code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets lowerCAmelCase : int = """ IoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union between the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation, the mean IoU of the image is calculated by taking the IoU of each class and averaging them. """ lowerCAmelCase : str = """ Args: predictions (`List[ndarray]`): List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. references (`List[ndarray]`): List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size. num_labels (`int`): Number of classes (categories). ignore_index (`int`): Index that will be ignored during evaluation. nan_to_num (`int`, *optional*): If specified, NaN values will be replaced by the number defined by the user. label_map (`dict`, *optional*): If specified, dictionary mapping old label indices to new label indices. reduce_labels (`bool`, *optional*, defaults to `False`): Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background, and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255. Returns: `Dict[str, float | ndarray]` comprising various elements: - *mean_iou* (`float`): Mean Intersection-over-Union (IoU averaged over all categories). - *mean_accuracy* (`float`): Mean accuracy (averaged over all categories). - *overall_accuracy* (`float`): Overall accuracy on all images. - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`): Per category accuracy. - *per_category_iou* (`ndarray` of shape `(num_labels,)`): Per category IoU. Examples: >>> import numpy as np >>> mean_iou = datasets.load_metric(\"mean_iou\") >>> # suppose one has 3 different segmentation maps predicted >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]]) >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]]) >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]]) >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]]) >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]]) >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]]) >>> predicted = [predicted_1, predicted_2, predicted_3] >>> ground_truth = [actual_1, actual_2, actual_3] >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False) >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])} """ lowerCAmelCase : Optional[Any] = """\ @software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020, author = {{MMSegmentation Contributors}}, license = {Apache-2.0}, month = {7}, title = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}}, url = {https://github.com/open-mmlab/mmsegmentation}, year = {2020} }""" def lowercase (_A , _A , _A , _A , _A = None , _A = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): _lowerCAmelCase : Tuple = new_id # turn into Numpy arrays _lowerCAmelCase : Dict = np.array(_A ) _lowerCAmelCase : Any = np.array(_A ) if reduce_labels: _lowerCAmelCase : Optional[int] = 2_5_5 _lowerCAmelCase : Optional[int] = label - 1 _lowerCAmelCase : Optional[int] = 2_5_5 _lowerCAmelCase : Any = label != ignore_index _lowerCAmelCase : Dict = np.not_equal(_A , _A ) _lowerCAmelCase : Dict = pred_label[mask] _lowerCAmelCase : Union[str, Any] = np.array(_A )[mask] _lowerCAmelCase : Dict = pred_label[pred_label == label] _lowerCAmelCase : str = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] _lowerCAmelCase : Union[str, Any] = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] _lowerCAmelCase : int = np.histogram(_A , bins=_A , range=(0, num_labels - 1) )[0] _lowerCAmelCase : List[str] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def lowercase (_A , _A , _A , _A , _A = None , _A = False , ): """simple docstring""" _lowerCAmelCase : Dict = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase : str = np.zeros((num_labels,) , dtype=np.floataa ) _lowerCAmelCase : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(_A , _A ): _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = intersect_and_union( _A , _A , _A , _A , _A , _A ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def lowercase (_A , _A , _A , _A , _A = None , _A = None , _A = False , ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = total_intersect_and_union( _A , _A , _A , _A , _A , _A ) # compute metrics _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : str = total_area_intersect.sum() / total_area_label.sum() _lowerCAmelCase : str = total_area_intersect / total_area_union _lowerCAmelCase : Dict = total_area_intersect / total_area_label _lowerCAmelCase : Optional[int] = np.nanmean(_A ) _lowerCAmelCase : int = np.nanmean(_A ) _lowerCAmelCase : Optional[int] = all_acc _lowerCAmelCase : str = iou _lowerCAmelCase : Any = acc if nan_to_num is not None: _lowerCAmelCase : int = {metric: np.nan_to_num(_A , nan=_A ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def a ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) , reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = False , ): '''simple docstring''' _lowerCAmelCase : Tuple = mean_iou( results=snake_case__ , gt_seg_maps=snake_case__ , num_labels=snake_case__ , ignore_index=snake_case__ , nan_to_num=snake_case__ , label_map=snake_case__ , reduce_labels=snake_case__ , ) return iou_result
25
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
1
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase : Optional[Any] = """.""" # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) lowerCAmelCase : Dict = [ """Assert""", """AssignVariableOp""", """EmptyTensorList""", """MergeV2Checkpoints""", """ReadVariableOp""", """ResourceGather""", """RestoreV2""", """SaveV2""", """ShardedFilename""", """StatefulPartitionedCall""", """StaticRegexFullMatch""", """VarHandleOp""", ] def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Any = SavedModel() _lowerCAmelCase : Dict = [] with open(os.path.join(_A , 'utils' , 'tf_ops' , 'onnx.json' ) ) as f: _lowerCAmelCase : Optional[int] = json.load(_A )['opsets'] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_A )] ) with open(_A , 'rb' ) as f: saved_model.ParseFromString(f.read() ) _lowerCAmelCase : List[str] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _lowerCAmelCase : str = sorted(_A ) _lowerCAmelCase : str = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_A ) if strict and len(_A ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(_A ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*_A , sep='\n' ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""") parser.add_argument( """--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested.""" ) parser.add_argument( """--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model.""" ) parser.add_argument( """--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)""" ) lowerCAmelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
25
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
1
'''simple docstring''' import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa lowerCAmelCase : List[Any] = logging.getLogger(__name__) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "summarization" __magic_name__ = ["loss"] __magic_name__ = ROUGE_KEYS __magic_name__ = "rouge2" def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' if hparams.sortish_sampler and hparams.gpus > 1: _lowerCAmelCase : Dict = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(snake_case__ , num_labels=snake_case__ , mode=self.mode , **snake_case__ ) use_task_specific_params(self.model , 'summarization' ) save_git_info(self.hparams.output_dir ) _lowerCAmelCase : Tuple = Path(self.output_dir ) / 'metrics.json' _lowerCAmelCase : List[Any] = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams , self.hparams_save_path ) _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : List[str] = defaultdict(snake_case__ ) _lowerCAmelCase : Any = self.config.model_type _lowerCAmelCase : Optional[Any] = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size _lowerCAmelCase : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } _lowerCAmelCase : str = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } _lowerCAmelCase : int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} _lowerCAmelCase : List[str] = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'target_lens: {self.target_lens}' assert self.target_lens["train"] <= self.target_lens["test"], F'target_lens: {self.target_lens}' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) _lowerCAmelCase : Dict = get_git_info()['repo_sha'] _lowerCAmelCase : Tuple = hparams.num_workers _lowerCAmelCase : Dict = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , snake_case__ ): _lowerCAmelCase : int = self.tokenizer.lang_code_to_id[hparams.tgt_lang] _lowerCAmelCase : List[Any] = self.decoder_start_token_id _lowerCAmelCase : Optional[int] = ( SeqaSeqDataset if hasattr(self.tokenizer , 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) _lowerCAmelCase : List[Any] = False _lowerCAmelCase : Union[str, Any] = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: _lowerCAmelCase : Union[str, Any] = self.hparams.eval_max_gen_length else: _lowerCAmelCase : int = self.model.config.max_length _lowerCAmelCase : Union[str, Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(snake_case__ , Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / 'tok_batch.json' ) _lowerCAmelCase : str = True return readable_batch def a ( self , snake_case__ , **snake_case__ ): '''simple docstring''' return self.model(snake_case__ , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer.batch_decode( snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) return lmap(str.strip , snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = self.tokenizer.pad_token_id _lowerCAmelCase , _lowerCAmelCase : List[str] = batch['input_ids'], batch['attention_mask'] _lowerCAmelCase : List[Any] = batch['labels'] if isinstance(self.model , snake_case__ ): _lowerCAmelCase : Dict = self.model._shift_right(snake_case__ ) else: _lowerCAmelCase : Tuple = shift_tokens_right(snake_case__ , snake_case__ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero _lowerCAmelCase : int = decoder_input_ids self.save_readable_batch(snake_case__ ) _lowerCAmelCase : int = self(snake_case__ , attention_mask=snake_case__ , decoder_input_ids=snake_case__ , use_cache=snake_case__ ) _lowerCAmelCase : str = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id _lowerCAmelCase : List[Any] = nn.CrossEntropyLoss(ignore_index=snake_case__ ) assert lm_logits.shape[-1] == self.vocab_size _lowerCAmelCase : Tuple = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: _lowerCAmelCase : List[str] = nn.functional.log_softmax(snake_case__ , dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = label_smoothed_nll_loss( snake_case__ , snake_case__ , self.hparams.label_smoothing , ignore_index=snake_case__ ) return (loss,) @property def a ( self ): '''simple docstring''' return self.tokenizer.pad_token_id def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self._step(snake_case__ ) _lowerCAmelCase : Optional[Any] = dict(zip(self.loss_names , snake_case__ ) ) # tokens per batch _lowerCAmelCase : List[str] = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() _lowerCAmelCase : Union[str, Any] = batch['input_ids'].shape[0] _lowerCAmelCase : Any = batch['input_ids'].eq(self.pad ).sum() _lowerCAmelCase : Optional[int] = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return self._generative_step(snake_case__ ) def a ( self , snake_case__ , snake_case__="val" ): '''simple docstring''' self.step_count += 1 _lowerCAmelCase : Any = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} _lowerCAmelCase : Optional[int] = losses['loss'] _lowerCAmelCase : int = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } _lowerCAmelCase : int = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) _lowerCAmelCase : torch.FloatTensor = torch.tensor(snake_case__ ).type_as(snake_case__ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(snake_case__ ) _lowerCAmelCase : Optional[Any] = {F'{prefix}_avg_{k}': x for k, x in losses.items()} _lowerCAmelCase : Optional[Any] = self.step_count self.metrics[prefix].append(snake_case__ ) # callback writes this to self.metrics_save_path _lowerCAmelCase : str = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'{prefix}_loss': loss, F'{prefix}_{self.val_metric}': metric_tensor, } def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return calculate_rouge(snake_case__ , snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') _lowerCAmelCase : Tuple = self.model.generate( batch['input_ids'] , attention_mask=batch['attention_mask'] , use_cache=snake_case__ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) _lowerCAmelCase : List[Any] = (time.time() - ta) / batch['input_ids'].shape[0] _lowerCAmelCase : List[str] = self.ids_to_clean_text(snake_case__ ) _lowerCAmelCase : List[str] = self.ids_to_clean_text(batch['labels'] ) _lowerCAmelCase : List[Any] = self._step(snake_case__ ) _lowerCAmelCase : Dict = dict(zip(self.loss_names , snake_case__ ) ) _lowerCAmelCase : Dict = self.calc_generative_metrics(snake_case__ , snake_case__ ) _lowerCAmelCase : Tuple = np.mean(lmap(snake_case__ , snake_case__ ) ) base_metrics.update(gen_time=snake_case__ , gen_len=snake_case__ , preds=snake_case__ , target=snake_case__ , **snake_case__ ) return base_metrics def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return self._generative_step(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return self.validation_epoch_end(snake_case__ , prefix='test' ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.n_obs[type_path] _lowerCAmelCase : List[str] = self.target_lens[type_path] _lowerCAmelCase : str = self.dataset_class( self.tokenizer , type_path=snake_case__ , n_obs=snake_case__ , max_target_length=snake_case__ , **self.dataset_kwargs , ) return dataset def a ( self , snake_case__ , snake_case__ , snake_case__ = False ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_dataset(snake_case__ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": _lowerCAmelCase : Optional[int] = dataset.make_sortish_sampler(snake_case__ , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case__ , batch_size=snake_case__ , collate_fn=dataset.collate_fn , shuffle=snake_case__ , num_workers=self.num_workers , sampler=snake_case__ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": _lowerCAmelCase : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( snake_case__ , batch_sampler=snake_case__ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( snake_case__ , batch_size=snake_case__ , collate_fn=dataset.collate_fn , shuffle=snake_case__ , num_workers=self.num_workers , sampler=snake_case__ , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.get_dataloader('train' , batch_size=self.hparams.train_batch_size , shuffle=snake_case__ ) return dataloader def a ( self ): '''simple docstring''' return self.get_dataloader('val' , batch_size=self.hparams.eval_batch_size ) def a ( self ): '''simple docstring''' return self.get_dataloader('test' , batch_size=self.hparams.eval_batch_size ) @staticmethod def a ( snake_case__ , snake_case__ ): '''simple docstring''' BaseTransformer.add_model_specific_args(snake_case__ , snake_case__ ) add_generic_args(snake_case__ , snake_case__ ) parser.add_argument( '--max_source_length' , default=1024 , type=snake_case__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--max_target_length' , default=56 , type=snake_case__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--val_max_target_length' , default=142 , type=snake_case__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--test_max_target_length' , default=142 , type=snake_case__ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument('--freeze_encoder' , action='store_true' ) parser.add_argument('--freeze_embeds' , action='store_true' ) parser.add_argument('--sortish_sampler' , action='store_true' , default=snake_case__ ) parser.add_argument('--overwrite_output_dir' , action='store_true' , default=snake_case__ ) parser.add_argument('--max_tokens_per_batch' , type=snake_case__ , default=snake_case__ ) parser.add_argument('--logger_name' , type=snake_case__ , choices=['default', 'wandb', 'wandb_shared'] , default='default' ) parser.add_argument('--n_train' , type=snake_case__ , default=-1 , required=snake_case__ , help='# examples. -1 means use all.' ) parser.add_argument('--n_val' , type=snake_case__ , default=500 , required=snake_case__ , help='# examples. -1 means use all.' ) parser.add_argument('--n_test' , type=snake_case__ , default=-1 , required=snake_case__ , help='# examples. -1 means use all.' ) parser.add_argument( '--task' , type=snake_case__ , default='summarization' , required=snake_case__ , help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing' , type=snake_case__ , default=0.0 , required=snake_case__ ) parser.add_argument('--src_lang' , type=snake_case__ , default='' , required=snake_case__ ) parser.add_argument('--tgt_lang' , type=snake_case__ , default='' , required=snake_case__ ) parser.add_argument('--eval_beams' , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument( '--val_metric' , type=snake_case__ , default=snake_case__ , required=snake_case__ , choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length' , type=snake_case__ , default=snake_case__ , help='never generate more than n tokens' ) parser.add_argument('--save_top_k' , type=snake_case__ , default=1 , required=snake_case__ , help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience' , type=snake_case__ , default=-1 , required=snake_case__ , help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ) , ) return parser class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "translation" __magic_name__ = ["loss"] __magic_name__ = ["bleu"] __magic_name__ = "bleu" def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , **snake_case__ ) _lowerCAmelCase : List[Any] = hparams.src_lang _lowerCAmelCase : Optional[int] = hparams.tgt_lang def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return calculate_bleu(snake_case__ , snake_case__ ) def lowercase (_A , _A=None ): """simple docstring""" Path(args.output_dir ).mkdir(exist_ok=_A ) check_output_dir(_A , expected_items=3 ) if model is None: if "summarization" in args.task: _lowerCAmelCase : SummarizationModule = SummarizationModule(_A ) else: _lowerCAmelCase : SummarizationModule = TranslationModule(_A ) _lowerCAmelCase : List[str] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): _lowerCAmelCase : List[str] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase : Dict = os.environ.get('WANDB_PROJECT' , _A ) _lowerCAmelCase : Any = WandbLogger(name=model.output_dir.name , project=_A ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger _lowerCAmelCase : Any = WandbLogger(name=model.output_dir.name , project=f'hf_{dataset}' ) if args.early_stopping_patience >= 0: _lowerCAmelCase : Tuple = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: _lowerCAmelCase : str = False _lowerCAmelCase : Optional[Any] = args.val_metric == 'loss' _lowerCAmelCase : pl.Trainer = generic_train( _A , _A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , _A ) , early_stopping_callback=_A , logger=_A , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model _lowerCAmelCase : Optional[Any] = '' _lowerCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=_A ) ) if checkpoints: _lowerCAmelCase : Tuple = checkpoints[-1] _lowerCAmelCase : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() lowerCAmelCase : List[Any] = pl.Trainer.add_argparse_args(parser) lowerCAmelCase : List[str] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase : str = parser.parse_args() main(args)
25
