_brightness(img, 1_00) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = set() # edges = list of graph's edges _lowerCAmelCase : int = get_edges(_A ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: _lowerCAmelCase : Optional[Any] = edges.pop() chosen_vertices.add(_A ) chosen_vertices.add(_A ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_A ) return chosen_vertices def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[Any] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = CTRLTokenizer __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : Optional[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] _lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : List[str] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] _lowerCAmelCase : Optional[int] = {'unk_token': '<unk>'} _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = 'adapt react readapt apt' _lowerCAmelCase : Tuple = 'adapt react readapt apt' return input_text, output_text def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : List[str] = 'adapt react readapt apt' _lowerCAmelCase : Tuple = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) _lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=2 , ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : List[Any] = batch_size _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : List[Any] = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : int = is_training _lowerCAmelCase : str = use_labels _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : Tuple = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[int] = hidden_act _lowerCAmelCase : str = hidden_dropout_prob _lowerCAmelCase : List[Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = type_sequence_label_size _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : List[Any] = scope _lowerCAmelCase : Union[str, Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) _lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 _lowerCAmelCase : Optional[int] = num_patches + 2 def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def a ( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = DeiTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Any = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = DeiTForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Optional[int] = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[int] = DeiTForMaskedImageModeling(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.type_sequence_label_size _lowerCAmelCase : List[str] = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Any = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : str = 1 _lowerCAmelCase : Any = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[int] = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : List[str] = config_and_inputs _lowerCAmelCase : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __magic_name__ = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = DeiTModelTester(self ) _lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class(snake_case__ ) _lowerCAmelCase : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Tuple = [*signature.parameters.keys()] _lowerCAmelCase : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def a ( self , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' _lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def a ( self ): '''simple docstring''' if not self.model_tester.is_training: return _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue _lowerCAmelCase : Tuple = model_class(snake_case__ ) model.to(snake_case__ ) model.train() _lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) _lowerCAmelCase : str = model(**snake_case__ ).loss loss.backward() def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCAmelCase : str = False _lowerCAmelCase : str = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue _lowerCAmelCase : Tuple = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() _lowerCAmelCase : Any = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) _lowerCAmelCase : Optional[int] = model(**snake_case__ ).loss loss.backward() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : int = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ): _lowerCAmelCase : Optional[Any] = problem_type['title'] _lowerCAmelCase : List[str] = problem_type['num_labels'] _lowerCAmelCase : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() _lowerCAmelCase : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: _lowerCAmelCase : Optional[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) _lowerCAmelCase : Union[str, Any] = inputs['labels'].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: _lowerCAmelCase : Any = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'Something is going wrong in the regression problem: intercepted {w.message}' ) loss.backward() @slow def a ( self ): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : str = DeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( snake_case__ ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : List[Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : int = model(**snake_case__ ) # verify the logits _lowerCAmelCase : str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) _lowerCAmelCase : Optional[int] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) _lowerCAmelCase : Any = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Tuple = inputs.pixel_values.to(snake_case__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model(snake_case__ )
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : int = tempfile.mkdtemp() _lowerCAmelCase : Dict = BlipImageProcessor() _lowerCAmelCase : Any = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowerCAmelCase : str = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) _lowerCAmelCase : Tuple = InstructBlipProcessor(snake_case__ , snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).qformer_tokenizer def a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _lowerCAmelCase : Optional[Any] = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[str] = self.get_qformer_tokenizer() _lowerCAmelCase : Tuple = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : List[str] = image_processor(snake_case__ , return_tensors='np' ) _lowerCAmelCase : Union[str, Any] = processor(images=snake_case__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = self.get_qformer_tokenizer() _lowerCAmelCase : List[str] = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCAmelCase : List[str] = 'lower newer' _lowerCAmelCase : Tuple = processor(text=snake_case__ ) _lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) _lowerCAmelCase : Dict = qformer_tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_qformer_tokenizer() _lowerCAmelCase : Optional[Any] = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCAmelCase : List[Any] = 'lower newer' _lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs() _lowerCAmelCase : List[Any] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Tuple = self.get_qformer_tokenizer() _lowerCAmelCase : str = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Tuple = processor.batch_decode(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = self.get_qformer_tokenizer() _lowerCAmelCase : List[str] = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCAmelCase : Optional[int] = 'lower newer' _lowerCAmelCase : str = self.prepare_image_inputs() _lowerCAmelCase : Optional[int] = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=0.9 , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 30} _lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {'height': 30, 'width': 30} _lowerCAmelCase : Dict = parent _lowerCAmelCase : str = batch_size _lowerCAmelCase : Tuple = num_channels _lowerCAmelCase : Dict = min_resolution _lowerCAmelCase : Dict = max_resolution _lowerCAmelCase : str = do_resize_and_center_crop _lowerCAmelCase : Dict = size _lowerCAmelCase : Optional[Any] = crop_pct _lowerCAmelCase : Optional[int] = crop_size _lowerCAmelCase : Optional[int] = do_normalize _lowerCAmelCase : str = image_mean _lowerCAmelCase : int = image_std def a ( self ): '''simple docstring''' return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = PoolFormerImageProcessor if is_vision_available() else None def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = PoolFormerImageProcessingTester(self ) @property def a ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'do_resize_and_center_crop' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) self.assertTrue(hasattr(snake_case__ , 'crop_pct' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 30} ) self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} ) _lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input _lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase : Optional[Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input _lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase : List[Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase : str = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase (): """simple docstring""" _lowerCAmelCase : List[Any] = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=_A , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=_A , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=_A ) return parser.parse_args() def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = parse_args() # Import training_script as a module. _lowerCAmelCase : List[str] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCAmelCase : int = script_fpath.stem _lowerCAmelCase : List[Any] = importlib.import_module(_A ) # Patch sys.argv _lowerCAmelCase : Optional[int] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = len(_A ) _lowerCAmelCase : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _lowerCAmelCase : Dict = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _lowerCAmelCase : int = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _lowerCAmelCase : List[Any] = subset[i - 1][j] if arr[i - 1] <= j: _lowerCAmelCase : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def lowercase (_A ): """simple docstring""" if hor == 1_2_8: _lowerCAmelCase : Dict = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _lowerCAmelCase : str = (3_2, 1_2_8, 2_5_6) _lowerCAmelCase : str = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 3_2: _lowerCAmelCase : Union[str, Any] = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') _lowerCAmelCase : Tuple = (3_2, 6_4, 1_2_8, 2_5_6) _lowerCAmelCase : Union[str, Any] = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') _lowerCAmelCase : Optional[int] = torch.load(f'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) _lowerCAmelCase : Optional[int] = model.state_dict() _lowerCAmelCase : Any = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 1_4, 'out_channels': 1_4, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 6_5_5_3_6, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } _lowerCAmelCase : List[Any] = UNetaDModel(**_A ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) _lowerCAmelCase : List[str] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase : str = state_dict.pop(_A ) hf_value_function.load_state_dict(_A ) torch.save(hf_value_function.state_dict() , f'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(f'hub/hopper-medium-v2/unet/hor{hor}/config.json' , 'w' ) as f: json.dump(_A , _A ) def lowercase (): """simple docstring""" _lowerCAmelCase : Dict = { 'in_channels': 1_4, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (3_2, 6_4, 1_2_8, 2_5_6), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 6_5_5_3_6, 'out_channels': 1_4, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } _lowerCAmelCase : Optional[Any] = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) _lowerCAmelCase : str = model _lowerCAmelCase : Optional[int] = UNetaDModel(**_A ) print(f'length of state dict: {len(state_dict.keys() )}' ) print(f'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) _lowerCAmelCase : int = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _lowerCAmelCase : List[str] = state_dict.pop(_A ) hf_value_function.load_state_dict(_A ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(_A , _A ) if __name__ == "__main__": unet(32) # unet(128) value_function()