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Tuple = logging.get_logger(__name__) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = DPTConfig() if "large" in checkpoint_url: _lowerCAmelCase : Tuple = 1_0_2_4 _lowerCAmelCase : Union[str, Any] = 4_0_9_6 _lowerCAmelCase : List[Any] = 2_4 _lowerCAmelCase : Optional[int] = 1_6 _lowerCAmelCase : List[str] = [5, 1_1, 1_7, 2_3] _lowerCAmelCase : Union[str, Any] = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] _lowerCAmelCase : Optional[Any] = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Tuple = 1_5_0 _lowerCAmelCase : List[str] = 'huggingface/label-files' _lowerCAmelCase : Any = 'ade20k-id2label.json' _lowerCAmelCase : int = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase : List[Any] = {int(_A ): v for k, v in idalabel.items()} _lowerCAmelCase : Dict = idalabel _lowerCAmelCase : Optional[int] = {v: k for k, v in idalabel.items()} _lowerCAmelCase : int = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_A , _A ) def lowercase (_A ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _lowerCAmelCase : Tuple = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: _lowerCAmelCase : str = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: _lowerCAmelCase : Union[str, Any] = name.replace('patch_embed' , 'patch_embeddings' ) if "pos_embed" in name: _lowerCAmelCase : List[Any] = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: _lowerCAmelCase : List[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: _lowerCAmelCase : Any = name.replace('proj' , 'projection' ) if "blocks" in name: _lowerCAmelCase : Dict = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: _lowerCAmelCase : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _lowerCAmelCase : Dict = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name: _lowerCAmelCase : List[Any] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _lowerCAmelCase : Any = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: _lowerCAmelCase : List[Any] = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: _lowerCAmelCase : Optional[Any] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: _lowerCAmelCase : Union[str, Any] = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: _lowerCAmelCase : Optional[int] = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: _lowerCAmelCase : List[Any] = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: _lowerCAmelCase : List[str] = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: _lowerCAmelCase : Union[str, Any] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _lowerCAmelCase : List[str] = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: _lowerCAmelCase : Dict = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: _lowerCAmelCase : str = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: _lowerCAmelCase : int = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: _lowerCAmelCase : int = name.replace('conv1' , 'convolution1' ) if "conv2" in name: _lowerCAmelCase : Union[str, Any] = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _lowerCAmelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: _lowerCAmelCase : List[Any] = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: _lowerCAmelCase : Optional[int] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: _lowerCAmelCase : Union[str, Any] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: _lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: _lowerCAmelCase : Any = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: _lowerCAmelCase : str = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: _lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: _lowerCAmelCase : Dict = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: _lowerCAmelCase : int = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: _lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: _lowerCAmelCase : Dict = name.replace('pretrained' , 'dpt' ) if "bn" in name: _lowerCAmelCase : Union[str, Any] = name.replace('bn' , 'batch_norm' ) if "head" in name: _lowerCAmelCase : List[Any] = name.replace('head' , 'head.head' ) if "encoder.norm" in name: _lowerCAmelCase : Dict = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: _lowerCAmelCase : Dict = name.replace('auxlayer' , 'auxiliary_head.head' ) return name def lowercase (_A , _A ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : str = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) _lowerCAmelCase : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : str = in_proj_weight[: config.hidden_size, :] _lowerCAmelCase : Any = in_proj_bias[: config.hidden_size] _lowerCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Optional[Any] = in_proj_bias[-config.hidden_size :] def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCAmelCase : Tuple = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowercase (_A , _A , _A , _A ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : List[Any] = get_dpt_config(_A ) # load original state_dict from URL _lowerCAmelCase : Tuple = torch.hub.load_state_dict_from_url(_A , map_location='cpu' ) # remove certain keys remove_ignore_keys_(_A ) # rename keys for key in state_dict.copy().keys(): _lowerCAmelCase : Any = state_dict.pop(_A ) _lowerCAmelCase : Any = val # read in qkv matrices read_in_q_k_v(_A , _A ) # load HuggingFace model _lowerCAmelCase : Dict = DPTForSemanticSegmentation(_A ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # Check outputs on an image _lowerCAmelCase : Any = 4_8_0 if 'ade' in checkpoint_url else 3_8_4 _lowerCAmelCase : List[str] = DPTImageProcessor(size=_A ) _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : Dict = image_processor(_A , return_tensors='pt' ) # forward pass _lowerCAmelCase : Union[str, Any] = model(**_A ).logits if 'ade' in checkpoint_url else model(**_A ).predicted_depth # Assert logits _lowerCAmelCase : Optional[Any] = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] ) if "ade" in checkpoint_url: _lowerCAmelCase : Union[str, Any] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] ) assert outputs.shape == torch.Size(_A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , _A , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , _A ) ) Path(_A ).mkdir(exist_ok=_A ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(_A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_A ) if push_to_hub: print('Pushing model to hub...' ) model.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=_A , ) image_processor.push_to_hub( repo_path_or_name=Path(_A , _A ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=_A , ) if __name__ == "__main__": lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt""", type=str, help="""URL of the original DPT checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) parser.add_argument( """--model_name""", default="""dpt-large""", type=str, help="""Name of the model, in case you're pushing to the hub.""", ) lowerCAmelCase : int = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
25
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : Any = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "visual_bert" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=512 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Dict = max_position_embeddings _lowerCAmelCase : Union[str, Any] = hidden_size _lowerCAmelCase : Any = visual_embedding_dim _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Dict = num_attention_heads _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : str = hidden_act _lowerCAmelCase : Union[str, Any] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Tuple = type_vocab_size _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : int = bypass_transformer _lowerCAmelCase : Union[str, Any] = special_visual_initialize
25
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : List[str] = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "vit_mae" def __init__( self , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=True , snake_case__=16 , snake_case__=512 , snake_case__=8 , snake_case__=2048 , snake_case__=0.75 , snake_case__=False , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Any = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Dict = layer_norm_eps _lowerCAmelCase : List[str] = image_size _lowerCAmelCase : int = patch_size _lowerCAmelCase : Dict = num_channels _lowerCAmelCase : Tuple = qkv_bias _lowerCAmelCase : Tuple = decoder_num_attention_heads _lowerCAmelCase : Union[str, Any] = decoder_hidden_size _lowerCAmelCase : int = decoder_num_hidden_layers _lowerCAmelCase : List[Any] = decoder_intermediate_size _lowerCAmelCase : Any = mask_ratio _lowerCAmelCase : Optional[int] = norm_pix_loss
25
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
1
'''simple docstring''' lowerCAmelCase : int = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCAmelCase : Optional[int] = frozenset(["""prompt""", """negative_prompt"""]) lowerCAmelCase : Optional[int] = frozenset([]) lowerCAmelCase : int = frozenset(["""image"""]) lowerCAmelCase : Dict = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase : Optional[int] = frozenset(["""image"""]) lowerCAmelCase : List[Any] = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCAmelCase : List[Any] = frozenset(["""prompt""", """image""", """negative_prompt"""]) lowerCAmelCase : List[str] = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) lowerCAmelCase : Dict = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) lowerCAmelCase : List[str] = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase : Any = frozenset(["""image""", """mask_image"""]) lowerCAmelCase : Any = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) lowerCAmelCase : str = frozenset(["""example_image""", """image""", """mask_image"""]) lowerCAmelCase : Dict = frozenset(["""class_labels"""]) lowerCAmelCase : Any = frozenset(["""class_labels"""]) lowerCAmelCase : str = frozenset(["""batch_size"""]) lowerCAmelCase : Dict = frozenset([]) lowerCAmelCase : str = frozenset(["""batch_size"""]) lowerCAmelCase : Any = frozenset([]) lowerCAmelCase : int = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) lowerCAmelCase : List[Any] = frozenset(["""prompt""", """negative_prompt"""]) lowerCAmelCase : Dict = frozenset(["""input_tokens"""]) lowerCAmelCase : str = frozenset(["""input_tokens"""])
25
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
1
'''simple docstring''' import functools def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = len(_A ) _lowerCAmelCase : List[str] = len(_A ) @functools.cache def min_distance(_A , _A ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa _lowerCAmelCase : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _A ) , 1 + min_distance(_A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
25
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowercase (_A , _A ): """simple docstring""" assert isinstance(_A , _A ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def lowercase (_A , _A , _A , _A ): """simple docstring""" _lowerCAmelCase : str = tmp_path / 'cache' _lowerCAmelCase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCAmelCase : Optional[int] = SqlDatasetReader( 'dataset' , 'sqlite:///' + sqlite_path , cache_dir=_A , keep_in_memory=_A ).read() _check_sql_dataset(_A , _A ) @require_sqlalchemy @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def lowercase (_A , _A , _A , _A ): """simple docstring""" _lowerCAmelCase : Dict = tmp_path / 'cache' _lowerCAmelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _lowerCAmelCase : Tuple = features.copy() if features else default_expected_features _lowerCAmelCase : Optional[Any] = ( Features({feature: Value(_A ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCAmelCase : List[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , features=_A , cache_dir=_A ).read() _check_sql_dataset(_A , _A ) def lowercase (_A ): """simple docstring""" with contextlib.closing(sqlitea.connect(_A ) ) as con: _lowerCAmelCase : Any = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = tmp_path / 'cache' _lowerCAmelCase : Union[str, Any] = os.path.join(_A , 'tmp.sql' ) _lowerCAmelCase : Any = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=_A ).read() SqlDatasetWriter(_A , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=1 ).write() _lowerCAmelCase : int = iter_sql_file(_A ) _lowerCAmelCase : List[str] = iter_sql_file(_A ) for rowa, rowa in zip(_A , _A ): assert rowa == rowa @require_sqlalchemy def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : str = tmp_path / 'cache' _lowerCAmelCase : Any = os.path.join(_A , 'tmp.sql' ) _lowerCAmelCase : int = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=_A ).read() SqlDatasetWriter(_A , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=2 ).write() _lowerCAmelCase : Any = iter_sql_file(_A ) _lowerCAmelCase : List[Any] = iter_sql_file(_A ) for rowa, rowa in zip(_A , _A ): assert rowa == rowa @require_sqlalchemy def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = tmp_path / 'cache' _lowerCAmelCase : Optional[int] = os.path.join(_A , 'tmp.sql' ) _lowerCAmelCase : List[Any] = SqlDatasetReader('dataset' , 'sqlite:///' + sqlite_path , cache_dir=_A ).read() with pytest.raises(_A ): SqlDatasetWriter(_A , 'dataset' , 'sqlite:///' + output_sqlite_path , num_proc=0 ).write()
25
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
1
'''simple docstring''' import re import string import numpy as np import datasets lowerCAmelCase : List[str] = """ Returns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list. """ lowerCAmelCase : Any = """ Args: predictions: List of predicted texts. references: List of reference texts. regexes_to_ignore: List, defaults to None. Regex expressions of characters to ignore when calculating the exact matches. Note: these regexes are removed from the input data before the changes based on the options below (e.g. ignore_case, ignore_punctuation, ignore_numbers) are applied. ignore_case: Boolean, defaults to False. If true, turns everything to lowercase so that capitalization differences are ignored. ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before comparing predictions and references. Returns: exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive. Examples: >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 25.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 50.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True) >>> print(round(results[\"exact_match\"], 1)) 75.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"] >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"] >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True) >>> print(round(results[\"exact_match\"], 1)) 100.0 >>> exact_match = datasets.load_metric(\"exact_match\") >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It's like comparing oranges and apples.\"] >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It's like comparing apples and oranges.\"] >>> results = exact_match.compute(references=refs, predictions=preds) >>> print(round(results[\"exact_match\"], 1)) 33.3 """ lowerCAmelCase : Any = """ """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def a ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , reference_urls=[] , ) def a ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__=False , snake_case__=False , snake_case__=False , ): '''simple docstring''' if regexes_to_ignore is not None: for s in regexes_to_ignore: _lowerCAmelCase : Optional[Any] = np.array([re.sub(snake_case__ , '' , snake_case__ ) for x in predictions] ) _lowerCAmelCase : Tuple = np.array([re.sub(snake_case__ , '' , snake_case__ ) for x in references] ) else: _lowerCAmelCase : str = np.asarray(snake_case__ ) _lowerCAmelCase : Any = np.asarray(snake_case__ ) if ignore_case: _lowerCAmelCase : Dict = np.char.lower(snake_case__ ) _lowerCAmelCase : List[Any] = np.char.lower(snake_case__ ) if ignore_punctuation: _lowerCAmelCase : Optional[Any] = string.punctuation.maketrans('' , '' , string.punctuation ) _lowerCAmelCase : Dict = np.char.translate(snake_case__ , table=snake_case__ ) _lowerCAmelCase : Tuple = np.char.translate(snake_case__ , table=snake_case__ ) if ignore_numbers: _lowerCAmelCase : Optional[Any] = string.digits.maketrans('' , '' , string.digits ) _lowerCAmelCase : Dict = np.char.translate(snake_case__ , table=snake_case__ ) _lowerCAmelCase : int = np.char.translate(snake_case__ , table=snake_case__ ) _lowerCAmelCase : int = predictions == references return {"exact_match": np.mean(snake_case__ ) * 100}
25
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
1
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def lowercase (_A ): """simple docstring""" return (data["data"], data["target"]) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = XGBClassifier() classifier.fit(_A , _A ) return classifier def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = load_iris() _lowerCAmelCase , _lowerCAmelCase : List[str] = data_handling(_A ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = train_test_split( _A , _A , test_size=0.25 ) _lowerCAmelCase : Tuple = iris['target_names'] # Create an XGBoost Classifier from the training data _lowerCAmelCase : Optional[Any] = xgboost(_A , _A ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _A , _A , _A , display_labels=_A , cmap='Blues' , normalize='true' , ) plt.title('Normalized Confusion Matrix - IRIS Dataset' ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
1
'''simple docstring''' import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Any = {"""vocab_file""": """vocab.txt"""} lowerCAmelCase : Union[str, Any] = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowerCAmelCase : Tuple = { """openbmb/cpm-ant-10b""": 10_24, } def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = collections.OrderedDict() with open(_A , 'r' , encoding='utf-8' ) as reader: _lowerCAmelCase : List[str] = reader.readlines() for index, token in enumerate(_A ): _lowerCAmelCase : Tuple = token.rstrip('\n' ) _lowerCAmelCase : Tuple = index return vocab class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self , snake_case__ , snake_case__="<unk>" , snake_case__=200 ): '''simple docstring''' _lowerCAmelCase : Any = vocab _lowerCAmelCase : Any = unk_token _lowerCAmelCase : Dict = max_input_chars_per_word def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = list(snake_case__ ) if len(snake_case__ ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase : Any = 0 _lowerCAmelCase : List[Any] = [] while start < len(snake_case__ ): _lowerCAmelCase : Any = len(snake_case__ ) _lowerCAmelCase : str = None while start < end: _lowerCAmelCase : Tuple = ''.join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase : Dict = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(snake_case__ ) _lowerCAmelCase : Any = end return sub_tokens class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = False def __init__( self , snake_case__ , snake_case__="<d>" , snake_case__="</d>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="<unk>" , snake_case__="</n>" , snake_case__="</_>" , snake_case__="left" , **snake_case__ , ): '''simple docstring''' requires_backends(self , ['jieba'] ) super().__init__( bod_token=snake_case__ , eod_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , pad_token=snake_case__ , unk_token=snake_case__ , line_token=snake_case__ , space_token=snake_case__ , padding_side=snake_case__ , **snake_case__ , ) _lowerCAmelCase : Optional[int] = bod_token _lowerCAmelCase : Tuple = eod_token _lowerCAmelCase : Optional[Any] = load_vocab(snake_case__ ) _lowerCAmelCase : Dict = self.encoder[space_token] _lowerCAmelCase : Any = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) _lowerCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Tuple = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def a ( self ): '''simple docstring''' return self.encoder[self.bod_token] @property def a ( self ): '''simple docstring''' return self.encoder[self.eod_token] @property def a ( self ): '''simple docstring''' return self.encoder["\n"] @property def a ( self ): '''simple docstring''' return len(self.encoder ) def a ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [] for x in jieba.cut(snake_case__ , cut_all=snake_case__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(snake_case__ ) ) return output_tokens def a ( self , snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = [i for i in token_ids if i >= 0] _lowerCAmelCase : Optional[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(snake_case__ , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return token in self.encoder def a ( self , snake_case__ ): '''simple docstring''' return "".join(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def a ( self , snake_case__ ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if os.path.isdir(snake_case__ ): _lowerCAmelCase : List[Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) else: _lowerCAmelCase : int = (filename_prefix + '-' if filename_prefix else '') + save_directory _lowerCAmelCase : Tuple = 0 if " " in self.encoder: _lowerCAmelCase : str = self.encoder[' '] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase : Union[str, Any] = self.encoder['\n'] del self.encoder["\n"] _lowerCAmelCase : List[str] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda snake_case__ : x[1] ) ) with open(snake_case__ , 'w' , encoding='utf-8' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ' Please check that the vocabulary is not corrupted!' ) _lowerCAmelCase : Optional[Any] = token_index writer.write(token + '\n' ) index += 1 return (vocab_file,) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def a ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) return [1] + ([0] * len(snake_case__ ))
25
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
1
'''simple docstring''' from __future__ import annotations class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = order # a_{0} ... a_{k} _lowerCAmelCase : List[Any] = [1.0] + [0.0] * order # b_{0} ... b_{k} _lowerCAmelCase : str = [1.0] + [0.0] * order # x[n-1] ... x[n-k] _lowerCAmelCase : List[Any] = [0.0] * self.order # y[n-1] ... y[n-k] _lowerCAmelCase : Optional[int] = [0.0] * self.order def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' if len(snake_case__ ) < self.order: _lowerCAmelCase : str = [1.0, *a_coeffs] if len(snake_case__ ) != self.order + 1: _lowerCAmelCase : Dict = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case__ )}' ) raise ValueError(snake_case__ ) if len(snake_case__ ) != self.order + 1: _lowerCAmelCase : Tuple = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case__ )}' ) raise ValueError(snake_case__ ) _lowerCAmelCase : Optional[Any] = a_coeffs _lowerCAmelCase : Union[str, Any] = b_coeffs def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) _lowerCAmelCase : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] _lowerCAmelCase : int = self.input_history[:-1] _lowerCAmelCase : Optional[Any] = self.output_history[:-1] _lowerCAmelCase : Tuple = sample _lowerCAmelCase : str = result return result
25
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
1
'''simple docstring''' import math import unittest def lowercase (_A ): """simple docstring""" assert isinstance(_A , _A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def a ( self ): '''simple docstring''' with self.assertRaises(snake_case__ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
25
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = LEDTokenizer __magic_name__ = LEDTokenizerFast __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : Optional[int] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCAmelCase : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : Optional[int] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase : str = {'unk_token': '<unk>'} _lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def a ( self ): '''simple docstring''' return LEDTokenizer.from_pretrained('allenai/led-base-16384' ) @cached_property def a ( self ): '''simple docstring''' return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase : Optional[Any] = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Dict = tokenizer(snake_case__ , max_length=len(snake_case__ ) , padding=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(snake_case__ , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Dict = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) self.assertIn('input_ids' , snake_case__ ) self.assertIn('attention_mask' , snake_case__ ) self.assertNotIn('labels' , snake_case__ ) self.assertNotIn('decoder_attention_mask' , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = tokenizer(text_target=snake_case__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : List[Any] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['A long paragraph for summarization.'] _lowerCAmelCase : str = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = tokenizer(snake_case__ , return_tensors='pt' ) _lowerCAmelCase : List[Any] = tokenizer(text_target=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : str = inputs['input_ids'] _lowerCAmelCase : int = targets['input_ids'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def a ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = ['Summary of the text.', 'Another summary.'] _lowerCAmelCase : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] _lowerCAmelCase : List[Any] = tokenizer(snake_case__ , padding=snake_case__ ) _lowerCAmelCase : Tuple = [[0] * len(snake_case__ ) for x in encoded_output['input_ids']] _lowerCAmelCase : Optional[Any] = tokenizer.pad(snake_case__ ) self.assertSequenceEqual(outputs['global_attention_mask'] , snake_case__ ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : List[str] = 'A, <mask> AllenNLP sentence.' _lowerCAmelCase : Union[str, Any] = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) _lowerCAmelCase : Dict = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase : str = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