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Tuple = """Hello world! cécé herlolip""" def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Any = FairseqRobertaModel.from_pretrained(_A ) roberta.eval() # disable dropout _lowerCAmelCase : Tuple = roberta.model.encoder.sentence_encoder _lowerCAmelCase : List[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: _lowerCAmelCase : List[Any] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , _A ) _lowerCAmelCase : List[str] = XLMRobertaXLForSequenceClassification(_A ) if classification_head else XLMRobertaXLForMaskedLM(_A ) model.eval() # Now let's copy all the weights. # Embeddings _lowerCAmelCase : Optional[int] = roberta_sent_encoder.embed_tokens.weight _lowerCAmelCase : Optional[Any] = roberta_sent_encoder.embed_positions.weight _lowerCAmelCase : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowerCAmelCase : Dict = roberta_sent_encoder.layer_norm.weight _lowerCAmelCase : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowerCAmelCase : BertLayer = model.roberta.encoder.layer[i] _lowerCAmelCase : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] _lowerCAmelCase : RobertaAttention = layer.attention _lowerCAmelCase : int = roberta_layer.self_attn_layer_norm.weight _lowerCAmelCase : str = roberta_layer.self_attn_layer_norm.bias # self attention _lowerCAmelCase : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowerCAmelCase : Optional[Any] = roberta_layer.self_attn.q_proj.weight _lowerCAmelCase : Union[str, Any] = roberta_layer.self_attn.q_proj.bias _lowerCAmelCase : Optional[Any] = roberta_layer.self_attn.k_proj.weight _lowerCAmelCase : Dict = roberta_layer.self_attn.k_proj.bias _lowerCAmelCase : List[Any] = roberta_layer.self_attn.v_proj.weight _lowerCAmelCase : Optional[int] = roberta_layer.self_attn.v_proj.bias # self-attention output _lowerCAmelCase : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowerCAmelCase : Tuple = roberta_layer.self_attn.out_proj.weight _lowerCAmelCase : Dict = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowerCAmelCase : Dict = roberta_layer.final_layer_norm.weight _lowerCAmelCase : Union[str, Any] = roberta_layer.final_layer_norm.bias # intermediate _lowerCAmelCase : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase : List[Any] = roberta_layer.fca.weight _lowerCAmelCase : int = roberta_layer.fca.bias # output _lowerCAmelCase : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowerCAmelCase : Tuple = roberta_layer.fca.weight _lowerCAmelCase : Tuple = roberta_layer.fca.bias # end of layer if classification_head: _lowerCAmelCase : str = roberta.model.classification_heads['mnli'].dense.weight _lowerCAmelCase : Optional[int] = roberta.model.classification_heads['mnli'].dense.bias _lowerCAmelCase : Optional[Any] = roberta.model.classification_heads['mnli'].out_proj.weight _lowerCAmelCase : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head _lowerCAmelCase : List[Any] = roberta.model.encoder.lm_head.dense.weight _lowerCAmelCase : Dict = roberta.model.encoder.lm_head.dense.bias _lowerCAmelCase : Any = roberta.model.encoder.lm_head.layer_norm.weight _lowerCAmelCase : Dict = roberta.model.encoder.lm_head.layer_norm.bias _lowerCAmelCase : int = roberta.model.encoder.lm_head.weight _lowerCAmelCase : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowerCAmelCase : torch.Tensor = roberta.encode(_A ).unsqueeze(0 ) # batch of size 1 _lowerCAmelCase : int = model(_A )[0] if classification_head: _lowerCAmelCase : List[Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(_A ) ) else: _lowerCAmelCase : Dict = roberta.model(_A )[0] print(our_output.shape , their_output.shape ) _lowerCAmelCase : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7 _lowerCAmelCase : List[Any] = torch.allclose(_A , _A , atol=1E-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_A ).mkdir(parents=_A , exist_ok=_A ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCAmelCase : Optional[Any] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case__ , text_encoder=snake_case__ , tokenizer=snake_case__ , unet=snake_case__ , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , ) def a ( self , snake_case__ = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _lowerCAmelCase : Optional[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case__ ) def a ( self ): '''simple docstring''' self.enable_attention_slicing(snake_case__ ) @torch.no_grad() def __call__( self , snake_case__ , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 50 , snake_case__ = 7.5 , snake_case__ = None , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = None , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , snake_case__ = None , snake_case__ = 1 , snake_case__ = None , **snake_case__ , ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Tuple = 1 elif isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : List[str] = len(snake_case__ ) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(snake_case__ )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case__ , snake_case__ ) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(snake_case__ )}.' ) # get prompt text embeddings _lowerCAmelCase : Union[str, Any] = self.tokenizer( snake_case__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowerCAmelCase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowerCAmelCase : Union[str, Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}' ) _lowerCAmelCase : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _lowerCAmelCase : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase : Any = text_embeddings.shape _lowerCAmelCase : int = text_embeddings.repeat(1 , snake_case__ , 1 ) _lowerCAmelCase : Union[str, Any] = text_embeddings.view(bs_embed * num_images_per_prompt , snake_case__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _lowerCAmelCase : Tuple = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _lowerCAmelCase : List[str] if negative_prompt is None: _lowerCAmelCase : Dict = [''] elif type(snake_case__ ) is not type(snake_case__ ): raise TypeError( F'`negative_prompt` should be the same type to `prompt`, but got {type(snake_case__ )} !=' F' {type(snake_case__ )}.' ) elif isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : List[str] = [negative_prompt] elif batch_size != len(snake_case__ ): raise ValueError( F'`negative_prompt`: {negative_prompt} has batch size {len(snake_case__ )}, but `prompt`:' F' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' ' the batch size of `prompt`.' ) else: _lowerCAmelCase : Optional[Any] = negative_prompt _lowerCAmelCase : Tuple = text_input_ids.shape[-1] _lowerCAmelCase : Optional[Any] = self.tokenizer( snake_case__ , padding='max_length' , max_length=snake_case__ , truncation=snake_case__ , return_tensors='pt' , ) _lowerCAmelCase : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowerCAmelCase : Dict = uncond_embeddings.shape[1] _lowerCAmelCase : Any = uncond_embeddings.repeat(snake_case__ , snake_case__ , 1 ) _lowerCAmelCase : List[Any] = uncond_embeddings.view(batch_size * num_images_per_prompt , snake_case__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowerCAmelCase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _lowerCAmelCase : Tuple = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _lowerCAmelCase : Any = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _lowerCAmelCase : Optional[int] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _lowerCAmelCase : Tuple = torch.randn( snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to(self.device ) _lowerCAmelCase : Optional[Any] = torch.randn(snake_case__ , generator=snake_case__ , device='cpu' , dtype=snake_case__ ).to( self.device ) else: _lowerCAmelCase : List[str] = torch.randn( snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) _lowerCAmelCase : List[str] = torch.randn(snake_case__ , generator=snake_case__ , device=self.device , dtype=snake_case__ ) else: if latents_reference.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) _lowerCAmelCase : str = latents_reference.to(self.device ) _lowerCAmelCase : Dict = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _lowerCAmelCase : Dict = (latents_shape[3] - latents_shape_reference[3]) // 2 _lowerCAmelCase : Tuple = (latents_shape[2] - latents_shape_reference[2]) // 2 _lowerCAmelCase : Union[str, Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _lowerCAmelCase : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _lowerCAmelCase : int = 0 if dx < 0 else dx _lowerCAmelCase : str = 0 if dy < 0 else dy _lowerCAmelCase : Tuple = max(-dx , 0 ) _lowerCAmelCase : str = max(-dy , 0 ) # import pdb # pdb.set_trace() _lowerCAmelCase : Union[str, Any] = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(snake_case__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _lowerCAmelCase : Dict = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _lowerCAmelCase : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _lowerCAmelCase : Optional[int] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _lowerCAmelCase : Optional[int] = {} if accepts_eta: _lowerCAmelCase : Optional[Any] = eta for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance _lowerCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _lowerCAmelCase : List[str] = self.scheduler.scale_model_input(snake_case__ , snake_case__ ) # predict the noise residual _lowerCAmelCase : Union[str, Any] = self.unet(snake_case__ , snake_case__ , encoder_hidden_states=snake_case__ ).sample # perform guidance if do_classifier_free_guidance: _lowerCAmelCase : List[Any] = noise_pred.chunk(2 ) _lowerCAmelCase : Any = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _lowerCAmelCase : List[Any] = self.scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case__ , snake_case__ , snake_case__ ) _lowerCAmelCase : Any = 1 / 0.1_8215 * latents _lowerCAmelCase : Optional[int] = self.vae.decode(snake_case__ ).sample _lowerCAmelCase : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _lowerCAmelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _lowerCAmelCase : Union[str, Any] = self.feature_extractor(self.numpy_to_pil(snake_case__ ) , return_tensors='pt' ).to( self.device ) _lowerCAmelCase : Dict = self.safety_checker( images=snake_case__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _lowerCAmelCase : Dict = None if output_type == "pil": _lowerCAmelCase : str = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=snake_case__ , nsfw_content_detected=snake_case__ )
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase : Tuple = """src/diffusers""" lowerCAmelCase : Dict = """.""" # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase : Union[str, Any] = importlib.util.spec_from_file_location( """diffusers""", os.path.join(DIFFUSERS_PATH, """__init__.py"""), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase : List[Any] = spec.loader.load_module() def lowercase (_A , _A ): """simple docstring""" return line.startswith(_A ) or len(_A ) <= 1 or re.search(r'^\s*\)(\s*->.*:|:)\s*$' , _A ) is not None def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = object_name.split('.' ) _lowerCAmelCase : Optional[Any] = 0 # First let's find the module where our object lives. _lowerCAmelCase : Dict = parts[i] while i < len(_A ) and not os.path.isfile(os.path.join(_A , f'{module}.py' ) ): i += 1 if i < len(_A ): _lowerCAmelCase : Dict = os.path.join(_A , parts[i] ) if i >= len(_A ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_A , f'{module}.py' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : List[Any] = f.readlines() # Now let's find the class / func in the code! _lowerCAmelCase : Dict = '' _lowerCAmelCase : Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(_A ) and re.search(rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_A ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). _lowerCAmelCase : Tuple = line_index while line_index < len(_A ) and _should_continue(lines[line_index] , _A ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase : Dict = lines[start_index:line_index] return "".join(_A ) lowerCAmelCase : Union[str, Any] = re.compile(r"""^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)""") lowerCAmelCase : Optional[int] = re.compile(r"""^\s*(\S+)->(\S+)(\s+.*|$)""") lowerCAmelCase : str = re.compile(r"""<FILL\s+[^>]*>""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = code.split('\n' ) _lowerCAmelCase : Optional[Any] = 0 while idx < len(_A ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_A ): return re.search(r'^(\s*)\S' , lines[idx] ).groups()[0] return "" def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = len(get_indent(_A ) ) > 0 if has_indent: _lowerCAmelCase : int = f'class Bla:\n{code}' _lowerCAmelCase : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=_A ) _lowerCAmelCase : List[str] = black.format_str(_A , mode=_A ) _lowerCAmelCase : List[str] = style_docstrings_in_code(_A ) return result[len('class Bla:\n' ) :] if has_indent else result def lowercase (_A , _A=False ): """simple docstring""" with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : str = f.readlines() _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_A ): _lowerCAmelCase : List[str] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. _lowerCAmelCase : Optional[Any] = search.groups() _lowerCAmelCase : Optional[int] = find_code_in_diffusers(_A ) _lowerCAmelCase : List[Any] = get_indent(_A ) _lowerCAmelCase : str = line_index + 1 if indent == theoretical_indent else line_index + 2 _lowerCAmelCase : Union[str, Any] = theoretical_indent _lowerCAmelCase : Dict = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. _lowerCAmelCase : Optional[int] = True while line_index < len(_A ) and should_continue: line_index += 1 if line_index >= len(_A ): break _lowerCAmelCase : Any = lines[line_index] _lowerCAmelCase : Optional[int] = _should_continue(_A , _A ) and re.search(f'^{indent}# End copy' , _A ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 _lowerCAmelCase : Union[str, Any] = lines[start_index:line_index] _lowerCAmelCase : Optional[int] = ''.join(_A ) # Remove any nested `Copied from` comments to avoid circular copies _lowerCAmelCase : List[Any] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(_A ) is None] _lowerCAmelCase : List[Any] = '\n'.join(_A ) # Before comparing, use the `replace_pattern` on the original code. if len(_A ) > 0: _lowerCAmelCase : List[Any] = replace_pattern.replace('with' , '' ).split(',' ) _lowerCAmelCase : Union[str, Any] = [_re_replace_pattern.search(_A ) for p in patterns] for pattern in patterns: if pattern is None: continue _lowerCAmelCase : Tuple = pattern.groups() _lowerCAmelCase : Optional[Any] = re.sub(_A , _A , _A ) if option.strip() == "all-casing": _lowerCAmelCase : Any = re.sub(obja.lower() , obja.lower() , _A ) _lowerCAmelCase : Optional[int] = re.sub(obja.upper() , obja.upper() , _A ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line _lowerCAmelCase : Any = blackify(lines[start_index - 1] + theoretical_code ) _lowerCAmelCase : Optional[int] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: _lowerCAmelCase : Optional[int] = lines[:start_index] + [theoretical_code] + lines[line_index:] _lowerCAmelCase : str = start_index + 1 if overwrite and len(_A ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(_A , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_A ) return diffs def lowercase (_A = False ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = glob.glob(os.path.join(_A , '**/*.py' ) , recursive=_A ) _lowerCAmelCase : Union[str, Any] = [] for filename in all_files: _lowerCAmelCase : int = is_copy_consistent(_A , _A ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_A ) > 0: _lowerCAmelCase : Any = '\n'.join(_A ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : Tuple = parser.parse_args() check_copies(args.fix_and_overwrite)
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' import requests lowerCAmelCase : List[str] = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Dict = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : str = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase : Tuple = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase : Dict = {"""facebook/blenderbot-3B""": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) _lowerCAmelCase : Union[str, Any] = bs[:] _lowerCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 _lowerCAmelCase : str = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = set() _lowerCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowerCAmelCase : Union[str, Any] = char return pairs class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__ , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token _lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token _lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token _lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token _lowerCAmelCase : Any = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , ) with open(snake_case__ , encoding='utf-8' ) as vocab_handle: _lowerCAmelCase : str = json.load(snake_case__ ) _lowerCAmelCase : List[Any] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Dict = errors # how to handle errors in decoding _lowerCAmelCase : int = bytes_to_unicode() _lowerCAmelCase : Tuple = {v: k for k, v in self.byte_encoder.items()} with open(snake_case__ , encoding='utf-8' ) as merges_handle: _lowerCAmelCase : str = merges_handle.read().split('\n' )[1:-1] _lowerCAmelCase : str = [tuple(merge.split() ) for merge in bpe_merges] _lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowerCAmelCase : Optional[int] = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def a ( self ): '''simple docstring''' return len(self.encoder ) def a ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def a ( self , snake_case__ ): '''simple docstring''' if token in self.cache: return self.cache[token] _lowerCAmelCase : Optional[Any] = tuple(snake_case__ ) _lowerCAmelCase : Tuple = get_pairs(snake_case__ ) if not pairs: return token while True: _lowerCAmelCase : List[str] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowerCAmelCase : Optional[Any] = bigram _lowerCAmelCase : Tuple = [] _lowerCAmelCase : str = 0 while i < len(snake_case__ ): try: _lowerCAmelCase : List[Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowerCAmelCase : str = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowerCAmelCase : List[str] = tuple(snake_case__ ) _lowerCAmelCase : int = new_word if len(snake_case__ ) == 1: break else: _lowerCAmelCase : Tuple = get_pairs(snake_case__ ) _lowerCAmelCase : Union[str, Any] = ' '.join(snake_case__ ) _lowerCAmelCase : Union[str, Any] = word return word def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = [] for token in re.findall(self.pat , snake_case__ ): _lowerCAmelCase : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case__ ).split(' ' ) ) return bpe_tokens def a ( self , snake_case__ ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def a ( self , snake_case__ ): '''simple docstring''' return self.decoder.get(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = ''.join(snake_case__ ) _lowerCAmelCase : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : Any = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : str = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case__ , ensure_ascii=snake_case__ ) + '\n' ) _lowerCAmelCase : int = 0 with open(snake_case__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!' ) _lowerCAmelCase : Tuple = token_index writer.write(' '.join(snake_case__ ) + '\n' ) index += 1 return vocab_file, merge_file def a ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[str] = [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__=False , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case__ ) > 0 and not text[0].isspace()): _lowerCAmelCase : Tuple = ' ' + text return (text, kwargs) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(snake_case__ ) _lowerCAmelCase : List[Any] = ' '.join(snake_case__ ) _lowerCAmelCase : str = self.encode(snake_case__ ) if len(snake_case__ ) > self.model_max_length: _lowerCAmelCase : Any = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase : Tuple = """http://www.mocksite.com/file1.txt""" lowerCAmelCase : Any = """\"text\": [\"foo\", \"foo\"]""" lowerCAmelCase : Tuple = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class UpperCamelCase__ : """simple docstring""" __magic_name__ = 2_0_0 __magic_name__ = {"Content-Length": "100"} __magic_name__ = {} def a ( self , **snake_case__ ): '''simple docstring''' return [bytes(snake_case__ , 'utf-8' )] def lowercase (*_A , **_A ): """simple docstring""" return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def lowercase (_A , _A , _A ): """simple docstring""" import requests monkeypatch.setattr(_A , 'request' , _A ) _lowerCAmelCase : Optional[Any] = URL if issubclass(_A , _A ): _lowerCAmelCase : List[str] = url elif issubclass(_A , _A ): _lowerCAmelCase : str = [url] elif issubclass(_A , _A ): _lowerCAmelCase : Tuple = {'train': url} _lowerCAmelCase : Tuple = 'dummy' _lowerCAmelCase : Optional[int] = 'downloads' _lowerCAmelCase : int = tmp_path _lowerCAmelCase : Dict = DownloadConfig( cache_dir=os.path.join(_A , _A ) , use_etag=_A , ) _lowerCAmelCase : str = DownloadManager(dataset_name=_A , download_config=_A ) _lowerCAmelCase : int = dl_manager.download(_A ) _lowerCAmelCase : Optional[int] = urls for downloaded_paths in [downloaded_paths]: if isinstance(_A , _A ): _lowerCAmelCase : Tuple = [downloaded_paths] _lowerCAmelCase : Optional[Any] = [urls] elif isinstance(_A , _A ): assert "train" in downloaded_paths.keys() _lowerCAmelCase : int = downloaded_paths.values() _lowerCAmelCase : Dict = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(_A , _A ): assert downloaded_path == dl_manager.downloaded_paths[input_url] _lowerCAmelCase : Union[str, Any] = Path(_A ) _lowerCAmelCase : Optional[int] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() _lowerCAmelCase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT _lowerCAmelCase : int = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() _lowerCAmelCase : List[str] = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = str(_A ) if issubclass(_A , _A ): _lowerCAmelCase : Any = filename elif issubclass(_A , _A ): _lowerCAmelCase : int = [filename] elif issubclass(_A , _A ): _lowerCAmelCase : int = {'train': filename} _lowerCAmelCase : Tuple = 'dummy' _lowerCAmelCase : int = xz_file.parent _lowerCAmelCase : List[str] = 'extracted' _lowerCAmelCase : List[str] = DownloadConfig( cache_dir=_A , use_etag=_A , ) _lowerCAmelCase : Optional[Any] = DownloadManager(dataset_name=_A , download_config=_A ) _lowerCAmelCase : Union[str, Any] = dl_manager.extract(_A ) _lowerCAmelCase : List[str] = paths for extracted_paths in [extracted_paths]: if isinstance(_A , _A ): _lowerCAmelCase : Tuple = [extracted_paths] _lowerCAmelCase : Optional[int] = [paths] elif isinstance(_A , _A ): assert "train" in extracted_paths.keys() _lowerCAmelCase : str = extracted_paths.values() _lowerCAmelCase : List[str] = paths.values() assert extracted_paths for extracted_path, input_path in zip(_A , _A ): assert extracted_path == dl_manager.extracted_paths[input_path] _lowerCAmelCase : Any = Path(_A ) _lowerCAmelCase : Any = extracted_path.parts assert parts[-1] == hash_url_to_filename(_A , etag=_A ) assert parts[-2] == extracted_subdir assert extracted_path.exists() _lowerCAmelCase : Any = extracted_path.read_text() _lowerCAmelCase : Union[str, Any] = text_file.read_text() assert extracted_file_content == expected_file_content def lowercase (_A , _A ): """simple docstring""" assert path.endswith('.jsonl' ) for num_items, line in enumerate(_A , start=1 ): _lowerCAmelCase : Any = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[str] = request.getfixturevalue(_A ) _lowerCAmelCase : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(_A ) , start=1 ): _test_jsonl(_A , _A ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = request.getfixturevalue(_A ) _lowerCAmelCase : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(_A ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(_A ) , start=1 ): _test_jsonl(_A , _A ) assert num_tar == 1 assert num_jsonl == 2 def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(_A ) , start=1 ): assert os.path.basename(_A ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' lowerCAmelCase : Dict = [ """DownloadConfig""", """DownloadManager""", """DownloadMode""", """StreamingDownloadManager""", ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : int = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase : List[str] = 5 lowerCAmelCase : Dict = 10 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = SpeechaTextTokenizer __magic_name__ = False __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[int] = sp.SentencePieceProcessor() spm_model.Load(snake_case__ ) _lowerCAmelCase : Optional[Any] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(snake_case__ ) )] _lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : Tuple = Path(self.tmpdirname ) save_json(snake_case__ , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(snake_case__ , save_dir / VOCAB_FILES_NAMES['spm_file'] ) _lowerCAmelCase : Optional[int] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = '<pad>' _lowerCAmelCase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(snake_case__ ) , 1001 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1001 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [289, 50, 14, 174, 386] , ) _lowerCAmelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Dict = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual(snake_case__ , [12, 25, 88, 59, 28, 23, 11, 4, 606, 351, 351, 351, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) _lowerCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : str = {'input_ids': [[3791, 797, 31, 11, 64, 797, 31, 2429, 433, 12, 1176, 12, 20, 786, 915, 142, 2413, 240, 37, 3238, 797, 31, 11, 35, 93, 915, 142, 2413, 240, 37, 5540, 567, 1276, 93, 37, 610, 40, 62, 455, 657, 1042, 123, 780, 177, 37, 309, 241, 1298, 514, 20, 292, 2737, 114, 2469, 241, 85, 64, 302, 548, 528, 423, 4, 509, 406, 423, 37, 601, 4, 777, 302, 548, 528, 423, 284, 4, 3388, 511, 459, 4, 3555, 40, 321, 302, 705, 4, 3388, 511, 583, 326, 5, 5, 5, 62, 3310, 560, 177, 2680, 217, 1508, 32, 31, 853, 418, 64, 583, 511, 1605, 62, 35, 93, 560, 177, 2680, 217, 1508, 1521, 64, 583, 511, 519, 62, 20, 1515, 764, 20, 149, 261, 5625, 7972, 20, 5540, 567, 1276, 93, 3925, 1675, 11, 15, 802, 7972, 576, 217, 1508, 11, 35, 93, 1253, 2441, 15, 289, 652, 31, 416, 321, 3842, 115, 40, 911, 8, 476, 619, 4, 380, 142, 423, 335, 240, 35, 93, 264, 8, 11, 335, 569, 420, 163, 5, 2], [260, 548, 528, 423, 20, 451, 20, 2681, 1153, 3434, 20, 5540, 37, 567, 126, 1253, 2441, 3376, 449, 210, 431, 1563, 177, 767, 5540, 11, 1203, 472, 11, 2953, 685, 285, 364, 706, 1153, 20, 6799, 20, 2869, 20, 4464, 126, 40, 2429, 20, 1040, 866, 2664, 418, 20, 318, 20, 1726, 186, 20, 265, 522, 35, 93, 2191, 4634, 20, 1040, 12, 6799, 15, 228, 2356, 142, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2575, 2666, 684, 1582, 1176, 12, 627, 149, 619, 20, 4902, 563, 11, 20, 149, 261, 3420, 2356, 174, 142, 4714, 131, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "valhalla/s2t_mustc_multilinguial_medium" __magic_name__ = "C'est trop cool" __magic_name__ = "Esto es genial" @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11 ) def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.vocab_size , 1_0000 ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Optional[int] = [ES_CODE, 4, 1601, 47, 7647, 2] _lowerCAmelCase : Any = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = 'fr' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , snake_case__ ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) _lowerCAmelCase : str = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' import math import sys def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = '' try: with open(_A , 'rb' ) as binary_file: _lowerCAmelCase : Dict = binary_file.read() for dat in data: _lowerCAmelCase : Any = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = {'0': '0', '1': '1'} _lowerCAmelCase : Optional[int] = '', '' _lowerCAmelCase : Optional[Any] = len(_A ) for i in range(len(_A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase : Any = lexicon[curr_string] result += last_match_id _lowerCAmelCase : Dict = last_match_id + '0' if math.loga(_A ).is_integer(): _lowerCAmelCase : str = {} for curr_key in list(_A ): _lowerCAmelCase : Any = lexicon.pop(_A ) _lowerCAmelCase : Tuple = new_lex _lowerCAmelCase : List[str] = last_match_id + '1' index += 1 _lowerCAmelCase : Dict = '' return result def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 8 try: with open(_A , 'wb' ) as opened_file: _lowerCAmelCase : Tuple = [ to_write[i : i + byte_length] for i in range(0 , len(_A ) , _A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(_A , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCAmelCase : Optional[Any] = data_bits[counter:] _lowerCAmelCase : str = data_bits[counter + 1 :] return data_bits def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[str] = read_file_binary(_A ) _lowerCAmelCase : List[str] = remove_prefix(_A ) _lowerCAmelCase : str = decompress_data(_A ) write_file_binary(_A , _A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCAmelCase : List[str] = """bert-base-cased""" lowerCAmelCase : Dict = """fp16""" lowerCAmelCase : Any = """bf16""" lowerCAmelCase : Any = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : List[str] = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def a ( self ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(snake_case__ ): _lowerCAmelCase : List[str] = self.dist_env.copy() _lowerCAmelCase : Optional[Any] = F'{i + 1}' _lowerCAmelCase : Optional[Any] = strategy with mockenv_context(**snake_case__ ): _lowerCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def a ( self ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(snake_case__ ): _lowerCAmelCase : str = self.dist_env.copy() _lowerCAmelCase : str = prefetch_policy with mockenv_context(**snake_case__ ): _lowerCAmelCase : List[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def a ( self ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(snake_case__ ): _lowerCAmelCase : List[str] = self.dist_env.copy() _lowerCAmelCase : str = state_dict_type with mockenv_context(**snake_case__ ): _lowerCAmelCase : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = AutoModel.from_pretrained(snake_case__ ) for policy in FSDP_AUTO_WRAP_POLICY: _lowerCAmelCase : List[str] = self.dist_env.copy() _lowerCAmelCase : int = policy if policy == "TRANSFORMER_BASED_WRAP": _lowerCAmelCase : str = 'BertLayer' elif policy == "SIZE_BASED_WRAP": _lowerCAmelCase : List[Any] = '2000' with mockenv_context(**snake_case__ ): _lowerCAmelCase : Optional[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(snake_case__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _lowerCAmelCase : Any = self.dist_env.copy() _lowerCAmelCase : str = 'TRANSFORMER_BASED_WRAP' _lowerCAmelCase : Optional[Any] = 'T5Layer' with mockenv_context(**snake_case__ ): _lowerCAmelCase : int = FullyShardedDataParallelPlugin() with self.assertRaises(snake_case__ ) as cm: fsdp_plugin.set_auto_wrap_policy(snake_case__ ) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) ) _lowerCAmelCase : List[Any] = self.dist_env.copy() _lowerCAmelCase : Optional[int] = 'SIZE_BASED_WRAP' _lowerCAmelCase : List[str] = '0' with mockenv_context(**snake_case__ ): _lowerCAmelCase : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(snake_case__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def a ( self ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _lowerCAmelCase : Dict = self.dist_env.copy() _lowerCAmelCase : int = mp_dtype with mockenv_context(**snake_case__ ): _lowerCAmelCase : List[str] = Accelerator() if mp_dtype == "fp16": _lowerCAmelCase : Any = torch.floataa elif mp_dtype == "bf16": _lowerCAmelCase : List[Any] = torch.bfloataa _lowerCAmelCase : Tuple = MixedPrecision(param_dtype=snake_case__ , reduce_dtype=snake_case__ , buffer_dtype=snake_case__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , snake_case__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , snake_case__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(snake_case__ ) def a ( self ): '''simple docstring''' from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _lowerCAmelCase : List[Any] = self.dist_env.copy() _lowerCAmelCase : Dict = str(snake_case__ ).lower() with mockenv_context(**snake_case__ ): _lowerCAmelCase : List[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=snake_case__ ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : List[str] = 0.82 _lowerCAmelCase : int = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] _lowerCAmelCase : Any = { 'multi_gpu_fp16': 3200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _lowerCAmelCase : str = 160 _lowerCAmelCase : Any = 160 _lowerCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils ) _lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = os.path.join(self.test_scripts_folder , 'test_performance.py' ) _lowerCAmelCase : Dict = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: _lowerCAmelCase : List[Any] = cmd.copy() for i, strategy in enumerate(snake_case__ ): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "fp32" in config: cmd_config.append('--mixed_precision=no' ) else: cmd_config.append('--mixed_precision=fp16' ) if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case__ , env=os.environ.copy() ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' ) _lowerCAmelCase : Any = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(snake_case__ ): _lowerCAmelCase : List[str] = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) if strategy != "FULL_SHARD": continue _lowerCAmelCase : Any = len(snake_case__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: _lowerCAmelCase : List[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case__ , env=os.environ.copy() ) _lowerCAmelCase : Any = cmd_config[:-1] _lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdir , 'epoch_0' ) cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case__ , env=os.environ.copy() ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' ) _lowerCAmelCase : Dict = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _lowerCAmelCase : str = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16'] ) else: cmd_config.extend(['--mixed_precision=no'] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp'] ) for i, strategy in enumerate(snake_case__ ): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}' ) break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000' ) cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case__ , env=os.environ.copy() )
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Any = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "wavlm" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1E-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=320 , snake_case__=800 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) _lowerCAmelCase : str = hidden_size _lowerCAmelCase : List[Any] = feat_extract_norm _lowerCAmelCase : List[Any] = feat_extract_activation _lowerCAmelCase : Dict = list(snake_case__ ) _lowerCAmelCase : List[Any] = list(snake_case__ ) _lowerCAmelCase : Tuple = list(snake_case__ ) _lowerCAmelCase : Any = conv_bias _lowerCAmelCase : Optional[int] = num_buckets _lowerCAmelCase : Optional[int] = max_bucket_distance _lowerCAmelCase : int = num_conv_pos_embeddings _lowerCAmelCase : Optional[int] = num_conv_pos_embedding_groups _lowerCAmelCase : str = len(self.conv_dim ) _lowerCAmelCase : Dict = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : int = hidden_dropout _lowerCAmelCase : Any = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Any = feat_proj_dropout _lowerCAmelCase : Dict = final_dropout _lowerCAmelCase : List[Any] = layerdrop _lowerCAmelCase : List[str] = layer_norm_eps _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Tuple = num_ctc_classes _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : List[Any] = do_stable_layer_norm _lowerCAmelCase : Optional[Any] = use_weighted_layer_sum _lowerCAmelCase : List[str] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : str = apply_spec_augment _lowerCAmelCase : Any = mask_time_prob _lowerCAmelCase : Optional[int] = mask_time_length _lowerCAmelCase : Union[str, Any] = mask_time_min_masks _lowerCAmelCase : Tuple = mask_feature_prob _lowerCAmelCase : List[str] = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase : Any = num_codevectors_per_group _lowerCAmelCase : str = num_codevector_groups _lowerCAmelCase : Dict = contrastive_logits_temperature _lowerCAmelCase : List[str] = num_negatives _lowerCAmelCase : Optional[int] = codevector_dim _lowerCAmelCase : int = proj_codevector_dim _lowerCAmelCase : Dict = diversity_loss_weight # ctc loss _lowerCAmelCase : Tuple = ctc_loss_reduction _lowerCAmelCase : Optional[int] = ctc_zero_infinity # adapter _lowerCAmelCase : Tuple = add_adapter _lowerCAmelCase : Optional[Any] = adapter_kernel_size _lowerCAmelCase : Union[str, Any] = adapter_stride _lowerCAmelCase : Any = num_adapter_layers _lowerCAmelCase : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : List[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : Tuple = list(snake_case__ ) _lowerCAmelCase : List[Any] = list(snake_case__ ) _lowerCAmelCase : List[str] = list(snake_case__ ) _lowerCAmelCase : str = xvector_output_dim @property def a ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" return int((input_a, input_a).count(0 ) != 0 ) def lowercase (): """simple docstring""" assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class UpperCamelCase__ : """simple docstring""" def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return None class UpperCamelCase__ : """simple docstring""" def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return None class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def a ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case__ , 'tf' , 12 , **snake_case__ ) @require_torch @slow def a ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(snake_case__ , 'pt' , 12 , **snake_case__ ) @require_torch @slow def a ( self ): '''simple docstring''' from transformers import BertModel _lowerCAmelCase : List[Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(snake_case__ ) ) vocab_file.flush() _lowerCAmelCase : List[Any] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowerCAmelCase : List[Any] = BertModel(BertConfig(vocab_size=len(snake_case__ ) ) ) model.save_pretrained(snake_case__ ) self._test_export(snake_case__ , 'pt' , 12 , snake_case__ ) @require_tf @slow def a ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase : int = self._test_export(snake_case__ , 'tf' , 12 , **snake_case__ ) _lowerCAmelCase : List[Any] = quantize(Path(snake_case__ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case__ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def a ( self ): '''simple docstring''' for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCAmelCase : Dict = self._test_export(snake_case__ , 'pt' , 12 , **snake_case__ ) _lowerCAmelCase : Union[str, Any] = quantize(snake_case__ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(snake_case__ ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None , **snake_case__ ): '''simple docstring''' try: # Compute path with TemporaryDirectory() as tempdir: _lowerCAmelCase : int = Path(snake_case__ ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ) return path except Exception as e: self.fail(snake_case__ ) @require_torch @require_tokenizers @slow def a ( self ): '''simple docstring''' from transformers import BertModel _lowerCAmelCase : List[Any] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowerCAmelCase : Optional[int] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case__ , snake_case__ , 'pt' ) @require_tf @require_tokenizers @slow def a ( self ): '''simple docstring''' from transformers import TFBertModel _lowerCAmelCase : List[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) _lowerCAmelCase : List[str] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(snake_case__ , snake_case__ , 'tf' ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = FeatureExtractionPipeline(snake_case__ , snake_case__ ) _lowerCAmelCase : str = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] _lowerCAmelCase : Optional[int] = infer_shapes(snake_case__ , snake_case__ ) # Assert all variables are present self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , snake_case__ ) self.assertSequenceEqual(variable_names[3:] , snake_case__ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ['input_ids', 'attention_mask', 'token_type_ids'] _lowerCAmelCase : Any = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} _lowerCAmelCase : Union[str, Any] = ensure_valid_input(FuncContiguousArgs() , snake_case__ , snake_case__ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(snake_case__ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(snake_case__ ) , set(snake_case__ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(snake_case__ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCAmelCase : Optional[Any] = ensure_valid_input(FuncNonContiguousArgs() , snake_case__ , snake_case__ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(snake_case__ ) , 1 ) self.assertEqual(len(snake_case__ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : List[str] = logging.get_logger(__name__) lowerCAmelCase : Dict = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "ibert" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=False , snake_case__="none" , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[int] = vocab_size _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Optional[Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : int = attention_probs_dropout_prob _lowerCAmelCase : str = max_position_embeddings _lowerCAmelCase : List[str] = type_vocab_size _lowerCAmelCase : Optional[int] = initializer_range _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Union[str, Any] = position_embedding_type _lowerCAmelCase : Tuple = quant_mode _lowerCAmelCase : int = force_dequant class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" @property def a ( self ): '''simple docstring''' if self.task == "multiple-choice": _lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Optional[int] = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = ["""BeitFeatureExtractor"""] lowerCAmelCase : Optional[Any] = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = filter(lambda _A : p.requires_grad , model.parameters() ) _lowerCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCAmelCase : str = logging.getLogger(__name__) def lowercase (_A , _A ): """simple docstring""" if metric == "rouge2": _lowerCAmelCase : Any = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCAmelCase : List[Any] = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCAmelCase : List[str] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.' ) _lowerCAmelCase : Tuple = ModelCheckpoint( dirpath=_A , filename=_A , monitor=f'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase (_A , _A ): """simple docstring""" return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=_A , verbose=_A , ) class UpperCamelCase__ ( pl.Callback ): """simple docstring""" def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case__ ) @rank_zero_only def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ): '''simple docstring''' logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****' ) _lowerCAmelCase : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCAmelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCAmelCase : int = od / 'test_results.txt' _lowerCAmelCase : str = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCAmelCase : Union[str, Any] = od / F'{type_path}_results/{trainer.global_step:05d}.txt' _lowerCAmelCase : List[Any] = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=snake_case__ ) generations_file.parent.mkdir(exist_ok=snake_case__ ) with open(snake_case__ , 'a+' ) as writer: for key in sorted(snake_case__ ): if key in ["log", "progress_bar", "preds"]: continue _lowerCAmelCase : Any = metrics[key] if isinstance(snake_case__ , torch.Tensor ): _lowerCAmelCase : List[Any] = val.item() _lowerCAmelCase : List[Any] = F'{key}: {val:.6f}\n' writer.write(snake_case__ ) if not save_generations: return if "preds" in metrics: _lowerCAmelCase : Union[str, Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(snake_case__ ) @rank_zero_only def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' try: _lowerCAmelCase : Optional[int] = pl_module.model.model.num_parameters() except AttributeError: _lowerCAmelCase : Optional[int] = pl_module.model.num_parameters() _lowerCAmelCase : int = count_trainable_parameters(snake_case__ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case__ , snake_case__ , 'test' ) @rank_zero_only def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase : Optional[Any] = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCAmelCase : Dict = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Any = SavedModel() _lowerCAmelCase : Dict = [] with open(os.path.join(_A , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: _lowerCAmelCase : Optional[int] = json.load(_A )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_A )] ) with open(_A , 'rb' ) as f: saved_model.ParseFromString(f.read() ) _lowerCAmelCase : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _lowerCAmelCase : str = sorted(_A ) _lowerCAmelCase : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_A ) if strict and len(_A ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(_A ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*_A , sep='\n' ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowerCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = 3_8_4 _lowerCAmelCase : Union[str, Any] = 7 if "tiny" in model_name: _lowerCAmelCase : Optional[int] = 9_6 _lowerCAmelCase : Optional[int] = (2, 2, 6, 2) _lowerCAmelCase : Union[str, Any] = (3, 6, 1_2, 2_4) elif "small" in model_name: _lowerCAmelCase : Optional[int] = 9_6 _lowerCAmelCase : int = (2, 2, 1_8, 2) _lowerCAmelCase : List[str] = (3, 6, 1_2, 2_4) elif "base" in model_name: _lowerCAmelCase : List[str] = 1_2_8 _lowerCAmelCase : Dict = (2, 2, 1_8, 2) _lowerCAmelCase : Dict = (4, 8, 1_6, 3_2) _lowerCAmelCase : List[str] = 1_2 _lowerCAmelCase : Dict = 5_1_2 elif "large" in model_name: _lowerCAmelCase : Union[str, Any] = 1_9_2 _lowerCAmelCase : Any = (2, 2, 1_8, 2) _lowerCAmelCase : Dict = (6, 1_2, 2_4, 4_8) _lowerCAmelCase : str = 1_2 _lowerCAmelCase : str = 7_6_8 # set label information _lowerCAmelCase : List[str] = 1_5_0 _lowerCAmelCase : Union[str, Any] = 'huggingface/label-files' _lowerCAmelCase : List[Any] = 'ade20k-id2label.json' _lowerCAmelCase : List[str] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) ) _lowerCAmelCase : Tuple = {int(_A ): v for k, v in idalabel.items()} _lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} _lowerCAmelCase : str = SwinConfig( embed_dim=_A , depths=_A , num_heads=_A , window_size=_A , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) _lowerCAmelCase : List[Any] = UperNetConfig( backbone_config=_A , auxiliary_in_channels=_A , num_labels=_A , idalabel=_A , labelaid=_A , ) return config def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = [] # fmt: off # stem rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : str = dct.pop(_A ) _lowerCAmelCase : Tuple = val def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCAmelCase : Union[str, Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCAmelCase : Dict = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) _lowerCAmelCase : Dict = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Tuple = in_proj_weight[:dim, :] _lowerCAmelCase : List[Any] = in_proj_bias[: dim] _lowerCAmelCase : Dict = in_proj_weight[ dim : dim * 2, : ] _lowerCAmelCase : Tuple = in_proj_bias[ dim : dim * 2 ] _lowerCAmelCase : Dict = in_proj_weight[ -dim :, : ] _lowerCAmelCase : Any = in_proj_bias[-dim :] # fmt: on def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = x.shape _lowerCAmelCase : List[str] = x.reshape(_A , 4 , in_channel // 4 ) _lowerCAmelCase : Dict = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(_A , _A ) return x def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = x.shape _lowerCAmelCase : Dict = x.reshape(_A , in_channel // 4 , 4 ) _lowerCAmelCase : Optional[Any] = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(_A , _A ) return x def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = x.shape[0] _lowerCAmelCase : Tuple = x.reshape(4 , in_channel // 4 ) _lowerCAmelCase : Any = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(_A ) return x def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = x.shape[0] _lowerCAmelCase : Tuple = x.reshape(in_channel // 4 , 4 ) _lowerCAmelCase : str = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(_A ) return x def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : str = { 'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth', 'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth', 'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth', 'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth', } _lowerCAmelCase : int = model_name_to_url[model_name] _lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(_A , map_location='cpu' , file_name=_A )[ 'state_dict' ] for name, param in state_dict.items(): print(_A , param.shape ) _lowerCAmelCase : Optional[Any] = get_upernet_config(_A ) _lowerCAmelCase : List[str] = UperNetForSemanticSegmentation(_A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowerCAmelCase : List[Any] = state_dict.pop(_A ) if "bn" in key: _lowerCAmelCase : Optional[int] = key.replace('bn' , 'batch_norm' ) _lowerCAmelCase : Dict = val # rename keys _lowerCAmelCase : Optional[int] = create_rename_keys(_A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _lowerCAmelCase : List[str] = reverse_correct_unfold_reduction_order(_A ) if "norm" in key: _lowerCAmelCase : int = reverse_correct_unfold_norm_order(_A ) model.load_state_dict(_A ) # verify on image _lowerCAmelCase : List[Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _lowerCAmelCase : Optional[Any] = Image.open(requests.get(_A , stream=_A ).raw ).convert('RGB' ) _lowerCAmelCase : str = SegformerImageProcessor() _lowerCAmelCase : List[Any] = processor(_A , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowerCAmelCase : List[Any] = model(_A ) _lowerCAmelCase : Tuple = outputs.logits print(logits.shape ) print('First values of logits:' , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _lowerCAmelCase : Optional[Any] = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": _lowerCAmelCase : Dict = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": _lowerCAmelCase : Union[str, Any] = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": _lowerCAmelCase : str = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(_A ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-swin-tiny""", type=str, choices=[F'''upernet-swin-{size}''' for size in ["""tiny""", """small""", """base""", """large"""]], help="""Name of the Swin + UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase : List[str] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' import logging import os import sys from pathlib import Path from unittest.mock import patch from parameterized import parameterized from run_eval import run_generate from run_eval_search import run_search from transformers.testing_utils import CaptureStdout, TestCasePlus, slow from utils import ROUGE_KEYS logging.basicConfig(level=logging.DEBUG) lowerCAmelCase : Tuple = logging.getLogger() def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = '\n'.join(_A ) Path(_A ).open('w' ).writelines(_A ) lowerCAmelCase : List[Any] = """patrickvonplaten/t5-tiny-random""" lowerCAmelCase : List[Any] = """sshleifer/bart-tiny-random""" lowerCAmelCase : Optional[Any] = """sshleifer/tiny-mbart""" lowerCAmelCase : Any = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _lowerCAmelCase : Optional[Any] = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _lowerCAmelCase : Any = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.'] _dump_articles(snake_case__ , snake_case__ ) _lowerCAmelCase : str = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' ) _lowerCAmelCase : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization' _lowerCAmelCase : List[Any] = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split() with patch.object(snake_case__ , 'argv' , snake_case__ ): run_generate() assert Path(snake_case__ ).exists() # os.remove(Path(output_file_name)) def a ( self ): '''simple docstring''' self.run_eval_tester(snake_case__ ) @parameterized.expand([BART_TINY, MBART_TINY] ) @slow def a ( self , snake_case__ ): '''simple docstring''' self.run_eval_tester(snake_case__ ) @parameterized.expand([T5_TINY, MBART_TINY] ) @slow def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source' _lowerCAmelCase : Tuple = input_file_name.parent / 'utest_output.txt' assert not output_file_name.exists() _lowerCAmelCase : str = { 'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'], 'de': [ 'Maschinelles Lernen ist großartig, oder?', 'Ich esse gerne Bananen', 'Morgen ist wieder ein toller Tag!', ], } _lowerCAmelCase : Optional[Any] = Path(self.get_auto_remove_tmp_dir() ) _lowerCAmelCase : List[Any] = str(tmp_dir / 'scores.json' ) _lowerCAmelCase : List[Any] = str(tmp_dir / 'val.target' ) _dump_articles(snake_case__ , text['en'] ) _dump_articles(snake_case__ , text['de'] ) _lowerCAmelCase : Union[str, Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization' _lowerCAmelCase : List[Any] = F'\n run_eval_search.py\n {model}\n {str(snake_case__ )}\n {str(snake_case__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split() testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] ) with patch.object(snake_case__ , 'argv' , snake_case__ ): with CaptureStdout() as cs: run_search() _lowerCAmelCase : int = [' num_beams | length_penalty', model, 'Best score args'] _lowerCAmelCase : Any = ['Info'] if "translation" in task: expected_strings.append('bleu' ) else: expected_strings.extend(snake_case__ ) for w in expected_strings: assert w in cs.out for w in un_expected_strings: assert w not in cs.out assert Path(snake_case__ ).exists() os.remove(Path(snake_case__ ) )