25
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
1
'''simple docstring''' def lowercase (_A , _A ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(_A , int(b / 2 ) ) * actual_power(_A , int(b / 2 ) ) else: return a * actual_power(_A , int(b / 2 ) ) * actual_power(_A , int(b / 2 ) ) def lowercase (_A , _A ): """simple docstring""" if b < 0: return 1 / actual_power(_A , _A ) return actual_power(_A , _A ) if __name__ == "__main__": print(power(-2, -3))
25
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
1
'''simple docstring''' def lowercase (_A = 2_0_0 ): """simple docstring""" _lowerCAmelCase : Tuple = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 2_0_0] _lowerCAmelCase : List[str] = [0] * (pence + 1) _lowerCAmelCase : Tuple = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(_A , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
25
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
1
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MvpTokenizer __magic_name__ = MvpTokenizerFast __magic_name__ = True __magic_name__ = filter_roberta_detectors def a ( self ): '''simple docstring''' super().setUp() _lowerCAmelCase : int = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowerCAmelCase : Dict = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) _lowerCAmelCase : Dict = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase : int = {'unk_token': '<unk>'} _lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case__ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def a ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def a ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowerCAmelCase : Optional[Any] = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Tuple = tokenizer(snake_case__ , max_length=len(snake_case__ ) , padding=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) _lowerCAmelCase : Tuple = batch.input_ids.tolist()[0] self.assertListEqual(snake_case__ , snake_case__ ) # Test that special tokens are reset @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : int = tokenizer(snake_case__ , padding=snake_case__ , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , snake_case__ ) self.assertIn('attention_mask' , snake_case__ ) self.assertNotIn('labels' , snake_case__ ) self.assertNotIn('decoder_attention_mask' , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Tuple = tokenizer(text_target=snake_case__ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def a ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Optional[Any] = tokenizer( ['I am a small frog' * 1024, 'I am a small frog'] , padding=snake_case__ , truncation=snake_case__ , return_tensors='pt' ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ['A long paragraph for summarization.'] _lowerCAmelCase : List[Any] = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: _lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ , text_target=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : int = inputs['input_ids'] _lowerCAmelCase : str = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[int] = 'A, <mask> AllenNLP sentence.' _lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) _lowerCAmelCase : Union[str, Any] = tokenizer_p.encode_plus(snake_case__ , add_special_tokens=snake_case__ , return_token_type_ids=snake_case__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( snake_case__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
25
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
1
'''simple docstring''' import requests lowerCAmelCase : Optional[Any] = """YOUR API KEY""" def lowercase (_A , _A = giphy_api_key ): """simple docstring""" _lowerCAmelCase : Optional[Any] = '+'.join(query.split() ) _lowerCAmelCase : Any = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' _lowerCAmelCase : Dict = requests.get(_A ).json()['data'] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("""\n""".join(get_gifs("""space ship""")))
25
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase = pytest.mark.integration @require_faiss class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(__a ) for x in np.arange(30 ).tolist()]} ) return dset def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : Dataset = self._create_dummy_dataset() _lowerCAmelCase : Dict = dset.map( lambda snake_case__ , snake_case__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__a , keep_in_memory=__a ) _lowerCAmelCase : List[Any] = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _lowerCAmelCase : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _lowerCAmelCase : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) _lowerCAmelCase : str = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(__a , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def a ( self ): '''simple docstring''' from elasticsearch import Elasticsearch _lowerCAmelCase : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: _lowerCAmelCase : Any = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) _lowerCAmelCase : Dict = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} _lowerCAmelCase : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=__a ) _lowerCAmelCase : str = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _lowerCAmelCase : Dict = np.zeros(5 , dtype=np.floataa ) _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : List[Any] = index.search(__a ) self.assertRaises(__a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _lowerCAmelCase : List[str] = np.eye(5 , dtype=np.floataa )[::-1] _lowerCAmelCase : Dict = index.search_batch(__a ) self.assertRaises(__a , index.search_batch , queries[0] ) _lowerCAmelCase : Any = [scores[0] for scores in total_scores] _lowerCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __a ) def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : int = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _lowerCAmelCase : List[str] = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__a ): _lowerCAmelCase : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : Tuple = faiss.IndexFlat(5 ) _lowerCAmelCase : List[Any] = FaissIndex(custom_index=__a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def a ( self ): '''simple docstring''' import faiss _lowerCAmelCase : Optional[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__a ) as tmp_file: index.save(tmp_file.name ) _lowerCAmelCase : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _lowerCAmelCase : List[Any] = np.zeros(5 , dtype=np.floataa ) _lowerCAmelCase : Any = 1 _lowerCAmelCase : int = index.search(__a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowercase (_A ): """simple docstring""" import faiss _lowerCAmelCase : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) _lowerCAmelCase : Dict = 'index.faiss' _lowerCAmelCase : Any = f'mock://{index_name}' index.save(_UpperCAmelCase , storage_options=mockfs.storage_options ) _lowerCAmelCase : Any = FaissIndex.load(_UpperCAmelCase , storage_options=mockfs.storage_options ) _lowerCAmelCase : Any = np.zeros(5 , dtype=np.floataa ) _lowerCAmelCase : Any = 1 _lowerCAmelCase : Tuple = index.search(_UpperCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: _lowerCAmelCase : int = Elasticsearch() _lowerCAmelCase : Dict = {'acknowledged': True} _lowerCAmelCase : List[Any] = ElasticSearchIndex(es_client=__a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query _lowerCAmelCase : Optional[Any] = 'foo' _lowerCAmelCase : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _lowerCAmelCase : List[Any] = index.search(__a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _lowerCAmelCase : Dict = 'foo' _lowerCAmelCase : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _lowerCAmelCase : Optional[Any] = index.search(__a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _lowerCAmelCase : List[Any] = ['foo', 'bar', 'foobar'] _lowerCAmelCase : str = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _lowerCAmelCase : Any = index.search_batch(__a ) _lowerCAmelCase : Any = [scores[0] for scores in total_scores] _lowerCAmelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a ) # batched queries with timeout _lowerCAmelCase : Tuple = ['foo', 'bar', 'foobar'] _lowerCAmelCase : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _lowerCAmelCase : int = index.search_batch(__a , request_timeout=30 ) _lowerCAmelCase : Any = [scores[0] for scores in total_scores] _lowerCAmelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(__a ) , 0 ) self.assertListEqual([1, 1, 1] , __a )
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) class UpperCamelCase__ ( A__ ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , __A , ) super().__init__(*__A , **__A )
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' import requests from bsa import BeautifulSoup def lowercase (_A = "https://www.worldometers.info/coronavirus" ): """simple docstring""" _lowerCAmelCase : List[str] = BeautifulSoup(requests.get(__UpperCAmelCase ).text , 'html.parser' ) _lowerCAmelCase : List[Any] = soup.findAll('h1' ) _lowerCAmelCase : int = soup.findAll('div' , {'class': 'maincounter-number'} ) keys += soup.findAll('span' , {'class': 'panel-title'} ) values += soup.findAll('div' , {'class': 'number-table-main'} ) return {key.text.strip(): value.text.strip() for key, value in zip(__UpperCAmelCase , __UpperCAmelCase )} if __name__ == "__main__": print("""\033[1m""" + """COVID-19 Status of the World""" + """\033[0m\n""") for key, value in world_covidaa_stats().items(): print(F'''{key}\n{value}\n''')
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( A__ ): """simple docstring""" __magic_name__ = "new-model" if is_tf_available(): class UpperCamelCase__ ( A__ ): """simple docstring""" __magic_name__ = NewModelConfig @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : int = 'bert-base-cased' _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Union[str, Any] = TFAutoModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'bert-base-cased' _lowerCAmelCase : Tuple = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Union[str, Any] = TFAutoModelForPreTraining.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Optional[int] = TFAutoModelForCausalLM.from_pretrained(__snake_case ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = TFAutoModelForCausalLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : List[str] = TFAutoModelForMaskedLM.from_pretrained(__snake_case ) _lowerCAmelCase , _lowerCAmelCase : int = TFAutoModelForMaskedLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case ) _lowerCAmelCase , _lowerCAmelCase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(__snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : List[str] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Dict = TFAutoModelForSequenceClassification.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow def a ( self ): '''simple docstring''' for model_name in ["bert-base-uncased"]: _lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Tuple = TFAutoModelForQuestionAnswering.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) @slow @require_tensorflow_probability def a ( self ): '''simple docstring''' for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _lowerCAmelCase : Dict = AutoConfig.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Any = TFAutoModelForTableQuestionAnswering.from_pretrained(__snake_case ) _lowerCAmelCase , _lowerCAmelCase : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( __snake_case , output_loading_info=__snake_case ) self.assertIsNotNone(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4410 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = TFAutoModelWithLMHead.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) self.assertEqual(model.num_parameters() , 1_4410 ) self.assertEqual(model.num_parameters(only_trainable=__snake_case ) , 1_4410 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(__snake_case , __snake_case ) _lowerCAmelCase : Any = copy.deepcopy(model.config ) _lowerCAmelCase : List[Any] = ['FunnelBaseModel'] _lowerCAmelCase : Any = TFAutoModel.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) _lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) def a ( self ): '''simple docstring''' try: AutoConfig.register('new-model' , __snake_case ) _lowerCAmelCase : Optional[Any] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) auto_class.register(__snake_case , __snake_case ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__snake_case ): auto_class.register(__snake_case , __snake_case ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCAmelCase : Union[str, Any] = BertModelTester(self ).get_config() _lowerCAmelCase : Union[str, Any] = NewModelConfig(**tiny_config.to_dict() ) _lowerCAmelCase : Tuple = auto_class.from_config(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(__snake_case ) _lowerCAmelCase : int = auto_class.from_pretrained(__snake_case ) self.assertIsInstance(__snake_case , __snake_case ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def a ( self ): '''simple docstring''' with self.assertRaisesRegex( __snake_case , 'bert-base is not a local folder and is not a valid model identifier' ): _lowerCAmelCase : int = TFAutoModel.from_pretrained('bert-base' ) def a ( self ): '''simple docstring''' with self.assertRaisesRegex( __snake_case , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _lowerCAmelCase : Optional[Any] = TFAutoModel.from_pretrained(__snake_case , revision='aaaaaa' ) def a ( self ): '''simple docstring''' with self.assertRaisesRegex( __snake_case , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a ( self ): '''simple docstring''' with self.assertRaisesRegex(__snake_case , 'Use `from_pt=True` to load this model' ): _lowerCAmelCase : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint _lowerCAmelCase : List[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : int = { """configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegaForCausalLM""", """MegaForMaskedLM""", """MegaForMultipleChoice""", """MegaForQuestionAnswering""", """MegaForSequenceClassification""", """MegaForTokenClassification""", """MegaModel""", """MegaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import math def lowercase (_A ): """simple docstring""" if not isinstance(__a , __a ): _lowerCAmelCase : Tuple = f'Input value of [number={number}] must be an integer' raise TypeError(__a ) if number < 1: _lowerCAmelCase : Any = f'Input value of [number={number}] must be > 0' raise ValueError(__a ) elif number == 1: return 3 elif number == 2: return 5 else: _lowerCAmelCase : str = int(math.log(number // 3 , 2 ) ) + 2 _lowerCAmelCase : Union[str, Any] = [3, 5] _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 3 for block in range(1 , __a ): for _ in range(__a ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): lowerCAmelCase : int = 0 try: lowerCAmelCase : Dict = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=18 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , ): '''simple docstring''' _lowerCAmelCase : List[str] = size if size is not None else {'shortest_edge': 18} _lowerCAmelCase : Optional[Any] = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase : int = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : Optional[Any] = num_channels _lowerCAmelCase : Optional[Any] = image_size _lowerCAmelCase : Tuple = min_resolution _lowerCAmelCase : str = max_resolution _lowerCAmelCase : Tuple = do_resize _lowerCAmelCase : List[Any] = size _lowerCAmelCase : Any = do_center_crop _lowerCAmelCase : str = crop_size _lowerCAmelCase : Tuple = do_normalize _lowerCAmelCase : List[Any] = image_mean _lowerCAmelCase : Optional[int] = image_std def a ( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __magic_name__ = LevitImageProcessor if is_vision_available() else None def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = LevitImageProcessingTester(self ) @property def a ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_center_crop' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input _lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : List[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase : Optional[int] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = IFPipeline __magic_name__ = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} __magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def a ( self ): '''simple docstring''' return self._get_dummy_components() def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(_snake_case ).startswith('mps' ): _lowerCAmelCase : List[Any] = torch.manual_seed(_snake_case ) else: _lowerCAmelCase : Tuple = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def a ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def a ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def a ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a ( self ): '''simple docstring''' self._test_save_load_local() def a ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0' , variant='fp16' , torch_dtype=torch.floataa ) _lowerCAmelCase : List[str] = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0' , variant='fp16' , torch_dtype=torch.floataa , text_encoder=_snake_case , tokenizer=_snake_case ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = pipe_a.encode_prompt('anime turtle' , device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() _lowerCAmelCase : int = None _lowerCAmelCase : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(_snake_case , _snake_case , _snake_case , _snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img _lowerCAmelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) _lowerCAmelCase : Dict = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(_snake_case , _snake_case , _snake_case , _snake_case ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting _lowerCAmelCase : Any = IFInpaintingPipeline(**pipe_a.components ) _lowerCAmelCase : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(_snake_case , _snake_case , _snake_case , _snake_case ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _start_torch_memory_measurement() _lowerCAmelCase : List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Any = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='np' , ) _lowerCAmelCase : List[str] = output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 _lowerCAmelCase : List[str] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _start_torch_memory_measurement() _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : List[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Optional[Any] = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='np' , ) _lowerCAmelCase : str = output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : List[str] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : Union[str, Any] = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _start_torch_memory_measurement() _lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(_snake_case ) _lowerCAmelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , num_inference_steps=2 , generator=_snake_case , output_type='np' , ) _lowerCAmelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) _lowerCAmelCase : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 _lowerCAmelCase : Union[str, Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) # pipeline 2 _start_torch_memory_measurement() _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : int = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(_snake_case ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(_snake_case ) _lowerCAmelCase : Tuple = pipe_a( prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , image=_snake_case , mask_image=_snake_case , original_image=_snake_case , generator=_snake_case , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase : str = output.images[0] assert image.shape == (256, 256, 3) _lowerCAmelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 _lowerCAmelCase : Dict = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(_snake_case , _snake_case ) def lowercase (): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase : Optional[int] = logging.get_logger(__name__) class UpperCamelCase__ ( __A ): """simple docstring""" __magic_name__ = ['pixel_values'] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ): '''simple docstring''' super().__init__(**__lowercase ) _lowerCAmelCase : Dict = size if size is not None else {'shortest_edge': 256} _lowerCAmelCase : Any = get_size_dict(__lowercase , default_to_square=__lowercase ) _lowerCAmelCase : Any = crop_size if crop_size is not None else {'height': 224, 'width': 224} _lowerCAmelCase : int = get_size_dict(__lowercase , param_name='crop_size' ) _lowerCAmelCase : List[str] = do_resize _lowerCAmelCase : Tuple = size _lowerCAmelCase : List[str] = resample _lowerCAmelCase : Dict = do_center_crop _lowerCAmelCase : List[Any] = crop_size _lowerCAmelCase : str = do_rescale _lowerCAmelCase : Any = rescale_factor _lowerCAmelCase : Dict = do_normalize _lowerCAmelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : str = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size: raise ValueError(F'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' ) _lowerCAmelCase : Optional[int] = get_resize_output_image_size(__lowercase , size=size['shortest_edge'] , default_to_square=__lowercase ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def a ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Tuple = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}' ) return center_crop(__lowercase , size=(size['height'], size['width']) , data_format=__lowercase , **__lowercase ) def a ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ ): '''simple docstring''' return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): '''simple docstring''' return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : int = size if size is not None else self.size _lowerCAmelCase : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) _lowerCAmelCase : Optional[int] = resample if resample is not None else self.resample _lowerCAmelCase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Dict = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : int = get_size_dict(__lowercase , param_name='crop_size' ) _lowerCAmelCase : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Optional[Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std _lowerCAmelCase : List[Any] = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowerCAmelCase : List[str] = [to_numpy_array(__lowercase ) for image in images] if do_resize: _lowerCAmelCase : Union[str, Any] = [self.resize(image=__lowercase , size=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: _lowerCAmelCase : Tuple = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: _lowerCAmelCase : Optional[Any] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: _lowerCAmelCase : Optional[int] = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] _lowerCAmelCase : Optional[int] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] _lowerCAmelCase : List[Any] = {'pixel_values': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__lowercase ) != len(__lowercase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__lowercase ): _lowerCAmelCase : Any = target_sizes.numpy() _lowerCAmelCase : Optional[int] = [] for idx in range(len(__lowercase ) ): _lowerCAmelCase : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__lowercase ) _lowerCAmelCase : Tuple = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__lowercase ) else: _lowerCAmelCase : Optional[int] = logits.argmax(dim=1 ) _lowerCAmelCase : str = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ = "" , snake_case__ = False ): '''simple docstring''' _lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _lowerCAmelCase : Optional[int] = is_leaf _lowerCAmelCase : str = prefix def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def a ( self , snake_case__ ): '''simple docstring''' for word in words: self.insert(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' if self.prefix == word: _lowerCAmelCase : List[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCAmelCase : Tuple = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: _lowerCAmelCase : str = self.nodes[word[0]] _lowerCAmelCase : Optional[Any] = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCAmelCase : Optional[Any] = remaining_prefix _lowerCAmelCase : Optional[Any] = self.nodes[matching_string[0]] _lowerCAmelCase : str = RadixNode(snake_case__ , snake_case__ ) _lowerCAmelCase : List[str] = aux_node if remaining_word == "": _lowerCAmelCase : int = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: _lowerCAmelCase : Dict = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: _lowerCAmelCase : str = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _lowerCAmelCase : List[str] = list(self.nodes.values() )[0] _lowerCAmelCase : int = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCAmelCase : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _lowerCAmelCase : Tuple = False # If there is 1 edge, we merge it with its child else: _lowerCAmelCase : List[str] = list(incoming_node.nodes.values() )[0] _lowerCAmelCase : Any = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCAmelCase : Any = merging_node.nodes return True def a ( self , snake_case__ = 0 ): '''simple docstring''' if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = "banana bananas bandana band apple all beast".split() _lowerCAmelCase : Union[str, Any] = RadixNode() root.insert_many(__lowerCamelCase ) assert all(root.find(__lowerCamelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def lowercase (): """simple docstring""" assert test_trie() def lowercase (): """simple docstring""" _lowerCAmelCase : List[str] = RadixNode() _lowerCAmelCase : List[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(__lowerCamelCase ) print('Words:' , __lowerCamelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
lowerCAmelCase : Optional[int] = [ """Audio""", """Array2D""", """Array3D""", """Array4D""", """Array5D""", """ClassLabel""", """Features""", """Sequence""", """Value""", """Image""", """Translation""", """TranslationVariableLanguages""", ] from .audio import Audio from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value from .image import Image from .translation import Translation, TranslationVariableLanguages
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = StableDiffusionInpaintPipeline __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __magic_name__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __magic_name__ = frozenset([] ) def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=snake_case__ , ) _lowerCAmelCase : Optional[Any] = PNDMScheduler(skip_prk_steps=snake_case__ ) torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _lowerCAmelCase : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='gelu' , projection_dim=512 , ) _lowerCAmelCase : int = CLIPTextModel(snake_case__ ) _lowerCAmelCase : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowerCAmelCase : Optional[int] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Optional[int] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((64, 64) ) _lowerCAmelCase : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert('RGB' ).resize((64, 64) ) if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : str = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : int = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'image': init_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowerCAmelCase : Union[str, Any] = self.get_dummy_components() _lowerCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline(**snake_case__ ) _lowerCAmelCase : Tuple = sd_pipe.to(snake_case__ ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Dict = self.get_dummy_inputs(snake_case__ ) _lowerCAmelCase : Any = sd_pipe(**snake_case__ ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench.npy' ) _lowerCAmelCase : List[Any] = 'stabilityai/stable-diffusion-2-inpainting' _lowerCAmelCase : List[str] = StableDiffusionInpaintPipeline.from_pretrained(snake_case__ , safety_checker=snake_case__ ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() _lowerCAmelCase : Optional[int] = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase : Tuple = torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type='np' , ) _lowerCAmelCase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint' '/yellow_cat_sitting_on_a_park_bench_fp16.npy' ) _lowerCAmelCase : int = 'stabilityai/stable-diffusion-2-inpainting' _lowerCAmelCase : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , torch_dtype=torch.floataa , safety_checker=snake_case__ , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing() _lowerCAmelCase : List[str] = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase : str = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , output_type='np' , ) _lowerCAmelCase : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def a ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _lowerCAmelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) _lowerCAmelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) _lowerCAmelCase : Optional[Any] = 'stabilityai/stable-diffusion-2-inpainting' _lowerCAmelCase : List[Any] = PNDMScheduler.from_pretrained(snake_case__ , subfolder='scheduler' ) _lowerCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline.from_pretrained( snake_case__ , safety_checker=snake_case__ , scheduler=snake_case__ , torch_dtype=torch.floataa , ) pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _lowerCAmelCase : str = 'Face of a yellow cat, high resolution, sitting on a park bench' _lowerCAmelCase : List[str] = torch.manual_seed(0 ) _lowerCAmelCase : Dict = pipe( prompt=snake_case__ , image=snake_case__ , mask_image=snake_case__ , generator=snake_case__ , num_inference_steps=2 , output_type='np' , ) _lowerCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : Optional[Any] = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""ConditionalDetrFeatureExtractor"""] lowerCAmelCase : Optional[Any] = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor lowerCAmelCase : Dict = logging.get_logger(__name__) class UpperCamelCase__ ( a_ ): """simple docstring""" def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient lowerCAmelCase : Optional[int] = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = test_results.split(' ' ) _lowerCAmelCase : Any = 0 _lowerCAmelCase : Any = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. _lowerCAmelCase : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__a ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = {} _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : int = False for line in failures_short_lines.split('\n' ): if re.search(r'_ \[doctest\]' , __a ): _lowerCAmelCase : List[str] = True _lowerCAmelCase : List[Any] = line.split(' ' )[2] elif in_error and not line.split(' ' )[0].isdigit(): _lowerCAmelCase : int = line _lowerCAmelCase : str = False return failures class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = title _lowerCAmelCase : int = doc_test_results['''time_spent'''].split(',' )[0] _lowerCAmelCase : List[str] = doc_test_results['''success'''] _lowerCAmelCase : Any = doc_test_results['''failures'''] _lowerCAmelCase : Any = self.n_success + self.n_failures # Failures and success of the modeling tests _lowerCAmelCase : Union[str, Any] = doc_test_results @property def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = [self._time_spent] _lowerCAmelCase : str = 0 for time in time_spent: _lowerCAmelCase : Tuple = time.split(':' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(_a ) == 1: _lowerCAmelCase : List[Any] = [0, 0, time_parts[0]] _lowerCAmelCase : Optional[int] = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3600 + minutes * 60 + seconds _lowerCAmelCase : int = total_secs // 3600, (total_secs % 3600) // 60, total_secs % 60 return F'{int(_a )}h{int(_a )}m{int(_a )}s' @property def a ( self ): '''simple docstring''' return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def a ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": F'🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.', "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def a ( self ): '''simple docstring''' return { "type": "section", "text": { "type": "plain_text", "text": ( F'There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in' F' {self.time}.' ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } @property def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = 40 _lowerCAmelCase : List[Any] = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(_a , _a )} _lowerCAmelCase : List[Any] = '''''' for category, failures in category_failures.items(): if len(_a ) == 0: continue if report != "": report += "\n\n" report += F'*{category} failures*:'.ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(_a ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F'The following examples had failures:\n\n\n{report}\n', }, } @property def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(_a ) @staticmethod def a ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F'https://github.com/huggingface/transformers/actions/runs/{os.environ["GITHUB_RUN_ID"]}', }, } ] print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(_a )} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text='There was an issue running the tests.' , blocks=_a , ) def a ( self ): '''simple docstring''' print('Sending the following payload' ) print(json.dumps({'blocks': json.loads(self.payload )} ) ) _lowerCAmelCase : Optional[Any] = F'{self.n_failures} failures out of {self.n_tests} tests,' if self.n_failures else '''All tests passed.''' _lowerCAmelCase : int = client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , blocks=self.payload , text=_a , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = '''''' for key, value in failures.items(): _lowerCAmelCase : int = value[:200] + ''' [Truncated]''' if len(_a ) > 250 else value failures_text += F'*{key}*\n_{value}_\n\n' _lowerCAmelCase : int = job_name _lowerCAmelCase : int = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: _lowerCAmelCase : str = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def a ( self ): '''simple docstring''' if self.thread_ts is None: raise ValueError('Can only post reply if a post has been made.' ) _lowerCAmelCase : Union[str, Any] = self.doc_test_results.pop('job_link' ) self.doc_test_results.pop('failures' ) self.doc_test_results.pop('success' ) self.doc_test_results.pop('time_spent' ) _lowerCAmelCase : Any = sorted(self.doc_test_results.items() , key=lambda snake_case__ : t[0] ) for job, job_result in sorted_dict: if len(job_result['failures'] ): _lowerCAmelCase : List[Any] = F'*Num failures* :{len(job_result["failed"] )} \n' _lowerCAmelCase : List[str] = job_result['''failures'''] _lowerCAmelCase : Optional[Any] = self.get_reply_blocks(_a , _a , _a , text=_a ) print('Sending the following reply' ) print(json.dumps({'blocks': blocks} ) ) client.chat_postMessage( channel=os.environ['CI_SLACK_CHANNEL_ID_DAILY'] , text=F'Results for {job}' , blocks=_a , thread_ts=self.thread_ts['ts'] , ) time.sleep(1 ) def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = os.environ['''GITHUB_RUN_ID'''] _lowerCAmelCase : Tuple = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100' _lowerCAmelCase : str = requests.get(__a ).json() _lowerCAmelCase : Union[str, Any] = {} try: jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) _lowerCAmelCase : Dict = math.ceil((result['total_count'] - 1_0_0) / 1_0_0 ) for i in range(__a ): _lowerCAmelCase : Optional[Any] = requests.get(url + f'&page={i + 2}' ).json() jobs.update({job['name']: job['html_url'] for job in result['jobs']} ) return jobs except Exception as e: print('Unknown error, could not fetch links.' , __a ) return {} def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = {} if os.path.exists(__a ): _lowerCAmelCase : Tuple = os.listdir(__a ) for file in files: try: with open(os.path.join(__a , __a ) , encoding='utf-8' ) as f: _lowerCAmelCase : List[Any] = f.read() except UnicodeDecodeError as e: raise ValueError(f'Could not open {os.path.join(__a , __a )}.' ) from e return _artifact def lowercase (): """simple docstring""" class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = name _lowerCAmelCase : str = [] def __str__( self ): '''simple docstring''' return self.name def a ( self , snake_case__ ): '''simple docstring''' self.paths.append({'name': self.name, 'path': path} ) _lowerCAmelCase : Dict[str, Artifact] = {} _lowerCAmelCase : List[Any] = filter(os.path.isdir , os.listdir() ) for directory in directories: _lowerCAmelCase : Any = directory if artifact_name not in _available_artifacts: _lowerCAmelCase : List[str] = Artifact(__a ) _available_artifacts[artifact_name].add_path(__a ) return _available_artifacts if __name__ == "__main__": lowerCAmelCase : Optional[int] = get_job_links() lowerCAmelCase : Tuple = retrieve_available_artifacts() lowerCAmelCase : Union[str, Any] = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' lowerCAmelCase : Dict = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job lowerCAmelCase : str = github_actions_job_links.get("""run_doctests""") lowerCAmelCase : int = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] lowerCAmelCase : List[Any] = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Dict = handle_test_results(artifact["""stats"""]) lowerCAmelCase : List[str] = failed lowerCAmelCase : List[Any] = success lowerCAmelCase : Optional[int] = time_spent[1:-1] + """, """ lowerCAmelCase : Dict = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): lowerCAmelCase : Union[str, Any] = line.replace("""FAILED """, """""") lowerCAmelCase : int = line.split()[0].replace("""\n""", """""") if "::" in line: lowerCAmelCase , lowerCAmelCase : Any = line.split("""::""") else: lowerCAmelCase , lowerCAmelCase : Dict = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): lowerCAmelCase : str = docs[file_regex] doc_test_results[category]["failed"].append(test) lowerCAmelCase : List[str] = all_failures[test] if test in all_failures else """N/A""" lowerCAmelCase : int = failure break lowerCAmelCase : Union[str, Any] = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : str = { """microsoft/wavlm-base""": """https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json""", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" __magic_name__ = "wavlm" def __init__( self , snake_case__=32 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1E-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(512, 512, 512, 512, 512, 512, 512) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=128 , snake_case__=16 , snake_case__=320 , snake_case__=800 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=320 , snake_case__=2 , snake_case__=0.1 , snake_case__=100 , snake_case__=256 , snake_case__=256 , snake_case__=0.1 , snake_case__="mean" , snake_case__=False , snake_case__=False , snake_case__=256 , snake_case__=(512, 512, 512, 512, 1500) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=512 , snake_case__=80 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = feat_extract_norm _lowerCAmelCase : Optional[Any] = feat_extract_activation _lowerCAmelCase : List[str] = list(__UpperCAmelCase ) _lowerCAmelCase : Tuple = list(__UpperCAmelCase ) _lowerCAmelCase : List[str] = list(__UpperCAmelCase ) _lowerCAmelCase : List[str] = conv_bias _lowerCAmelCase : Any = num_buckets _lowerCAmelCase : List[Any] = max_bucket_distance _lowerCAmelCase : List[Any] = num_conv_pos_embeddings _lowerCAmelCase : Optional[Any] = num_conv_pos_embedding_groups _lowerCAmelCase : List[Any] = len(self.conv_dim ) _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : List[str] = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : Tuple = hidden_dropout _lowerCAmelCase : Optional[Any] = attention_dropout _lowerCAmelCase : Any = activation_dropout _lowerCAmelCase : Optional[int] = feat_proj_dropout _lowerCAmelCase : List[Any] = final_dropout _lowerCAmelCase : str = layerdrop _lowerCAmelCase : Optional[Any] = layer_norm_eps _lowerCAmelCase : int = initializer_range _lowerCAmelCase : List[Any] = num_ctc_classes _lowerCAmelCase : Union[str, Any] = vocab_size _lowerCAmelCase : Optional[int] = do_stable_layer_norm _lowerCAmelCase : Dict = use_weighted_layer_sum _lowerCAmelCase : Any = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCAmelCase : Dict = apply_spec_augment _lowerCAmelCase : Union[str, Any] = mask_time_prob _lowerCAmelCase : List[str] = mask_time_length _lowerCAmelCase : Union[str, Any] = mask_time_min_masks _lowerCAmelCase : Dict = mask_feature_prob _lowerCAmelCase : Any = mask_feature_length # parameters for pretraining with codevector quantized representations _lowerCAmelCase : int = num_codevectors_per_group _lowerCAmelCase : Tuple = num_codevector_groups _lowerCAmelCase : List[str] = contrastive_logits_temperature _lowerCAmelCase : List[str] = num_negatives _lowerCAmelCase : Any = codevector_dim _lowerCAmelCase : str = proj_codevector_dim _lowerCAmelCase : Any = diversity_loss_weight # ctc loss _lowerCAmelCase : Dict = ctc_loss_reduction _lowerCAmelCase : List[str] = ctc_zero_infinity # adapter _lowerCAmelCase : Optional[Any] = add_adapter _lowerCAmelCase : List[Any] = adapter_kernel_size _lowerCAmelCase : int = adapter_stride _lowerCAmelCase : List[Any] = num_adapter_layers _lowerCAmelCase : List[str] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. _lowerCAmelCase : Dict = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _lowerCAmelCase : List[Any] = list(__UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = list(__UpperCAmelCase ) _lowerCAmelCase : Dict = list(__UpperCAmelCase ) _lowerCAmelCase : Optional[int] = xvector_output_dim @property def a ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=6 , snake_case__=17 , snake_case__=23 , snake_case__=11 , snake_case__=True , ): '''simple docstring''' _lowerCAmelCase : Any = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Dict = seq_length _lowerCAmelCase : Optional[int] = act_dim _lowerCAmelCase : Any = state_dim _lowerCAmelCase : int = hidden_size _lowerCAmelCase : List[Any] = max_length _lowerCAmelCase : Tuple = is_training def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = floats_tensor((self.batch_size, self.seq_length, self.state_dim) ) _lowerCAmelCase : List[Any] = floats_tensor((self.batch_size, self.seq_length, self.act_dim) ) _lowerCAmelCase : Union[str, Any] = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase : str = floats_tensor((self.batch_size, self.seq_length, 1) ) _lowerCAmelCase : Optional[Any] = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 ) _lowerCAmelCase : str = random_attention_mask((self.batch_size, self.seq_length) ) _lowerCAmelCase : Optional[int] = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def a ( self ): '''simple docstring''' return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' _lowerCAmelCase : str = DecisionTransformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _lowerCAmelCase : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.parent.assertEqual(result.state_preds.shape , states.shape ) self.parent.assertEqual(result.action_preds.shape , actions.shape ) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Optional[int] = config_and_inputs _lowerCAmelCase : str = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = (DecisionTransformerModel,) if is_torch_available() else () __magic_name__ = () __magic_name__ = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __magic_name__ = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = DecisionTransformerModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) @slow def a ( self ): '''simple docstring''' for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Dict = DecisionTransformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : int = model_class(lowerCAmelCase__ ) _lowerCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : str = [*signature.parameters.keys()] _lowerCAmelCase : Tuple = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowerCAmelCase__ )] , lowerCAmelCase__ ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 2 # number of steps of autoregressive prediction we will perform _lowerCAmelCase : List[str] = 10 # defined by the RL environment, may be normalized _lowerCAmelCase : Optional[Any] = DecisionTransformerModel.from_pretrained('edbeeching/decision-transformer-gym-hopper-expert' ) _lowerCAmelCase : Optional[Any] = model.to(lowerCAmelCase__ ) _lowerCAmelCase : Any = model.config torch.manual_seed(0 ) _lowerCAmelCase : Dict = torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ) # env.reset() _lowerCAmelCase : Union[str, Any] = torch.tensor( [[0.24_2793, -0.2869_3074, 0.874_2613], [0.6781_5274, -0.0810_1085, -0.1295_2147]] , device=lowerCAmelCase__ ) _lowerCAmelCase : Any = torch.tensor(lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=torch.floataa ).reshape(1 , 1 , 1 ) _lowerCAmelCase : str = state _lowerCAmelCase : Union[str, Any] = torch.zeros(1 , 0 , config.act_dim , device=lowerCAmelCase__ , dtype=torch.floataa ) _lowerCAmelCase : Dict = torch.zeros(1 , 0 , device=lowerCAmelCase__ , dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = torch.tensor(0 , device=lowerCAmelCase__ , dtype=torch.long ).reshape(1 , 1 ) for step in range(lowerCAmelCase__ ): _lowerCAmelCase : Optional[Any] = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowerCAmelCase__ )] , dim=1 ) _lowerCAmelCase : Tuple = torch.cat([rewards, torch.zeros(1 , 1 , device=lowerCAmelCase__ )] , dim=1 ) _lowerCAmelCase : List[str] = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device ) with torch.no_grad(): _lowerCAmelCase : Union[str, Any] = model( states=lowerCAmelCase__ , actions=lowerCAmelCase__ , rewards=lowerCAmelCase__ , returns_to_go=lowerCAmelCase__ , timesteps=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , ) self.assertEqual(action_pred.shape , actions.shape ) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) ) _lowerCAmelCase : Any = ( # env.step(action) torch.randn(1 , 1 , config.state_dim ).to(device=lowerCAmelCase__ , dtype=torch.floataa ), 1.0, False, {}, ) _lowerCAmelCase : List[str] = action_pred[0, -1] _lowerCAmelCase : Union[str, Any] = torch.cat([states, state] , dim=1 ) _lowerCAmelCase : Any = returns_to_go[0, -1] - reward _lowerCAmelCase : List[Any] = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 ) _lowerCAmelCase : Dict = torch.cat( [timesteps, torch.ones((1, 1) , device=lowerCAmelCase__ , dtype=torch.long ) * (step + 1)] , dim=1 )