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "gptj" __magic_name__ = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=5_0400 , snake_case__=2048 , snake_case__=4096 , snake_case__=28 , snake_case__=16 , snake_case__=64 , snake_case__=None , snake_case__="gelu_new" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=1E-5 , snake_case__=0.02 , snake_case__=True , snake_case__=5_0256 , snake_case__=5_0256 , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Union[str, Any] = n_positions _lowerCAmelCase : Optional[Any] = n_embd _lowerCAmelCase : Optional[int] = n_layer _lowerCAmelCase : Dict = n_head _lowerCAmelCase : Optional[int] = n_inner _lowerCAmelCase : Dict = rotary_dim _lowerCAmelCase : List[Any] = activation_function _lowerCAmelCase : Tuple = resid_pdrop _lowerCAmelCase : Tuple = embd_pdrop _lowerCAmelCase : Optional[Any] = attn_pdrop _lowerCAmelCase : List[str] = layer_norm_epsilon _lowerCAmelCase : Tuple = initializer_range _lowerCAmelCase : Optional[int] = use_cache _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : List[str] = eos_token_id super().__init__( bos_token_id=snake_case__ , eos_token_id=snake_case__ , tie_word_embeddings=snake_case__ , **snake_case__ ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = "default" , snake_case__ = None , snake_case__ = False , ): '''simple docstring''' super().__init__(snake_case__ , task=snake_case__ , patching_specs=snake_case__ , use_past=snake_case__ ) if not getattr(self._config , 'pad_token_id' , snake_case__ ): # TODO: how to do that better? _lowerCAmelCase : Optional[Any] = 0 @property def a ( self ): '''simple docstring''' _lowerCAmelCase : str = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(snake_case__ , direction='inputs' ) _lowerCAmelCase : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: _lowerCAmelCase : int = {0: 'batch', 1: 'sequence'} return common_inputs @property def a ( self ): '''simple docstring''' return self._config.n_layer @property def a ( self ): '''simple docstring''' return self._config.n_head def a ( self , snake_case__ , snake_case__ = -1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , ): '''simple docstring''' _lowerCAmelCase : List[str] = super(snake_case__ , self ).generate_dummy_inputs( snake_case__ , batch_size=snake_case__ , seq_length=snake_case__ , is_pair=snake_case__ , framework=snake_case__ ) # We need to order the input in the way they appears in the forward() _lowerCAmelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowerCAmelCase : int = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowerCAmelCase : Tuple = seqlen + 2 _lowerCAmelCase : Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _lowerCAmelCase : List[Any] = [ (torch.zeros(snake_case__ ), torch.zeros(snake_case__ )) for _ in range(self.num_layers ) ] _lowerCAmelCase : Dict = common_inputs['attention_mask'] if self.use_past: _lowerCAmelCase : Tuple = ordered_inputs['attention_mask'].dtype _lowerCAmelCase : Union[str, Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(snake_case__ , snake_case__ , dtype=snake_case__ )] , dim=1 ) return ordered_inputs @property def a ( self ): '''simple docstring''' return 13
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' from typing import Dict from .base import GenericTensor, Pipeline class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' if tokenize_kwargs is None: _lowerCAmelCase : Tuple = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) _lowerCAmelCase : Tuple = truncation _lowerCAmelCase : int = tokenize_kwargs _lowerCAmelCase : Any = {} if return_tensors is not None: _lowerCAmelCase : Any = return_tensors return preprocess_params, {}, postprocess_params def a ( self , snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.framework _lowerCAmelCase : List[str] = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ ) return model_inputs def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model(**snake_case__ ) return model_outputs def a ( self , snake_case__ , snake_case__=False ): '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return super().__call__(*snake_case__ , **snake_case__ )
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.0 , snake_case__ = None , snake_case__ = "geglu" , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = "layer_norm" , snake_case__ = False , ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[int] = only_cross_attention _lowerCAmelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _lowerCAmelCase : List[str] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _lowerCAmelCase : List[Any] = AdaLayerNorm(snake_case__ , snake_case__ ) elif self.use_ada_layer_norm_zero: _lowerCAmelCase : List[Any] = AdaLayerNormZero(snake_case__ , snake_case__ ) else: _lowerCAmelCase : Optional[int] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) _lowerCAmelCase : Optional[Any] = Attention( query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , dropout=snake_case__ , bias=snake_case__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=snake_case__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _lowerCAmelCase : Optional[Any] = ( AdaLayerNorm(snake_case__ , snake_case__ ) if self.use_ada_layer_norm else nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) ) _lowerCAmelCase : List[Any] = Attention( query_dim=snake_case__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=snake_case__ , dim_head=snake_case__ , dropout=snake_case__ , bias=snake_case__ , upcast_attention=snake_case__ , ) # is self-attn if encoder_hidden_states is none else: _lowerCAmelCase : Union[str, Any] = None _lowerCAmelCase : int = None # 3. Feed-forward _lowerCAmelCase : Optional[int] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) _lowerCAmelCase : Union[str, Any] = FeedForward(snake_case__ , dropout=snake_case__ , activation_fn=snake_case__ , final_dropout=snake_case__ ) # let chunk size default to None _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Union[str, Any] = 0 def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = chunk_size _lowerCAmelCase : Tuple = dim def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , ): '''simple docstring''' if self.use_ada_layer_norm: _lowerCAmelCase : Union[str, Any] = self.norma(snake_case__ , snake_case__ ) elif self.use_ada_layer_norm_zero: _lowerCAmelCase : str = self.norma( snake_case__ , snake_case__ , snake_case__ , hidden_dtype=hidden_states.dtype ) else: _lowerCAmelCase : Union[str, Any] = self.norma(snake_case__ ) _lowerCAmelCase : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} _lowerCAmelCase : Union[str, Any] = self.attna( snake_case__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=snake_case__ , **snake_case__ , ) if self.use_ada_layer_norm_zero: _lowerCAmelCase : int = gate_msa.unsqueeze(1 ) * attn_output _lowerCAmelCase : str = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _lowerCAmelCase : List[str] = ( self.norma(snake_case__ , snake_case__ ) if self.use_ada_layer_norm else self.norma(snake_case__ ) ) _lowerCAmelCase : Optional[int] = self.attna( snake_case__ , encoder_hidden_states=snake_case__ , attention_mask=snake_case__ , **snake_case__ , ) _lowerCAmelCase : Optional[int] = attn_output + hidden_states # 3. Feed-forward _lowerCAmelCase : Optional[Any] = self.norma(snake_case__ ) if self.use_ada_layer_norm_zero: _lowerCAmelCase : Any = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _lowerCAmelCase : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _lowerCAmelCase : str = torch.cat( [self.ff(snake_case__ ) for hid_slice in norm_hidden_states.chunk(snake_case__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _lowerCAmelCase : Tuple = self.ff(snake_case__ ) if self.use_ada_layer_norm_zero: _lowerCAmelCase : int = gate_mlp.unsqueeze(1 ) * ff_output _lowerCAmelCase : Dict = ff_output + hidden_states return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = 4 , snake_case__ = 0.0 , snake_case__ = "geglu" , snake_case__ = False , ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = int(dim * mult ) _lowerCAmelCase : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": _lowerCAmelCase : Tuple = GELU(snake_case__ , snake_case__ ) if activation_fn == "gelu-approximate": _lowerCAmelCase : Any = GELU(snake_case__ , snake_case__ , approximate='tanh' ) elif activation_fn == "geglu": _lowerCAmelCase : Tuple = GEGLU(snake_case__ , snake_case__ ) elif activation_fn == "geglu-approximate": _lowerCAmelCase : Any = ApproximateGELU(snake_case__ , snake_case__ ) _lowerCAmelCase : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(snake_case__ ) # project dropout self.net.append(nn.Dropout(snake_case__ ) ) # project out self.net.append(nn.Linear(snake_case__ , snake_case__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(snake_case__ ) ) def a ( self , snake_case__ ): '''simple docstring''' for module in self.net: _lowerCAmelCase : List[Any] = module(snake_case__ ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ = "none" ): '''simple docstring''' super().__init__() _lowerCAmelCase : str = nn.Linear(snake_case__ , snake_case__ ) _lowerCAmelCase : List[Any] = approximate def a ( self , snake_case__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(snake_case__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.proj(snake_case__ ) _lowerCAmelCase : str = self.gelu(snake_case__ ) return hidden_states class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() _lowerCAmelCase : Tuple = nn.Linear(snake_case__ , dim_out * 2 ) def a ( self , snake_case__ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(snake_case__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = self.proj(snake_case__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(snake_case__ ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() _lowerCAmelCase : List[str] = nn.Linear(snake_case__ , snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = self.proj(snake_case__ ) return x * torch.sigmoid(1.702 * x ) class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() _lowerCAmelCase : Optional[Any] = nn.Embedding(snake_case__ , snake_case__ ) _lowerCAmelCase : List[Any] = nn.SiLU() _lowerCAmelCase : Optional[int] = nn.Linear(snake_case__ , embedding_dim * 2 ) _lowerCAmelCase : Optional[int] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.linear(self.silu(self.emb(snake_case__ ) ) ) _lowerCAmelCase : List[Any] = torch.chunk(snake_case__ , 2 ) _lowerCAmelCase : Optional[Any] = self.norm(snake_case__ ) * (1 + scale) + shift return x class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = CombinedTimestepLabelEmbeddings(snake_case__ , snake_case__ ) _lowerCAmelCase : Dict = nn.SiLU() _lowerCAmelCase : Tuple = nn.Linear(snake_case__ , 6 * embedding_dim , bias=snake_case__ ) _lowerCAmelCase : Optional[Any] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ , eps=1E-6 ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : List[str] = self.linear(self.silu(self.emb(snake_case__ , snake_case__ , hidden_dtype=snake_case__ ) ) ) _lowerCAmelCase : Any = emb.chunk(6 , dim=1 ) _lowerCAmelCase : Any = self.norm(snake_case__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = 1E-5 ): '''simple docstring''' super().__init__() _lowerCAmelCase : Dict = num_groups _lowerCAmelCase : Dict = eps if act_fn is None: _lowerCAmelCase : Union[str, Any] = None else: _lowerCAmelCase : List[Any] = get_activation(snake_case__ ) _lowerCAmelCase : int = nn.Linear(snake_case__ , out_dim * 2 ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' if self.act: _lowerCAmelCase : List[Any] = self.act(snake_case__ ) _lowerCAmelCase : Optional[int] = self.linear(snake_case__ ) _lowerCAmelCase : str = emb[:, :, None, None] _lowerCAmelCase : Any = emb.chunk(2 , dim=1 ) _lowerCAmelCase : int = F.group_norm(snake_case__ , self.num_groups , eps=self.eps ) _lowerCAmelCase : List[Any] = x * (1 + scale) + shift return x