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCAmelCase : Tuple = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : List[Any] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCAmelCase : List[Any] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") lowerCAmelCase : Optional[int] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase : Any = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCAmelCase : Tuple = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _UpperCamelCase ) return [m.group(0 ) for m in matches] def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _lowerCAmelCase : Any = { config.replace('Config' , '' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. _lowerCAmelCase : Dict = collections.defaultdict(_UpperCamelCase ) _lowerCAmelCase : List[str] = collections.defaultdict(_UpperCamelCase ) _lowerCAmelCase : Optional[Any] = collections.defaultdict(_UpperCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_UpperCamelCase ): _lowerCAmelCase : Optional[int] = None if _re_tf_models.match(_UpperCamelCase ) is not None: _lowerCAmelCase : Dict = tf_models _lowerCAmelCase : Tuple = _re_tf_models.match(_UpperCamelCase ).groups()[0] elif _re_flax_models.match(_UpperCamelCase ) is not None: _lowerCAmelCase : Optional[Any] = flax_models _lowerCAmelCase : Tuple = _re_flax_models.match(_UpperCamelCase ).groups()[0] elif _re_pt_models.match(_UpperCamelCase ) is not None: _lowerCAmelCase : Dict = pt_models _lowerCAmelCase : Tuple = _re_pt_models.match(_UpperCamelCase ).groups()[0] if lookup_dict is not None: while len(_UpperCamelCase ) > 0: if attr_name in model_prefix_to_model_type: _lowerCAmelCase : Optional[Any] = True break # Try again after removing the last word in the name _lowerCAmelCase : Dict = ''.join(camel_case_split(_UpperCamelCase )[:-1] ) _lowerCAmelCase : Optional[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) _lowerCAmelCase : Optional[int] = list(_UpperCamelCase ) all_models.sort() _lowerCAmelCase : Any = {'model_type': all_models} _lowerCAmelCase : List[Any] = [pt_models[t] for t in all_models] _lowerCAmelCase : Union[str, Any] = [tf_models[t] for t in all_models] _lowerCAmelCase : int = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure _lowerCAmelCase : List[Any] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: _lowerCAmelCase : List[str] = 'AutoProcessor' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: _lowerCAmelCase : Tuple = 'AutoTokenizer' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: _lowerCAmelCase : Tuple = 'AutoFeatureExtractor' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. _lowerCAmelCase : Tuple = 'AutoTokenizer' _lowerCAmelCase : str = [processors[t] for t in all_models] return pd.DataFrame(_UpperCamelCase ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: _lowerCAmelCase : Tuple = [model_mapping, f'TF_{model_mapping}', f'FLAX_{model_mapping}'] _lowerCAmelCase : Tuple = [auto_class, f'TF_{auto_class}', f'Flax_{auto_class}'] # Loop through all three frameworks for module, cls, mapping in zip(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(_UpperCamelCase , _UpperCamelCase ): continue # First extract all model_names _lowerCAmelCase : Optional[int] = [] for name in getattr(_UpperCamelCase , _UpperCamelCase ).values(): if isinstance(_UpperCamelCase , _UpperCamelCase ): model_names.append(_UpperCamelCase ) else: model_names.extend(list(_UpperCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = get_frameworks_table() _lowerCAmelCase : str = Dataset.from_pandas(_UpperCamelCase ) _lowerCAmelCase : Union[str, Any] = hf_hub_download( 'huggingface/transformers-metadata' , 'pipeline_tags.json' , repo_type='dataset' , token=_UpperCamelCase ) _lowerCAmelCase : Dict = Dataset.from_json(_UpperCamelCase ) _lowerCAmelCase : Any = { tags_dataset[i]['model_class']: (tags_dataset[i]['pipeline_tag'], tags_dataset[i]['auto_class']) for i in range(len(_UpperCamelCase ) ) } _lowerCAmelCase : str = update_pipeline_and_auto_class_table(_UpperCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. _lowerCAmelCase : List[str] = sorted(table.keys() ) _lowerCAmelCase : int = pd.DataFrame( { 'model_class': model_classes, 'pipeline_tag': [table[m][0] for m in model_classes], 'auto_class': [table[m][1] for m in model_classes], } ) _lowerCAmelCase : Tuple = Dataset.from_pandas(_UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_UpperCamelCase , 'frameworks.json' ) ) tags_dataset.to_json(os.path.join(_UpperCamelCase , 'pipeline_tags.json' ) ) if commit_sha is not None: _lowerCAmelCase : Optional[int] = ( f'Update with commit {commit_sha}\n\nSee: ' f'https://github.com/huggingface/transformers/commit/{commit_sha}' ) else: _lowerCAmelCase : Optional[int] = 'Update' upload_folder( repo_id='huggingface/transformers-metadata' , folder_path=_UpperCamelCase , repo_type='dataset' , token=_UpperCamelCase , commit_message=_UpperCamelCase , ) def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} _lowerCAmelCase : int = transformers_module.pipelines.SUPPORTED_TASKS _lowerCAmelCase : Optional[int] = [] for key in pipeline_tasks: if key not in in_table: _lowerCAmelCase : str = pipeline_tasks[key]['pt'] if isinstance(_UpperCamelCase , (list, tuple) ): _lowerCAmelCase : int = model[0] _lowerCAmelCase : List[str] = model.__name__ if model not in in_table.values(): missing.append(_UpperCamelCase ) if len(_UpperCamelCase ) > 0: _lowerCAmelCase : str = ', '.join(_UpperCamelCase ) raise ValueError( 'The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ' f'`utils/update_metadata.py`: {msg}. Please add them!' ) if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") lowerCAmelCase : Union[str, Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCAmelCase : Optional[Any] = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ['''DeiTFeatureExtractor'''] lowerCAmelCase : Any = ['''DeiTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ '''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DeiTForImageClassification''', '''DeiTForImageClassificationWithTeacher''', '''DeiTForMaskedImageModeling''', '''DeiTModel''', '''DeiTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = [ '''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDeiTForImageClassification''', '''TFDeiTForImageClassificationWithTeacher''', '''TFDeiTForMaskedImageModeling''', '''TFDeiTModel''', '''TFDeiTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): """simple docstring""" __magic_name__ = IFInpaintingSuperResolutionPipeline __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __magic_name__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) __magic_name__ = PipelineTesterMixin.required_optional_params - {"latents"} def a ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' if str(_lowerCAmelCase ).startswith('mps' ): _lowerCAmelCase : int = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 16, 16) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowerCAmelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowerCAmelCase : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCAmelCase ) ).to(_lowerCAmelCase ) _lowerCAmelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def a ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def a ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def a ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def a ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def a ( self ): '''simple docstring''' self._test_save_load_local() def a ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' import os from collections.abc import Iterator def lowercase (_A = "." ): """simple docstring""" for dir_path, dir_names, filenames in os.walk(UpperCAmelCase__ ): _lowerCAmelCase : Dict = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCAmelCase__ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ).lstrip('./' ) def lowercase (_A ): """simple docstring""" return f'{i * " "}*' if i else "\n##" def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCAmelCase__ ) or old_parts[i] != new_part) and new_part: print(f'{md_prefix(UpperCAmelCase__ )} {new_part.replace("_" , " " ).title()}' ) return new_path def lowercase (_A = "." ): """simple docstring""" _lowerCAmelCase : List[str] = """""" for filepath in sorted(good_file_paths(UpperCAmelCase__ ) ): _lowerCAmelCase : Optional[Any] = os.path.split(UpperCAmelCase__ ) if filepath != old_path: _lowerCAmelCase : Tuple = print_path(UpperCAmelCase__ , UpperCAmelCase__ ) _lowerCAmelCase : List[Any] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowerCAmelCase : int = f'{filepath}/{filename}'.replace(' ' , '%20' ) _lowerCAmelCase : List[Any] = os.path.splitext(filename.replace('_' , ' ' ).title() )[0] print(f'{md_prefix(UpperCAmelCase__ )} [{filename}]({url})' ) if __name__ == "__main__": print_directory_md(""".""")
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} lowerCAmelCase = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', """emoji""": True, }, } ] lowerCAmelCase = 0 for log in Path().glob("""*.log"""): lowerCAmelCase = 0 with open(log, """r""") as f: for line in f: lowerCAmelCase = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCAmelCase = line["""nodeid"""] if line.get("""duration""", None) is not None: lowerCAmelCase = F'''{line["duration"]:.4f}''' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase = [] log.unlink() lowerCAmelCase = """""" lowerCAmelCase = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase = [] lowerCAmelCase = {} for test in failed_tests: lowerCAmelCase = test[0].split("""::""") lowerCAmelCase = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCAmelCase = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase = [test[0] for test in failed_table] lowerCAmelCase = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: lowerCAmelCase = """Too many failed tests, please see the full report in the Action results.""" lowerCAmelCase = len(err) + 10 lowerCAmelCase = message[: 30_00 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: lowerCAmelCase = """No failed tests! 🤗""" print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCAmelCase = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) lowerCAmelCase = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) lowerCAmelCase = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCAmelCase = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase = """""" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase = row[0] else: lowerCAmelCase = """""" lowerCAmelCase = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Optional[Any] = { """configuration_funnel""": ["""FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FunnelConfig"""], """convert_funnel_original_tf_checkpoint_to_pytorch""": [], """tokenization_funnel""": ["""FunnelTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = ["""FunnelTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """FunnelBaseModel""", """FunnelForMaskedLM""", """FunnelForMultipleChoice""", """FunnelForPreTraining""", """FunnelForQuestionAnswering""", """FunnelForSequenceClassification""", """FunnelForTokenClassification""", """FunnelModel""", """FunnelPreTrainedModel""", """load_tf_weights_in_funnel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = [ """TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFFunnelBaseModel""", """TFFunnelForMaskedLM""", """TFFunnelForMultipleChoice""", """TFFunnelForPreTraining""", """TFFunnelForQuestionAnswering""", """TFFunnelForSequenceClassification""", """TFFunnelForTokenClassification""", """TFFunnelModel""", """TFFunnelPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py lowerCAmelCase : int = """src/transformers""" lowerCAmelCase : Optional[int] = """docs/source/en/tasks""" def lowercase (_A , _A , _A ): """simple docstring""" with open(_snake_case , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : str = f.readlines() # Find the start prompt. _lowerCAmelCase : Optional[int] = 0 while not lines[start_index].startswith(_snake_case ): start_index += 1 start_index += 1 _lowerCAmelCase : List[Any] = start_index while not lines[end_index].startswith(_snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) lowerCAmelCase : int = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). lowerCAmelCase : Optional[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = TASK_GUIDE_TO_MODELS[task_guide] _lowerCAmelCase : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_snake_case , set() ) _lowerCAmelCase : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def lowercase (_A , _A=False ): """simple docstring""" _lowerCAmelCase : Optional[Any] = _find_text_in_file( filename=os.path.join(_snake_case , _snake_case ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) _lowerCAmelCase : int = get_model_list_for_task(_snake_case ) if current_list != new_list: if overwrite: with open(os.path.join(_snake_case , _snake_case ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' ' to fix this.' ) if __name__ == "__main__": lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") lowerCAmelCase : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' import random def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = num - 1 _lowerCAmelCase : Optional[Any] = 0 while s % 2 == 0: _lowerCAmelCase : Optional[int] = s // 2 t += 1 for _ in range(5 ): _lowerCAmelCase : Dict = random.randrange(2 , num - 1 ) _lowerCAmelCase : Dict = pow(_A , _A , _A ) if v != 1: _lowerCAmelCase : str = 0 while v != (num - 1): if i == t - 1: return False else: _lowerCAmelCase : Tuple = i + 1 _lowerCAmelCase : Optional[Any] = (v**2) % num return True def lowercase (_A ): """simple docstring""" if num < 2: return False _lowerCAmelCase : List[Any] = [ 2, 3, 5, 7, 1_1, 1_3, 1_7, 1_9, 2_3, 2_9, 3_1, 3_7, 4_1, 4_3, 4_7, 5_3, 5_9, 6_1, 6_7, 7_1, 7_3, 7_9, 8_3, 8_9, 9_7, 1_0_1, 1_0_3, 1_0_7, 1_0_9, 1_1_3, 1_2_7, 1_3_1, 1_3_7, 1_3_9, 1_4_9, 1_5_1, 1_5_7, 1_6_3, 1_6_7, 1_7_3, 1_7_9, 1_8_1, 1_9_1, 1_9_3, 1_9_7, 1_9_9, 2_1_1, 2_2_3, 2_2_7, 2_2_9, 2_3_3, 2_3_9, 2_4_1, 2_5_1, 2_5_7, 2_6_3, 2_6_9, 2_7_1, 2_7_7, 2_8_1, 2_8_3, 2_9_3, 3_0_7, 3_1_1, 3_1_3, 3_1_7, 3_3_1, 3_3_7, 3_4_7, 3_4_9, 3_5_3, 3_5_9, 3_6_7, 3_7_3, 3_7_9, 3_8_3, 3_8_9, 3_9_7, 4_0_1, 4_0_9, 4_1_9, 4_2_1, 4_3_1, 4_3_3, 4_3_9, 4_4_3, 4_4_9, 4_5_7, 4_6_1, 4_6_3, 4_6_7, 4_7_9, 4_8_7, 4_9_1, 4_9_9, 5_0_3, 5_0_9, 5_2_1, 5_2_3, 5_4_1, 5_4_7, 5_5_7, 5_6_3, 5_6_9, 5_7_1, 5_7_7, 5_8_7, 5_9_3, 5_9_9, 6_0_1, 6_0_7, 6_1_3, 6_1_7, 6_1_9, 6_3_1, 6_4_1, 6_4_3, 6_4_7, 6_5_3, 6_5_9, 6_6_1, 6_7_3, 6_7_7, 6_8_3, 6_9_1, 7_0_1, 7_0_9, 7_1_9, 7_2_7, 7_3_3, 7_3_9, 7_4_3, 7_5_1, 7_5_7, 7_6_1, 7_6_9, 7_7_3, 7_8_7, 7_9_7, 8_0_9, 8_1_1, 8_2_1, 8_2_3, 8_2_7, 8_2_9, 8_3_9, 8_5_3, 8_5_7, 8_5_9, 8_6_3, 8_7_7, 8_8_1, 8_8_3, 8_8_7, 9_0_7, 9_1_1, 9_1_9, 9_2_9, 9_3_7, 9_4_1, 9_4_7, 9_5_3, 9_6_7, 9_7_1, 9_7_7, 9_8_3, 9_9_1, 9_9_7, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(_A ) def lowercase (_A = 1_0_2_4 ): """simple docstring""" while True: _lowerCAmelCase : Any = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(_A ): return num if __name__ == "__main__": lowerCAmelCase : Tuple = generate_large_prime() print(("""Prime number:""", num)) print(("""is_prime_low_num:""", is_prime_low_num(num)))
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase (_A ): """simple docstring""" return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=snake_case_ ) _lowerCAmelCase : Optional[int] = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(snake_case_ ) EnvironmentCommand.register_subcommand(snake_case_ ) TestCommand.register_subcommand(snake_case_ ) RunBeamCommand.register_subcommand(snake_case_ ) DummyDataCommand.register_subcommand(snake_case_ ) # Parse args _lowerCAmelCase : List[Any] = parser.parse_known_args() if not hasattr(snake_case_ , 'func' ): parser.print_help() exit(1 ) _lowerCAmelCase : Any = parse_unknown_args(snake_case_ ) # Run _lowerCAmelCase : Any = args.func(snake_case_ , **snake_case_ ) service.run() if __name__ == "__main__": main()
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = [0] * len(lowercase__ ) _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Union[str, Any] = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(lowercase__ ) ): if indegree[i] == 0: queue.append(lowercase__ ) while queue: _lowerCAmelCase : List[Any] = queue.pop(0 ) cnt += 1 topo.append(lowercase__ ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(lowercase__ ) if cnt != len(lowercase__ ): print('Cycle exists' ) else: print(lowercase__ ) # Adjacency List of Graph lowerCAmelCase : List[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' import math import sys def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Dict = '' try: with open(A__ , 'rb' ) as binary_file: _lowerCAmelCase : int = binary_file.read() for dat in data: _lowerCAmelCase : int = f'{dat:08b}' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[Any] = {'0': '0', '1': '1'} _lowerCAmelCase , _lowerCAmelCase : Dict = '', '' _lowerCAmelCase : List[str] = len(A__ ) for i in range(len(A__ ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowerCAmelCase : Any = lexicon[curr_string] result += last_match_id _lowerCAmelCase : Optional[Any] = last_match_id + '0' if math.loga(A__ ).is_integer(): _lowerCAmelCase : List[Any] = {} for curr_key in list(A__ ): _lowerCAmelCase : List[Any] = lexicon.pop(A__ ) _lowerCAmelCase : Any = new_lex _lowerCAmelCase : str = last_match_id + '1' index += 1 _lowerCAmelCase : Union[str, Any] = '' return result def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = 8 try: with open(A__ , 'wb' ) as opened_file: _lowerCAmelCase : Tuple = [ to_write[i : i + byte_length] for i in range(0 , len(A__ ) , A__ ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(A__ , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = 0 for letter in data_bits: if letter == "1": break counter += 1 _lowerCAmelCase : Optional[Any] = data_bits[counter:] _lowerCAmelCase : Optional[Any] = data_bits[counter + 1 :] return data_bits def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : str = read_file_binary(A__ ) _lowerCAmelCase : Union[str, Any] = remove_prefix(A__ ) _lowerCAmelCase : Optional[int] = decompress_data(A__ ) write_file_binary(A__ , A__ ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" @register_to_config def __init__( self , *, snake_case__ = 4 , snake_case__ = 768 , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() _lowerCAmelCase : Union[str, Any] = nn.Parameter(torch.zeros(__lowerCAmelCase ) ) # parameters for additional clip time embeddings _lowerCAmelCase : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase : List[Any] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) # parameters for encoder hidden states _lowerCAmelCase : List[str] = clip_extra_context_tokens _lowerCAmelCase : str = nn.Linear( __lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) _lowerCAmelCase : Any = nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase : int = nn.LayerNorm(__lowerCAmelCase ) def a ( self , *, snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings _lowerCAmelCase : Tuple = image_embeddings.shape[0] _lowerCAmelCase : Union[str, Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) _lowerCAmelCase : Dict = classifier_free_guidance_embeddings.expand( __lowerCAmelCase , -1 ) _lowerCAmelCase : Any = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] _lowerCAmelCase : Union[str, Any] = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... _lowerCAmelCase : int = self.embedding_proj(__lowerCAmelCase ) _lowerCAmelCase : Tuple = self.clip_image_embeddings_project_to_time_embeddings(__lowerCAmelCase ) _lowerCAmelCase : Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" _lowerCAmelCase : Dict = self.clip_extra_context_tokens_proj(__lowerCAmelCase ) _lowerCAmelCase : str = clip_extra_context_tokens.reshape(__lowerCAmelCase , -1 , self.clip_extra_context_tokens ) _lowerCAmelCase : Optional[int] = clip_extra_context_tokens.permute(0 , 2 , 1 ) _lowerCAmelCase : Tuple = self.encoder_hidden_states_proj(__lowerCAmelCase ) _lowerCAmelCase : Dict = self.text_encoder_hidden_states_norm(__lowerCAmelCase ) _lowerCAmelCase : List[str] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' import argparse import json import subprocess def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = [] _lowerCAmelCase : Union[str, Any] = ( f'curl -H "Accept: application/vnd.github+json" -H "Authorization: Bearer {token}"' ' https://api.github.com/repos/huggingface/transformers/actions/runners' ) _lowerCAmelCase : Optional[int] = subprocess.run(_UpperCamelCase , shell=_UpperCamelCase , stdout=subprocess.PIPE ) _lowerCAmelCase : Any = output.stdout.decode('utf-8' ) _lowerCAmelCase : str = json.loads(_UpperCamelCase ) _lowerCAmelCase : Tuple = status['runners'] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_UpperCamelCase ) # save the result so we can report them on Slack with open('offline_runners.txt' , 'w' ) as fp: fp.write(json.dumps(_UpperCamelCase ) ) if len(_UpperCamelCase ) > 0: _lowerCAmelCase : List[str] = '\n'.join([x['name'] for x in offline_runners] ) raise ValueError(f'The following runners are offline:\n{failed}' ) if __name__ == "__main__": def lowercase (_A ): """simple docstring""" return values.split(',' ) lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) lowerCAmelCase : str = parser.parse_args() get_runner_status(args.target_runners, args.token)
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path lowerCAmelCase : Dict = [ {"""dataset""": """wikipedia""", """config_name""": """20220301.de"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.en"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.fr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.frr"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.it"""}, {"""dataset""": """wikipedia""", """config_name""": """20220301.simple"""}, {"""dataset""": """snli""", """config_name""": """plain_text"""}, {"""dataset""": """eli5""", """config_name""": """LFQA_reddit"""}, {"""dataset""": """wiki40b""", """config_name""": """en"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.compressed"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.nq.no_index"""}, {"""dataset""": """wiki_dpr""", """config_name""": """psgs_w100.multiset.no_index"""}, {"""dataset""": """natural_questions""", """config_name""": """default"""}, ] def lowercase (_A=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=SCREAMING_SNAKE_CASE_ ) ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = None __magic_name__ = None def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' with TemporaryDirectory() as tmp_dir: _lowerCAmelCase : Any = dataset_module_factory(__lowerCAmelCase , cache_dir=__lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=__lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = builder_cls( cache_dir=__lowerCAmelCase , config_name=__lowerCAmelCase , hash=dataset_module.hash , ) _lowerCAmelCase : Optional[int] = '/'.join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=__lowerCAmelCase ).replace(os.sep , '/' ), config.DATASET_INFO_FILENAME, ] ) _lowerCAmelCase : Optional[Any] = cached_path(__lowerCAmelCase , cache_dir=__lowerCAmelCase ) self.assertTrue(os.path.exists(__lowerCAmelCase ) ) @pytest.mark.integration def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = tmp_path_factory.mktemp('test_hf_gcp' ) / 'test_wikipedia_simple' _lowerCAmelCase : Tuple = dataset_module_factory('wikipedia' , cache_dir=lowerCAmelCase__ ) _lowerCAmelCase : List[str] = import_main_class(dataset_module.module_path ) _lowerCAmelCase : Optional[Any] = builder_cls( cache_dir=lowerCAmelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _lowerCAmelCase : Optional[Any] = None builder_instance.download_and_prepare() _lowerCAmelCase : Optional[int] = builder_instance.as_dataset() assert ds @pytest.mark.integration def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = dataset_module_factory('wikipedia' , cache_dir=lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase__ ) _lowerCAmelCase : Tuple = builder_cls( cache_dir=lowerCAmelCase__ , config_name='20220301.frr' , hash=dataset_module.hash , ) _lowerCAmelCase : List[str] = builder_instance.as_streaming_dataset() assert ds assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) assert "train" in ds assert isinstance(ds['train'] , lowerCAmelCase__ ) assert next(iter(ds['train'] ) )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = '▁' lowerCAmelCase : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase : Optional[Any] = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } lowerCAmelCase : Optional[Any] = { 'xlm-roberta-base': 5_12, 'xlm-roberta-large': 5_12, 'xlm-roberta-large-finetuned-conll02-dutch': 5_12, 'xlm-roberta-large-finetuned-conll02-spanish': 5_12, 'xlm-roberta-large-finetuned-conll03-english': 5_12, 'xlm-roberta-large-finetuned-conll03-german': 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] def __init__( self , snake_case__ , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__ = None , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _lowerCAmelCase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _lowerCAmelCase : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) _lowerCAmelCase : Any = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowerCAmelCase : List[str] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Optional[Any] = len(self.sp_model ) + self.fairseq_offset _lowerCAmelCase : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' _lowerCAmelCase : Tuple = self.__dict__.copy() _lowerCAmelCase : str = None _lowerCAmelCase : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowerCAmelCase : List[Any] = {} _lowerCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowerCAmelCase : str = [self.cls_token_id] _lowerCAmelCase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a ( self , snake_case__ , snake_case__ = None , snake_case__ = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [self.sep_token_id] _lowerCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def a ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a ( self , snake_case__ ): '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def a ( self , snake_case__ ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowerCAmelCase : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a ( self , snake_case__ ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ''.join(_snake_case ).replace(_snake_case , ' ' ).strip() return out_string def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , 'wb' ) as fi: _lowerCAmelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : int = { """configuration_clip""": [ """CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPConfig""", """CLIPOnnxConfig""", """CLIPTextConfig""", """CLIPVisionConfig""", ], """processing_clip""": ["""CLIPProcessor"""], """tokenization_clip""": ["""CLIPTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = ["""CLIPTokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[str] = ["""CLIPFeatureExtractor"""] lowerCAmelCase : Union[str, Any] = ["""CLIPImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPModel""", """CLIPPreTrainedModel""", """CLIPTextModel""", """CLIPTextModelWithProjection""", """CLIPVisionModel""", """CLIPVisionModelWithProjection""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] = [ """TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCLIPModel""", """TFCLIPPreTrainedModel""", """TFCLIPTextModel""", """TFCLIPVisionModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """FlaxCLIPModel""", """FlaxCLIPPreTrainedModel""", """FlaxCLIPTextModel""", """FlaxCLIPTextPreTrainedModel""", """FlaxCLIPVisionModel""", """FlaxCLIPVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' from math import sqrt def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def lowercase (_A = 1_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Optional[Any] = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" __magic_name__ = GPTSwaTokenizer __magic_name__ = False __magic_name__ = True __magic_name__ = False def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE , eos_token='<unk>' , bos_token='<unk>' , pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = "This is a test" _lowerCAmelCase : Optional[int] = "This is a test" return input_text, output_text def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = "<s>" _lowerCAmelCase : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , 'j' ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 2000 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 2000 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Union[str, Any] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [465, 287, 265, 631, 842] ) _lowerCAmelCase : List[str] = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] , ) # fmt: on _lowerCAmelCase : int = tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) _lowerCAmelCase : List[Any] = tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual( _SCREAMING_SNAKE_CASE , ['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = GPTSwaTokenizer(_SCREAMING_SNAKE_CASE ) _lowerCAmelCase : str = ["This is a test", "I was born in 92000, and this is falsé."] _lowerCAmelCase : Tuple = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertListEqual(tokenizer.encode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # Test that decode_fast returns the input text for text, token_ids in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(tokenizer.decode_fast(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off _lowerCAmelCase : Union[str, Any] = {"input_ids": [[6_3423, 5, 6811, 1_4954, 282, 816, 3821, 6_3466, 6_3425, 6_3462, 18, 6_3978, 678, 301, 1320, 6_3423, 6_3455, 6_3458, 18, 6_3982, 4246, 3940, 1901, 4_7789, 5547, 1_8994], [1_9630, 1100, 6_3446, 1342, 633, 544, 4488, 593, 5102, 2416, 6_3495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 5_8593, 2_2413, 9106, 546, 268, 3_3213, 6_3979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5130, 6_3450, 924, 6_3449, 2249, 4062, 1558, 318, 6_3504, 2_1498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 6_3443, 2_6801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name='AI-Sweden/gpt-sw3-126m' , sequences=_SCREAMING_SNAKE_CASE , )
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : Optional[int] = 32 def lowercase (_A , _A = 1_6 ): """simple docstring""" _lowerCAmelCase : Dict = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowerCAmelCase : Union[str, Any] = load_dataset('glue' , 'mrpc' ) def tokenize_function(_A ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : int = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Any = datasets.map( _UpperCAmelCase , batched=_UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Optional[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_A ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : int = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Tuple = 1_6 elif accelerator.mixed_precision != "no": _lowerCAmelCase : int = 8 else: _lowerCAmelCase : Optional[Any] = None return tokenizer.pad( _UpperCAmelCase , padding='longest' , max_length=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. _lowerCAmelCase : List[Any] = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) _lowerCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCAmelCase , collate_fn=_UpperCAmelCase , batch_size=_UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowerCAmelCase : List[str] = mocked_dataloaders # noqa: F811 def lowercase (_A , _A ): """simple docstring""" if os.environ.get('TESTING_MOCKED_DATALOADERS' , _UpperCAmelCase ) == "1": _lowerCAmelCase : Any = 2 # Initialize accelerator _lowerCAmelCase : List[str] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : List[Any] = config["lr"] _lowerCAmelCase : int = int(config['num_epochs'] ) _lowerCAmelCase : Optional[Any] = int(config['seed'] ) _lowerCAmelCase : List[str] = int(config['batch_size'] ) _lowerCAmelCase : List[Any] = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=_UpperCAmelCase ) def inner_training_loop(_A ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(_UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Tuple = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Optional[Any] = AdamW(params=model.parameters() , lr=_UpperCAmelCase ) _lowerCAmelCase : int = get_dataloaders(_UpperCAmelCase , _UpperCAmelCase ) # Instantiate scheduler _lowerCAmelCase : List[str] = get_linear_schedule_with_warmup( optimizer=_UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(_UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase : Any = accelerator.prepare( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Now we train the model for epoch in range(_UpperCAmelCase ): model.train() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowerCAmelCase : List[Any] = model(**_UpperCAmelCase ) _lowerCAmelCase : Dict = outputs.loss accelerator.backward(_UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : int = model(**_UpperCAmelCase ) _lowerCAmelCase : Tuple = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_UpperCAmelCase , references=_UpperCAmelCase , ) _lowerCAmelCase : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , _UpperCAmelCase ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_UpperCAmelCase , default=_UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) _lowerCAmelCase : Dict = parser.parse_args() _lowerCAmelCase : Tuple = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": main()
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn.grep_linear""": """encoder.layers.*.attention.gru_rel_pos_linear""", """self_attn.relative_attention_bias""": """encoder.layers.*.attention.rel_attn_embed""", """self_attn.grep_a""": """encoder.layers.*.attention.gru_rel_pos_const""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } lowerCAmelCase : Optional[int] = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def lowercase (_A , _A , _A , _A , _A ): """simple docstring""" for attribute in key.split('.' ): _lowerCAmelCase : int = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if weight_type is not None: _lowerCAmelCase : Dict = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).shape else: _lowerCAmelCase : int = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_g": _lowerCAmelCase : Optional[Any] = value elif weight_type == "weight_v": _lowerCAmelCase : Dict = value elif weight_type == "bias": _lowerCAmelCase : List[Any] = value else: _lowerCAmelCase : List[str] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Any = fairseq_model.state_dict() _lowerCAmelCase : Dict = hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowerCAmelCase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , hf_model.config.feat_extract_norm == 'group' , ) _lowerCAmelCase : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: _lowerCAmelCase : int = True if "*" in mapped_key: _lowerCAmelCase : Optional[int] = name.split(SCREAMING_SNAKE_CASE_ )[0].split('.' )[-2] _lowerCAmelCase : Union[str, Any] = mapped_key.replace('*' , SCREAMING_SNAKE_CASE_ ) if "weight_g" in name: _lowerCAmelCase : Dict = 'weight_g' elif "weight_v" in name: _lowerCAmelCase : Tuple = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: _lowerCAmelCase : List[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj _lowerCAmelCase : int = 'weight' else: _lowerCAmelCase : Any = None set_recursively(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE_ ) logger.warning(f'Unused weights: {unused_weights}' ) def lowercase (_A , _A , _A , _A , _A ): """simple docstring""" _lowerCAmelCase : Optional[Any] = full_name.split('conv_layers.' )[-1] _lowerCAmelCase : Any = name.split('.' ) _lowerCAmelCase : Union[str, Any] = int(items[0] ) _lowerCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) _lowerCAmelCase : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) _lowerCAmelCase : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) _lowerCAmelCase : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) _lowerCAmelCase : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def lowercase (_A , _A , _A=None ): """simple docstring""" _lowerCAmelCase : Dict = torch.load(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase : Optional[Any] = WavLMConfigOrig(checkpoint['cfg'] ) _lowerCAmelCase : Optional[Any] = WavLMOrig(SCREAMING_SNAKE_CASE_ ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: _lowerCAmelCase : Tuple = WavLMConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: _lowerCAmelCase : Any = WavLMConfig() _lowerCAmelCase : int = WavLMModel(SCREAMING_SNAKE_CASE_ ) recursively_load_weights(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_wavlm.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") lowerCAmelCase : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class UpperCamelCase__ ( UpperCamelCase__ ): """simple docstring""" __magic_name__ = "lilt" def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=0 , snake_case__="absolute" , snake_case__=None , snake_case__=4 , snake_case__=1024 , **snake_case__ , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : str = num_attention_heads _lowerCAmelCase : int = hidden_act _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : Optional[Any] = type_vocab_size _lowerCAmelCase : str = initializer_range _lowerCAmelCase : Any = layer_norm_eps _lowerCAmelCase : Optional[Any] = position_embedding_type _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[str] = channel_shrink_ratio _lowerCAmelCase : Tuple = max_ad_position_embeddings
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' from __future__ import annotations def lowercase (_A , _A , _A , _A ): # noqa: E741 """simple docstring""" while r - l > 1: _lowerCAmelCase : int = (l + r) // 2 if v[m] >= key: _lowerCAmelCase : Tuple = m else: _lowerCAmelCase : Tuple = m # noqa: E741 return r def lowercase (_A ): """simple docstring""" if len(__lowerCamelCase ) == 0: return 0 _lowerCAmelCase : Tuple = [0] * len(__lowerCamelCase ) _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : List[Any] = v[0] for i in range(1 , len(__lowerCamelCase ) ): if v[i] < tail[0]: _lowerCAmelCase : List[str] = v[i] elif v[i] > tail[length - 1]: _lowerCAmelCase : Union[str, Any] = v[i] length += 1 else: _lowerCAmelCase : int = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if not isinstance(_snake_case , _snake_case ): raise ValueError('check_bouncy() accepts only integer arguments' ) _lowerCAmelCase : Optional[int] = str(_snake_case ) _lowerCAmelCase : Tuple = "".join(sorted(_snake_case ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def lowercase (_A = 9_9 ): """simple docstring""" if not 0 < percent < 1_0_0: raise ValueError('solution() only accepts values from 0 to 100' ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Union[str, Any] = 1 while True: if check_bouncy(_snake_case ): bouncy_num += 1 if (bouncy_num / num) * 1_0_0 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F'''{solution(99)}''')
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCamelCase__ ( _a ): """simple docstring""" __magic_name__ = "deformable_detr" __magic_name__ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , snake_case__=True , snake_case__=None , snake_case__=3 , snake_case__=300 , snake_case__=1024 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=6 , snake_case__=1024 , snake_case__=8 , snake_case__=0.0 , snake_case__=True , snake_case__="relu" , snake_case__=256 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1.0 , snake_case__=True , snake_case__=False , snake_case__="sine" , snake_case__="resnet50" , snake_case__=True , snake_case__=False , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=False , snake_case__=300 , snake_case__=False , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=1 , snake_case__=1 , snake_case__=5 , snake_case__=2 , snake_case__=0.1 , snake_case__=0.25 , snake_case__=False , **snake_case__ , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _lowerCAmelCase : Optional[Any] = CONFIG_MAPPING["resnet"](out_features=['stage4'] ) elif isinstance(_a , _a ): _lowerCAmelCase : Dict = backbone_config.get('model_type' ) _lowerCAmelCase : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : int = config_class.from_dict(_a ) _lowerCAmelCase : str = use_timm_backbone _lowerCAmelCase : List[str] = backbone_config _lowerCAmelCase : Union[str, Any] = num_channels _lowerCAmelCase : Optional[int] = num_queries _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = d_model _lowerCAmelCase : str = encoder_ffn_dim _lowerCAmelCase : List[str] = encoder_layers _lowerCAmelCase : List[Any] = encoder_attention_heads _lowerCAmelCase : Dict = decoder_ffn_dim _lowerCAmelCase : List[Any] = decoder_layers _lowerCAmelCase : List[str] = decoder_attention_heads _lowerCAmelCase : Tuple = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Union[str, Any] = activation_function _lowerCAmelCase : List[str] = init_std _lowerCAmelCase : str = init_xavier_std _lowerCAmelCase : Union[str, Any] = encoder_layerdrop _lowerCAmelCase : Optional[Any] = auxiliary_loss _lowerCAmelCase : Dict = position_embedding_type _lowerCAmelCase : Union[str, Any] = backbone _lowerCAmelCase : int = use_pretrained_backbone _lowerCAmelCase : Optional[int] = dilation # deformable attributes _lowerCAmelCase : Dict = num_feature_levels _lowerCAmelCase : int = encoder_n_points _lowerCAmelCase : Optional[int] = decoder_n_points _lowerCAmelCase : str = two_stage _lowerCAmelCase : Tuple = two_stage_num_proposals _lowerCAmelCase : Optional[Any] = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher _lowerCAmelCase : str = class_cost _lowerCAmelCase : int = bbox_cost _lowerCAmelCase : Optional[int] = giou_cost # Loss coefficients _lowerCAmelCase : int = mask_loss_coefficient _lowerCAmelCase : Union[str, Any] = dice_loss_coefficient _lowerCAmelCase : List[str] = bbox_loss_coefficient _lowerCAmelCase : Tuple = giou_loss_coefficient _lowerCAmelCase : List[str] = eos_coefficient _lowerCAmelCase : Tuple = focal_alpha _lowerCAmelCase : Optional[int] = disable_custom_kernels super().__init__(is_encoder_decoder=_a , **_a ) @property def a ( self ): '''simple docstring''' return self.encoder_attention_heads @property def a ( self ): '''simple docstring''' return self.d_model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _lowerCAmelCase : Any = self.backbone_config.to_dict() _lowerCAmelCase : List[Any] = self.__class__.model_type return output