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase (_A ): """simple docstring""" return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[str] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue _lowerCAmelCase : int = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) _lowerCAmelCase : str = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) _lowerCAmelCase : Optional[Any] = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) _lowerCAmelCase : str = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) _lowerCAmelCase : List[str] = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) _lowerCAmelCase : int = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) _lowerCAmelCase : str = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) _lowerCAmelCase : Dict = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) _lowerCAmelCase : int = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) _lowerCAmelCase : Optional[Any] = key.replace('image_encoder.module' , 'flava.image_model' ) _lowerCAmelCase : Tuple = key.replace('text_encoder.module' , 'flava.text_model' ) _lowerCAmelCase : int = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) _lowerCAmelCase : int = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) _lowerCAmelCase : Optional[int] = key.replace('text_projection' , 'flava.text_projection' ) _lowerCAmelCase : Dict = key.replace('image_projection' , 'flava.image_projection' ) _lowerCAmelCase : Tuple = value.float() for key, value in codebook_state_dict.items(): _lowerCAmelCase : str = value return upgrade @torch.no_grad() def lowercase (_A , _A , _A , _A=None ): """simple docstring""" if config_path is not None: _lowerCAmelCase : Optional[Any] = FlavaConfig.from_pretrained(_A ) else: _lowerCAmelCase : Optional[int] = FlavaConfig() _lowerCAmelCase : Optional[int] = FlavaForPreTraining(_A ).eval() _lowerCAmelCase : str = convert_dalle_checkpoint(_A , _A , save_checkpoint=_A ) if os.path.exists(_A ): _lowerCAmelCase : Optional[Any] = torch.load(_A , map_location='cpu' ) else: _lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(_A , map_location='cpu' ) _lowerCAmelCase : List[Any] = upgrade_state_dict(_A , _A ) hf_model.load_state_dict(_A ) _lowerCAmelCase : str = hf_model.state_dict() _lowerCAmelCase : str = count_parameters(_A ) _lowerCAmelCase : Any = count_parameters(_A ) + count_parameters(_A ) assert torch.allclose(_A , _A , atol=1E-3 ) hf_model.save_pretrained(_A ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase : Any = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : str = {"""vocab_file""": """vocab.txt"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } lowerCAmelCase : List[Any] = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } lowerCAmelCase : List[Any] = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ConvBertTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , ) _lowerCAmelCase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars ): _lowerCAmelCase : str = getattr(snake_case__ , normalizer_state.pop('type' ) ) _lowerCAmelCase : List[str] = do_lower_case _lowerCAmelCase : Any = strip_accents _lowerCAmelCase : Tuple = tokenize_chinese_chars _lowerCAmelCase : str = normalizer_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = do_lower_case def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[Any] = [self.sep_token_id] _lowerCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[str] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ )
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[str] = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : Optional[Any] = BlipImageProcessor() _lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' ) _lowerCAmelCase : str = BlipProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _lowerCAmelCase : Optional[Any] = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Tuple = self.get_tokenizer() _lowerCAmelCase : Any = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Tuple = image_processor(snake_case__ , return_tensors='np' ) _lowerCAmelCase : Union[str, Any] = processor(images=snake_case__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[int] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Any = 'lower newer' _lowerCAmelCase : str = processor(text=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Optional[Any] = 'lower newer' _lowerCAmelCase : Dict = self.prepare_image_inputs() _lowerCAmelCase : Dict = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : str = self.get_tokenizer() _lowerCAmelCase : int = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Tuple = processor.batch_decode(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Any = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Any = 'lower newer' _lowerCAmelCase : str = self.prepare_image_inputs() _lowerCAmelCase : Any = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def lowercase (): """simple docstring""" _lowerCAmelCase : dict[int, int] = {} _lowerCAmelCase : str = 2 while True: _lowerCAmelCase : Optional[Any] = factor_map.pop(_A , _A ) if factor: _lowerCAmelCase : Optional[int] = factor + prime while x in factor_map: x += factor _lowerCAmelCase : Dict = factor else: _lowerCAmelCase : Optional[Any] = prime yield prime prime += 1 def lowercase (_A = 1E10 ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = sieve() _lowerCAmelCase : Union[str, Any] = 1 while True: _lowerCAmelCase : List[Any] = next(_A ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(_A ) n += 2 if __name__ == "__main__": print(solution())
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = tempfile.mkdtemp() _lowerCAmelCase : int = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _lowerCAmelCase : int = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073], 'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711], } _lowerCAmelCase : Dict = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case__ , snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Any = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_tokenizer() _lowerCAmelCase : int = self.get_rust_tokenizer() _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : List[Any] = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_slow.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Optional[int] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ ) _lowerCAmelCase : Optional[Any] = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor_fast.save_pretrained(self.tmpdirname ) _lowerCAmelCase : int = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case__ ) self.assertIsInstance(processor_fast.tokenizer , snake_case__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case__ ) self.assertIsInstance(processor_fast.image_processor , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _lowerCAmelCase : Any = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : List[str] = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Tuple = image_processor(snake_case__ , return_tensors='np' ) _lowerCAmelCase : Optional[Any] = processor(images=snake_case__ , return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Optional[int] = 'lower newer' _lowerCAmelCase : Any = processor(text=snake_case__ ) _lowerCAmelCase : List[str] = tokenizer(snake_case__ , padding='max_length' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Tuple = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Tuple = 'lower newer' _lowerCAmelCase : int = self.prepare_image_inputs() _lowerCAmelCase : Dict = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Tuple = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Dict = processor.batch_decode(snake_case__ ) _lowerCAmelCase : List[Any] = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : Any = self.get_tokenizer() _lowerCAmelCase : Tuple = AlignProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Tuple = 'lower newer' _lowerCAmelCase : int = self.prepare_image_inputs() _lowerCAmelCase : str = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' def lowercase (_A , _A , _A ): """simple docstring""" def update_area_of_max_square(_A , _A ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 _lowerCAmelCase : Any = update_area_of_max_square(_A , col + 1 ) _lowerCAmelCase : Any = update_area_of_max_square(row + 1 , col + 1 ) _lowerCAmelCase : List[Any] = update_area_of_max_square(row + 1 , _A ) if mat[row][col]: _lowerCAmelCase : Dict = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Tuple = max(largest_square_area[0] , _A ) return sub_problem_sol else: return 0 _lowerCAmelCase : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def lowercase (_A , _A , _A ): """simple docstring""" def update_area_of_max_square_using_dp_array( _A , _A , _A ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] _lowerCAmelCase : str = update_area_of_max_square_using_dp_array(_A , col + 1 , _A ) _lowerCAmelCase : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , _A ) _lowerCAmelCase : Dict = update_area_of_max_square_using_dp_array(row + 1 , _A , _A ) if mat[row][col]: _lowerCAmelCase : Dict = 1 + min([right, diagonal, down] ) _lowerCAmelCase : Dict = max(largest_square_area[0] , _A ) _lowerCAmelCase : Any = sub_problem_sol return sub_problem_sol else: return 0 _lowerCAmelCase : Optional[int] = [0] _lowerCAmelCase : List[str] = [[-1] * cols for _ in range(_A )] update_area_of_max_square_using_dp_array(0 , 0 , _A ) return largest_square_area[0] def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : List[str] = [[0] * (cols + 1) for _ in range(rows + 1 )] _lowerCAmelCase : Union[str, Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : List[Any] = dp_array[row][col + 1] _lowerCAmelCase : Union[str, Any] = dp_array[row + 1][col + 1] _lowerCAmelCase : Optional[int] = dp_array[row + 1][col] if mat[row][col] == 1: _lowerCAmelCase : str = 1 + min(_A , _A , _A ) _lowerCAmelCase : Union[str, Any] = max(dp_array[row][col] , _A ) else: _lowerCAmelCase : int = 0 return largest_square_area def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : int = [0] * (cols + 1) _lowerCAmelCase : Dict = [0] * (cols + 1) _lowerCAmelCase : Optional[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): _lowerCAmelCase : int = current_row[col + 1] _lowerCAmelCase : Optional[int] = next_row[col + 1] _lowerCAmelCase : Any = next_row[col] if mat[row][col] == 1: _lowerCAmelCase : str = 1 + min(_A , _A , _A ) _lowerCAmelCase : Union[str, Any] = max(current_row[col] , _A ) else: _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Union[str, Any] = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0