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' from __future__ import annotations def lowercase (_A ): """simple docstring""" if not nums: return 0 _lowerCAmelCase : List[str] = nums[0] _lowerCAmelCase : Tuple = 0 for num in nums[1:]: _lowerCAmelCase : Union[str, Any] = ( max_excluding + num, max(_lowerCAmelCase , _lowerCAmelCase ), ) return max(_lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__lowerCAmelCase ) == 0: raise ValueError('Input list must be a non empty list' ) if len(__lowerCAmelCase ) == 1: return True _lowerCAmelCase : Any = series[1] - series[0] for index in range(len(__lowerCAmelCase ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowercase (_A ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError('Input series is not valid, valid series - [2, 4, 6]' ) if len(__lowerCAmelCase ) == 0: raise ValueError('Input list must be a non empty list' ) _lowerCAmelCase : Any = 0 for val in series: answer += val return answer / len(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' from collections.abc import Sequence def lowercase (_A = None ): """simple docstring""" if nums is None or not nums: raise ValueError('Input sequence should not be empty' ) _lowerCAmelCase : Optional[int] = nums[0] for i in range(1 , len(_UpperCAmelCase ) ): _lowerCAmelCase : Dict = nums[i] _lowerCAmelCase : Optional[Any] = max(_UpperCAmelCase , ans + num , _UpperCAmelCase ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user lowerCAmelCase = int(input("""Enter number of elements : """).strip()) lowerCAmelCase = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" for i in range(0 , _A ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowercase (_A ): """simple docstring""" for i in range(_A , 0 , -1 ): for _ in range(_A , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowercase (_A ): """simple docstring""" if n <= 0: print(' ... .... nothing printing :(' ) return floyd(_A ) # upper half reverse_floyd(_A ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase : List[str] = 1 while K: lowerCAmelCase : Dict = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase : Optional[int] = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): _lowerCAmelCase : str = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase__ ) if number < 1: _lowerCAmelCase : Any = f'Input value of [number={number}] must be > 0' raise ValueError(lowerCamelCase__ ) _lowerCAmelCase : Optional[Any] = 1 for i in range(1 , lowerCamelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def a ( self , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : str = np.random.RandomState(_lowerCAmelCase ) _lowerCAmelCase : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : List[str] = self.get_dummy_inputs() _lowerCAmelCase : Dict = pipe(**_lowerCAmelCase ).images _lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Optional[int] = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase : int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Any = self.get_dummy_inputs() _lowerCAmelCase : str = pipe(**_lowerCAmelCase ).images _lowerCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : str = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : List[Any] = pipe(**_lowerCAmelCase ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Dict = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase : Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs() _lowerCAmelCase : int = pipe(**_lowerCAmelCase ).images _lowerCAmelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : List[str] = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : int = pipe(**_lowerCAmelCase ).images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowerCAmelCase : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = self.get_dummy_inputs() _lowerCAmelCase : Optional[Any] = pipe(**_lowerCAmelCase ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowerCAmelCase : int = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : List[str] = 3 * [inputs['prompt']] # forward _lowerCAmelCase : List[str] = pipe(**_lowerCAmelCase ) _lowerCAmelCase : List[Any] = output.images[0, -3:, -3:, -1] _lowerCAmelCase : str = self.get_dummy_inputs() _lowerCAmelCase : Optional[int] = 3 * [inputs.pop('prompt' )] _lowerCAmelCase : str = pipe.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='np' , ) _lowerCAmelCase : Optional[int] = text_inputs['input_ids'] _lowerCAmelCase : Dict = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _lowerCAmelCase : int = prompt_embeds # forward _lowerCAmelCase : List[Any] = pipe(**_lowerCAmelCase ) _lowerCAmelCase : Dict = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = self.get_dummy_inputs() _lowerCAmelCase : List[Any] = 3 * ['this is a negative prompt'] _lowerCAmelCase : Dict = negative_prompt _lowerCAmelCase : Union[str, Any] = 3 * [inputs['prompt']] # forward _lowerCAmelCase : Dict = pipe(**_lowerCAmelCase ) _lowerCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] _lowerCAmelCase : Dict = self.get_dummy_inputs() _lowerCAmelCase : str = 3 * [inputs.pop('prompt' )] _lowerCAmelCase : int = [] for p in [prompt, negative_prompt]: _lowerCAmelCase : Union[str, Any] = pipe.tokenizer( _lowerCAmelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors='np' , ) _lowerCAmelCase : Optional[int] = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = embeds # forward _lowerCAmelCase : Tuple = pipe(**_lowerCAmelCase ) _lowerCAmelCase : Optional[int] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @property def a ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def a ( self ): '''simple docstring''' _lowerCAmelCase : int = ort.SessionOptions() _lowerCAmelCase : Optional[int] = False return options def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : List[Any] = 'A painting of a squirrel eating a burger' np.random.seed(0 ) _lowerCAmelCase : int = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np' ) _lowerCAmelCase : Dict = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : List[str] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _lowerCAmelCase : Any = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : List[Any] = 'open neural network exchange' _lowerCAmelCase : Tuple = np.random.RandomState(0 ) _lowerCAmelCase : str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type='np' ) _lowerCAmelCase : Union[str, Any] = output.images _lowerCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Dict = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _lowerCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : List[str] = 'open neural network exchange' _lowerCAmelCase : Optional[Any] = np.random.RandomState(0 ) _lowerCAmelCase : Optional[int] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type='np' ) _lowerCAmelCase : List[str] = output.images _lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowerCAmelCase : Any = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 0 def test_callback_fn(snake_case__ , snake_case__ , snake_case__ ) -> None: _lowerCAmelCase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase : Optional[int] = latents[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowerCAmelCase : str = latents[0, -3:, -3:, -1] _lowerCAmelCase : Dict = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 _lowerCAmelCase : Any = False _lowerCAmelCase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase : List[str] = 'Andromeda galaxy in a bottle' _lowerCAmelCase : str = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None _lowerCAmelCase : int = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) _lowerCAmelCase : Dict = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowerCAmelCase : List[Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' from __future__ import annotations from fractions import Fraction def lowercase (_A , _A ): """simple docstring""" return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = [] _lowerCAmelCase : Union[str, Any] = 1_1 _lowerCAmelCase : Optional[Any] = int('1' + '0' * digit_len ) for num in range(_A , _A ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_A , _A ): solutions.append(f'{num}/{den}' ) den += 1 num += 1 _lowerCAmelCase : Optional[int] = 1_0 return solutions def lowercase (_A = 2 ): """simple docstring""" _lowerCAmelCase : Optional[Any] = 1.0 for fraction in fraction_list(_A ): _lowerCAmelCase : Any = Fraction(_A ) result *= frac.denominator / frac.numerator return int(_A ) if __name__ == "__main__": print(solution())
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : int = tempfile.mkdtemp() _lowerCAmelCase : int = BlipImageProcessor() _lowerCAmelCase : Optional[Any] = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowerCAmelCase : Tuple = BlipaProcessor(snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def a ( self , **snake_case__ ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def a ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _lowerCAmelCase : str = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_image_processor() _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : Tuple = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Tuple = self.prepare_image_inputs() _lowerCAmelCase : Union[str, Any] = image_processor(snake_case__ , return_tensors='np' ) _lowerCAmelCase : Tuple = processor(images=snake_case__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Any = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Optional[int] = 'lower newer' _lowerCAmelCase : str = processor(text=snake_case__ ) _lowerCAmelCase : List[str] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Dict = self.get_tokenizer() _lowerCAmelCase : Optional[int] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Dict = 'lower newer' _lowerCAmelCase : List[Any] = self.prepare_image_inputs() _lowerCAmelCase : Dict = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.get_image_processor() _lowerCAmelCase : Optional[int] = self.get_tokenizer() _lowerCAmelCase : List[str] = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase : Tuple = processor.batch_decode(snake_case__ ) _lowerCAmelCase : str = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.get_image_processor() _lowerCAmelCase : Optional[Any] = self.get_tokenizer() _lowerCAmelCase : Dict = BlipaProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) _lowerCAmelCase : Tuple = 'lower newer' _lowerCAmelCase : int = self.prepare_image_inputs() _lowerCAmelCase : str = processor(text=snake_case__ , images=snake_case__ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' from math import ceil, sqrt def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : List[str] = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCAmelCase : str = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCAmelCase : Dict = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'''{solution() = }''')
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = set_counts _lowerCAmelCase : List[Any] = max(lowercase__ ) _lowerCAmelCase : Dict = len(lowercase__ ) _lowerCAmelCase : Any = [1] * num_sets _lowerCAmelCase : Any = list(range(lowercase__ ) ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = self.get_parent(lowercase__ ) _lowerCAmelCase : Dict = self.get_parent(lowercase__ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowerCAmelCase : str = 0 _lowerCAmelCase : Dict = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowerCAmelCase : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowerCAmelCase : str = 0 _lowerCAmelCase : int = src_parent _lowerCAmelCase : Optional[Any] = self.set_counts[src_parent] _lowerCAmelCase : Tuple = max(self.max_set , lowercase__ ) return True def a ( self , snake_case__ ): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set _lowerCAmelCase : Optional[int] = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' from math import factorial class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = real if isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Dict = [1] * rank else: _lowerCAmelCase : str = rank def __repr__( self ): '''simple docstring''' return ( F'{self.real}+' F'{"+".join(str(snake_case__ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , snake_case__ ) def __add__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): return Dual(self.real + other , self.duals ) _lowerCAmelCase : Tuple = self.duals.copy() _lowerCAmelCase : Optional[int] = other.duals.copy() if len(snake_case__ ) > len(snake_case__ ): o_dual.extend([1] * (len(snake_case__ ) - len(snake_case__ )) ) elif len(snake_case__ ) < len(snake_case__ ): s_dual.extend([1] * (len(snake_case__ ) - len(snake_case__ )) ) _lowerCAmelCase : int = [] for i in range(len(snake_case__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , snake_case__ ) __magic_name__ = __add__ def __sub__( self , snake_case__ ): '''simple docstring''' return self + other * -1 def __mul__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Optional[int] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , snake_case__ ) _lowerCAmelCase : Optional[int] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , snake_case__ ) __magic_name__ = __mul__ def __truediv__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : List[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , snake_case__ ) raise ValueError def __floordiv__( self , snake_case__ ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ): _lowerCAmelCase : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , snake_case__ ) raise ValueError def __pow__( self , snake_case__ ): '''simple docstring''' if n < 0 or isinstance(snake_case__ , snake_case__ ): raise ValueError('power must be a positive integer' ) if n == 0: return 1 if n == 1: return self _lowerCAmelCase : Dict = self for _ in range(n - 1 ): x *= self return x def lowercase (_A , _A , _A ): """simple docstring""" if not callable(_UpperCAmelCase ): raise ValueError('differentiate() requires a function as input for func' ) if not isinstance(_UpperCAmelCase , (float, int) ): raise ValueError('differentiate() requires a float as input for position' ) if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('differentiate() requires an int as input for order' ) _lowerCAmelCase : str = Dual(_UpperCAmelCase , 1 ) _lowerCAmelCase : Tuple = func(_UpperCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def lowercase (_A ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def lowercase (_A , _A , _A , _A , _A ): """simple docstring""" with open(a__ ) as metadata_file: _lowerCAmelCase : Dict = json.load(a__ ) _lowerCAmelCase : Optional[int] = LukeConfig(use_entity_aware_attention=a__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path _lowerCAmelCase : str = torch.load(a__ , map_location='cpu' ) # Load the entity vocab file _lowerCAmelCase : Dict = load_entity_vocab(a__ ) _lowerCAmelCase : Optional[int] = RobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks _lowerCAmelCase : Any = AddedToken('<ent>' , lstrip=a__ , rstrip=a__ ) _lowerCAmelCase : str = AddedToken('<ent2>' , lstrip=a__ , rstrip=a__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(a__ ) with open(os.path.join(a__ , LukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(a__ , a__ ) _lowerCAmelCase : int = LukeTokenizer.from_pretrained(a__ ) # Initialize the embeddings of the special tokens _lowerCAmelCase : List[str] = state_dict['embeddings.word_embeddings.weight'] _lowerCAmelCase : List[str] = word_emb[tokenizer.convert_tokens_to_ids(['@'] )[0]].unsqueeze(0 ) _lowerCAmelCase : Any = word_emb[tokenizer.convert_tokens_to_ids(['#'] )[0]].unsqueeze(0 ) _lowerCAmelCase : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: _lowerCAmelCase : str = f'encoder.layer.{layer_index}.attention.self.' _lowerCAmelCase : Any = state_dict[prefix + matrix_name] _lowerCAmelCase : int = state_dict[prefix + matrix_name] _lowerCAmelCase : Tuple = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks _lowerCAmelCase : int = state_dict['entity_embeddings.entity_embeddings.weight'] _lowerCAmelCase : int = entity_emb[entity_vocab['[MASK]']] _lowerCAmelCase : Optional[int] = LukeModel(config=a__ ).eval() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model.load_state_dict(a__ , strict=a__ ) if not (len(a__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(f'Missing keys {", ".join(a__ )}. Expected only missing embeddings.position_ids' ) if not (all(key.startswith('entity_predictions' ) or key.startswith('lm_head' ) for key in unexpected_keys )): raise ValueError( 'Unexpected keys' f' {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}' ) # Check outputs _lowerCAmelCase : Optional[int] = LukeTokenizer.from_pretrained(a__ , task='entity_classification' ) _lowerCAmelCase : Dict = ( 'Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the' ' new world number one avoid a humiliating second- round exit at Wimbledon .' ) _lowerCAmelCase : List[Any] = (3_9, 4_2) _lowerCAmelCase : Union[str, Any] = tokenizer(a__ , entity_spans=[span] , add_prefix_space=a__ , return_tensors='pt' ) _lowerCAmelCase : Tuple = model(**a__ ) # Verify word hidden states if model_size == "large": _lowerCAmelCase : int = torch.Size((1, 4_2, 1_0_2_4) ) _lowerCAmelCase : List[str] = torch.tensor( [[0.0_133, 0.0_865, 0.0_095], [0.3_093, -0.2_576, -0.7_418], [-0.1_720, -0.2_117, -0.2_869]] ) else: # base _lowerCAmelCase : Tuple = torch.Size((1, 4_2, 7_6_8) ) _lowerCAmelCase : Any = torch.tensor([[0.0_037, 0.1_368, -0.0_091], [0.1_099, 0.3_329, -0.1_095], [0.0_765, 0.5_335, 0.1_179]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": _lowerCAmelCase : Optional[int] = torch.Size((1, 1, 1_0_2_4) ) _lowerCAmelCase : Optional[Any] = torch.tensor([[0.0_466, -0.0_106, -0.0_179]] ) else: # base _lowerCAmelCase : int = torch.Size((1, 1, 7_6_8) ) _lowerCAmelCase : List[str] = torch.tensor([[0.1_457, 0.1_044, 0.0_174]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , a__ , atol=1E-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(a__ ) ) model.save_pretrained(a__ ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = {} with open(a__ , 'r' , encoding='utf-8' ) as f: for index, line in enumerate(a__ ): _lowerCAmelCase , _lowerCAmelCase : Dict = line.rstrip().split('\t' ) _lowerCAmelCase : Optional[int] = index return entity_vocab if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""") parser.add_argument( """--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration.""" ) parser.add_argument( """--entity_vocab_path""", default=None, type=str, help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model.""" ) parser.add_argument( """--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted.""" ) lowerCAmelCase : str = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if len(_A ) < 2: return collection def circle_sort_util(_A , _A , _A ) -> bool: _lowerCAmelCase : Union[str, Any] = False if low == high: return swapped _lowerCAmelCase : int = low _lowerCAmelCase : Optional[int] = high while left < right: if collection[left] > collection[right]: _lowerCAmelCase , _lowerCAmelCase : str = ( collection[right], collection[left], ) _lowerCAmelCase : List[Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: _lowerCAmelCase , _lowerCAmelCase : int = ( collection[right + 1], collection[left], ) _lowerCAmelCase : Tuple = True _lowerCAmelCase : Optional[int] = low + int((high - low) / 2 ) _lowerCAmelCase : List[str] = circle_sort_util(_A , _A , _A ) _lowerCAmelCase : List[str] = circle_sort_util(_A , mid + 1 , _A ) return swapped or left_swap or right_swap _lowerCAmelCase : str = True while is_not_sorted is True: _lowerCAmelCase : List[str] = circle_sort_util(_A , 0 , len(_A ) - 1 ) return collection if __name__ == "__main__": lowerCAmelCase : int = input("""Enter numbers separated by a comma:\n""").strip() lowerCAmelCase : List[str] = [int(item) for item in user_input.split(""",""")] print(circle_sort(unsorted))
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowerCAmelCase : Optional[Any] = (7_20, 12_80) # Height, Width lowerCAmelCase : Tuple = (0.4, 0.6) # if height or width lower than this scale, drop it. lowerCAmelCase : int = 1 / 1_00 lowerCAmelCase : str = "" lowerCAmelCase : Tuple = "" lowerCAmelCase : int = "" lowerCAmelCase : Optional[Any] = 2_50 def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = get_dataset(__lowerCAmelCase , __lowerCAmelCase ) for index in range(__lowerCAmelCase ): _lowerCAmelCase : int = random.sample(range(len(__lowerCAmelCase ) ) , 4 ) _lowerCAmelCase : Any = update_image_and_anno( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , filter_scale=__lowerCAmelCase , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _lowerCAmelCase : str = random_chars(3_2 ) _lowerCAmelCase : Optional[int] = path.split(os.sep )[-1].rsplit('.' , 1 )[0] _lowerCAmelCase : int = f'{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}' cva.imwrite(f'{file_root}.jpg' , __lowerCAmelCase , [cva.IMWRITE_JPEG_QUALITY, 8_5] ) print(f'Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}' ) _lowerCAmelCase : List[str] = [] for anno in new_annos: _lowerCAmelCase : Any = anno[3] - anno[1] _lowerCAmelCase : List[str] = anno[4] - anno[2] _lowerCAmelCase : Dict = anno[1] + width / 2 _lowerCAmelCase : Any = anno[2] + height / 2 _lowerCAmelCase : Dict = f'{anno[0]} {x_center} {y_center} {width} {height}' annos_list.append(__lowerCAmelCase ) with open(f'{file_root}.txt' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = [] _lowerCAmelCase : List[Any] = [] for label_file in glob.glob(os.path.join(__lowerCAmelCase , '*.txt' ) ): _lowerCAmelCase : Any = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(__lowerCAmelCase ) as in_file: _lowerCAmelCase : Dict = in_file.readlines() _lowerCAmelCase : Tuple = os.path.join(__lowerCAmelCase , f'{label_name}.jpg' ) _lowerCAmelCase : Any = [] for obj_list in obj_lists: _lowerCAmelCase : Optional[int] = obj_list.rstrip('\n' ).split(' ' ) _lowerCAmelCase : Dict = float(obj[1] ) - float(obj[3] ) / 2 _lowerCAmelCase : List[str] = float(obj[2] ) - float(obj[4] ) / 2 _lowerCAmelCase : str = float(obj[1] ) + float(obj[3] ) / 2 _lowerCAmelCase : List[Any] = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(__lowerCAmelCase ) labels.append(__lowerCAmelCase ) return img_paths, labels def lowercase (_A , _A , _A , _A , _A , _A = 0.0 , ): """simple docstring""" _lowerCAmelCase : str = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) _lowerCAmelCase : List[Any] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase : Optional[int] = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) _lowerCAmelCase : Dict = int(scale_x * output_size[1] ) _lowerCAmelCase : Optional[Any] = int(scale_y * output_size[0] ) _lowerCAmelCase : str = [] _lowerCAmelCase : List[str] = [] for i, index in enumerate(__lowerCAmelCase ): _lowerCAmelCase : List[Any] = all_img_list[index] path_list.append(__lowerCAmelCase ) _lowerCAmelCase : Optional[Any] = all_annos[index] _lowerCAmelCase : str = cva.imread(__lowerCAmelCase ) if i == 0: # top-left _lowerCAmelCase : Union[str, Any] = cva.resize(__lowerCAmelCase , (divid_point_x, divid_point_y) ) _lowerCAmelCase : Optional[Any] = img for bbox in img_annos: _lowerCAmelCase : Dict = bbox[1] * scale_x _lowerCAmelCase : List[str] = bbox[2] * scale_y _lowerCAmelCase : Union[str, Any] = bbox[3] * scale_x _lowerCAmelCase : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right _lowerCAmelCase : Tuple = cva.resize(__lowerCAmelCase , (output_size[1] - divid_point_x, divid_point_y) ) _lowerCAmelCase : Optional[int] = img for bbox in img_annos: _lowerCAmelCase : int = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase : Union[str, Any] = bbox[2] * scale_y _lowerCAmelCase : Optional[Any] = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left _lowerCAmelCase : List[str] = cva.resize(__lowerCAmelCase , (divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase : List[Any] = img for bbox in img_annos: _lowerCAmelCase : Dict = bbox[1] * scale_x _lowerCAmelCase : Any = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase : Any = bbox[3] * scale_x _lowerCAmelCase : Tuple = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right _lowerCAmelCase : Optional[Any] = cva.resize( __lowerCAmelCase , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) _lowerCAmelCase : Any = img for bbox in img_annos: _lowerCAmelCase : Union[str, Any] = scale_x + bbox[1] * (1 - scale_x) _lowerCAmelCase : Any = scale_y + bbox[2] * (1 - scale_y) _lowerCAmelCase : Union[str, Any] = scale_x + bbox[3] * (1 - scale_x) _lowerCAmelCase : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: _lowerCAmelCase : Optional[int] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def lowercase (_A ): """simple docstring""" assert number_char > 1, "The number of character should greater than 1" _lowerCAmelCase : List[str] = ascii_lowercase + digits return "".join(random.choice(__lowerCAmelCase ) for _ in range(__lowerCAmelCase ) ) if __name__ == "__main__": main() print("""DONE ✅""")
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase__ : """simple docstring""" __magic_name__ = BlenderbotSmallConfig __magic_name__ = {} __magic_name__ = "gelu" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=20 , snake_case__=2 , snake_case__=1 , snake_case__=0 , ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = parent _lowerCAmelCase : Union[str, Any] = batch_size _lowerCAmelCase : Dict = seq_length _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : str = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : List[Any] = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[int] = eos_token_id _lowerCAmelCase : int = pad_token_id _lowerCAmelCase : List[Any] = bos_token_id def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowerCAmelCase : Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowerCAmelCase : int = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowerCAmelCase : str = prepare_blenderbot_small_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = TFBlenderbotSmallModel(config=__SCREAMING_SNAKE_CASE ).get_decoder() _lowerCAmelCase : int = inputs_dict['input_ids'] _lowerCAmelCase : Optional[int] = input_ids[:1, :] _lowerCAmelCase : str = inputs_dict['attention_mask'][:1, :] _lowerCAmelCase : int = inputs_dict['head_mask'] _lowerCAmelCase : Any = 1 # first forward pass _lowerCAmelCase : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE ) _lowerCAmelCase , _lowerCAmelCase : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowerCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowerCAmelCase : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowerCAmelCase : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowerCAmelCase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowerCAmelCase : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )[0] _lowerCAmelCase : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowerCAmelCase : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowerCAmelCase : Tuple = output_from_no_past[:, -3:, random_slice_idx] _lowerCAmelCase : Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-3 ) def lowercase (_A , _A , _A , _A=None , _A=None , _A=None , _A=None , _A=None , ): """simple docstring""" if attention_mask is None: _lowerCAmelCase : Union[str, Any] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowerCAmelCase : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowerCAmelCase : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowerCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowerCAmelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ ( _A , _A , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __magic_name__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __magic_name__ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __magic_name__ = True __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = TFBlenderbotSmallModelTester(self ) _lowerCAmelCase : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE ) @require_tokenizers @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] __magic_name__ = "facebook/blenderbot_small-90M" @cached_property def a ( self ): '''simple docstring''' return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.tokenizer(self.src_text , return_tensors='tf' ) _lowerCAmelCase : Optional[Any] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__SCREAMING_SNAKE_CASE , ) _lowerCAmelCase : Optional[int] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def lowercase (_A , _A=False ): """simple docstring""" _lowerCAmelCase : Tuple = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'module.blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'module.blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'module.blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'module.blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'module.blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'module.blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowerCAmelCase : Tuple = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def lowercase (_A , _A , _A=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: _lowerCAmelCase : Any = "" else: _lowerCAmelCase : List[str] = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase : List[str] = state_dict.pop(f'module.blocks.{i}.attn.qkv.weight' ) _lowerCAmelCase : str = state_dict.pop(f'module.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase : Optional[int] = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase : int = in_proj_bias[: config.hidden_size] _lowerCAmelCase : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase : int = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase : Dict = in_proj_bias[-config.hidden_size :] def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : int = dct.pop(__snake_case ) _lowerCAmelCase : Optional[Any] = val def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : int = ViTMSNConfig() _lowerCAmelCase : int = 1_0_0_0 _lowerCAmelCase : Dict = "datasets/huggingface/label-files" _lowerCAmelCase : List[str] = "imagenet-1k-id2label.json" _lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(__snake_case , __snake_case ) , 'r' ) ) _lowerCAmelCase : str = {int(__snake_case ): v for k, v in idalabel.items()} _lowerCAmelCase : str = idalabel _lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: _lowerCAmelCase : List[str] = 3_8_4 _lowerCAmelCase : str = 1_5_3_6 _lowerCAmelCase : Dict = 6 elif "l16" in checkpoint_url: _lowerCAmelCase : Optional[int] = 1_0_2_4 _lowerCAmelCase : List[str] = 4_0_9_6 _lowerCAmelCase : List[str] = 2_4 _lowerCAmelCase : Any = 1_6 _lowerCAmelCase : Optional[int] = 0.1 elif "b4" in checkpoint_url: _lowerCAmelCase : List[str] = 4 elif "l7" in checkpoint_url: _lowerCAmelCase : Dict = 7 _lowerCAmelCase : int = 1_0_2_4 _lowerCAmelCase : List[Any] = 4_0_9_6 _lowerCAmelCase : List[str] = 2_4 _lowerCAmelCase : Optional[int] = 1_6 _lowerCAmelCase : Union[str, Any] = 0.1 _lowerCAmelCase : Optional[Any] = ViTMSNModel(__snake_case ) _lowerCAmelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__snake_case , map_location='cpu' )["target_encoder"] _lowerCAmelCase : List[str] = ViTImageProcessor(size=config.image_size ) remove_projection_head(__snake_case ) _lowerCAmelCase : Optional[int] = create_rename_keys(__snake_case , base_model=__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , base_model=__snake_case ) model.load_state_dict(__snake_case ) model.eval() _lowerCAmelCase : Optional[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCAmelCase : Dict = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) _lowerCAmelCase : List[Any] = ViTImageProcessor( size=config.image_size , image_mean=__snake_case , image_std=__snake_case ) _lowerCAmelCase : str = image_processor(images=__snake_case , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) _lowerCAmelCase : Dict = model(**__snake_case ) _lowerCAmelCase : Dict = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: _lowerCAmelCase : str = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: _lowerCAmelCase : int = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: _lowerCAmelCase : int = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: _lowerCAmelCase : Any = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: _lowerCAmelCase : str = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __snake_case , atol=1E-4 ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar""", type=str, help="""URL of the checkpoint you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase : Dict = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase__ ( __snake_case , unittest.TestCase ): """simple docstring""" __magic_name__ = LongformerTokenizer __magic_name__ = True __magic_name__ = LongformerTokenizerFast __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase : List[str] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] _lowerCAmelCase : List[Any] = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) _lowerCAmelCase : List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowerCAmelCase : List[str] = {"""unk_token""": """<unk>"""} _lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase_ ) ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def a ( self , **snake_case__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = """lower newer""" _lowerCAmelCase : Optional[Any] = """lower newer""" return input_text, output_text def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase : int = """lower newer""" _lowerCAmelCase : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowerCAmelCase : List[str] = tokenizer.tokenize(lowerCamelCase_ ) # , add_prefix_space=True) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowerCAmelCase : Dict = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCamelCase_ ) , [0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCamelCase_ ) , [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) _lowerCAmelCase : Dict = tokenizer.encode('sequence builders' , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : List[str] = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase_ , lowerCamelCase_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.get_tokenizer() _lowerCAmelCase : List[str] = """Encode this sequence.""" _lowerCAmelCase : Optional[int] = tokenizer.byte_encoder[""" """.encode('utf-8' )[0]] # Testing encoder arguments _lowerCAmelCase : Dict = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowerCAmelCase : str = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) # Testing spaces after special tokens _lowerCAmelCase : List[str] = """<mask>""" tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ )} ) # mask token has a left space _lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) _lowerCAmelCase : int = """Encode <mask> sequence""" _lowerCAmelCase : Optional[int] = """Encode <mask>sequence""" _lowerCAmelCase : Dict = tokenizer.encode(lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = encoded.index(lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(lowerCamelCase_ ) _lowerCAmelCase : Union[str, Any] = encoded.index(lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCamelCase_ , lowerCamelCase_ ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase : str = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) _lowerCAmelCase : List[str] = """A, <mask> AllenNLP sentence.""" _lowerCAmelCase : List[str] = tokenizer_r.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) _lowerCAmelCase : List[Any] = tokenizer_p.encode_plus(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_token_type_ids=lowerCamelCase_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _lowerCAmelCase : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowerCAmelCase : Tuple = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( lowerCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCamelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def a ( self ): '''simple docstring''' for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowerCAmelCase : Tuple = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCamelCase_ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCamelCase_ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCamelCase_ ) def a ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : int = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` _lowerCAmelCase : List[str] = F'{text_of_1_token} {text_of_1_token}' _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : str = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : List[str] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : Any = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Optional[Any] = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ), len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : List[Any] = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) _lowerCAmelCase : int = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ ) _lowerCAmelCase : Any = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ), 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , )
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaImgaImgPipeline __magic_name__ = ["""image_embeds""", """negative_image_embeds""", """image"""] __magic_name__ = [ """image_embeds""", """negative_image_embeds""", """image""", ] __magic_name__ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Tuple = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Any = UNetaDConditionModel(**_lowercase ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.dummy_unet _lowerCAmelCase : Any = self.dummy_movq _lowerCAmelCase : Tuple = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } _lowerCAmelCase : Tuple = DDIMScheduler(**_lowercase ) _lowerCAmelCase : Optional[Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _lowercase ) # create init_image _lowerCAmelCase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(_lowercase ) ).to(_lowercase ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : List[str] = Image.fromarray(np.uinta(_lowercase ) ).convert('RGB' ).resize((256, 256) ) if str(_lowercase ).startswith('mps' ): _lowerCAmelCase : Any = torch.manual_seed(_lowercase ) else: _lowerCAmelCase : Any = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCAmelCase : Dict = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Optional[int] = self.pipeline_class(**_lowercase ) _lowerCAmelCase : Tuple = pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase : Optional[int] = pipe(**self.get_dummy_inputs(_lowercase ) ) _lowerCAmelCase : Optional[Any] = output.images _lowerCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(_lowercase ) , return_dict=_lowercase , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : Union[str, Any] = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _lowerCAmelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Optional[Any] = 'A red cartoon frog, 4k' _lowerCAmelCase : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_lowercase ) _lowerCAmelCase : Optional[int] = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _lowerCAmelCase : Union[str, Any] = pipeline.to(_lowercase ) pipeline.set_progress_bar_config(disable=_lowercase ) _lowerCAmelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Any = pipe_prior( _lowercase , generator=_lowercase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : List[str] = pipeline( image=_lowercase , image_embeds=_lowercase , negative_image_embeds=_lowercase , generator=_lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _lowerCAmelCase : List[Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowercase , _lowercase )
365
'''simple docstring''' import argparse import os import re lowerCAmelCase : Tuple = """src/transformers""" # Pattern that looks at the indentation in a line. lowerCAmelCase : str = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""") def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = _re_indent.search(_A ) return "" if search is None else search.groups()[0] def lowercase (_A , _A="" , _A=None , _A=None ): """simple docstring""" _lowerCAmelCase : int = 0 _lowerCAmelCase : Dict = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(_A ): index += 1 _lowerCAmelCase : Dict = ['\n'.join(lines[:index] )] else: _lowerCAmelCase : str = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _lowerCAmelCase : List[Any] = [lines[index]] index += 1 while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(_A ) ) if index < len(_A ) - 1: _lowerCAmelCase : Union[str, Any] = [lines[index + 1]] index += 1 else: _lowerCAmelCase : Union[str, Any] = [] else: blocks.append('\n'.join(_A ) ) _lowerCAmelCase : List[str] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_A ) > 0: blocks.append('\n'.join(_A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_A ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase (_A ): """simple docstring""" def _inner(_A ): return key(_A ).lower().replace('_' , '' ) return _inner def lowercase (_A , _A=None ): """simple docstring""" def noop(_A ): return x if key is None: _lowerCAmelCase : List[Any] = noop # Constants are all uppercase, they go first. _lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()] # Functions begin with a lowercase, they go last. _lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()] _lowerCAmelCase : Dict = ignore_underscore(_A ) return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A ) def lowercase (_A ): """simple docstring""" def _replace(_A ): _lowerCAmelCase : Dict = match.groups()[0] if "," not in imports: return f'[{imports}]' _lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : int = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]" _lowerCAmelCase : Tuple = import_statement.split('\n' ) if len(_A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1 _lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] ) _lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] ) else: _lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _lowerCAmelCase : List[str] = keys[:-1] _lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] ) return "\n".join(_A ) else: # Finally we have to deal with imports fitting on one line _lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A ) return import_statement def lowercase (_A , _A=True ): """simple docstring""" with open(_A , encoding='utf-8' ) as f: _lowerCAmelCase : Any = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _lowerCAmelCase : Tuple = split_code_in_indented_blocks( _A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _lowerCAmelCase : Tuple = main_blocks[block_idx] _lowerCAmelCase : int = block.split('\n' ) # Get to the start of the imports. _lowerCAmelCase : Tuple = 0 while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _lowerCAmelCase : Dict = len(_A ) else: line_idx += 1 if line_idx >= len(_A ): continue # Ignore beginning and last line: they don't contain anything. _lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] ) _lowerCAmelCase : Tuple = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A ) # We have two categories of import key: list or _import_structure[key].append/extend _lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None] _lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _lowerCAmelCase : int = 0 _lowerCAmelCase : Optional[Any] = [] for i in range(len(_A ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: _lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(_A ) count += 1 # And we put our main block back together with its first and last line. _lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(_A ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(_A , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_A ) ) def lowercase (_A=True ): """simple docstring""" _lowerCAmelCase : int = [] for root, _, files in os.walk(_A ): if "__init__.py" in files: _lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A ) if result: _lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )] if len(_A ) > 0: raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' ) if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") lowerCAmelCase : List[str] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
25
0
'''simple docstring''' import argparse import os import re import packaging.version lowerCAmelCase : Any = """examples/""" lowerCAmelCase : List[Any] = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } lowerCAmelCase : Any = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } lowerCAmelCase : Optional[int] = """README.md""" def lowercase (_A , _A , _A ): """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : List[Any] = f.read() _lowerCAmelCase , _lowerCAmelCase : List[str] = REPLACE_PATTERNS[pattern] _lowerCAmelCase : str = replace.replace('VERSION' , SCREAMING_SNAKE_CASE__ ) _lowerCAmelCase : Union[str, Any] = re_pattern.sub(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(SCREAMING_SNAKE_CASE__ ) def lowercase (_A ): """simple docstring""" for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , pattern='examples' ) def lowercase (_A , _A=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : str = '🤗 Transformers currently provides the following architectures' _lowerCAmelCase : Optional[int] = '1. Want to contribute a new model?' with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowerCAmelCase : Optional[int] = f.readlines() # Find the start of the list. _lowerCAmelCase : str = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowerCAmelCase : Optional[int] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _lowerCAmelCase : int = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(SCREAMING_SNAKE_CASE__ ) def lowercase (): """simple docstring""" with open(REPLACE_FILES['init'] , 'r' ) as f: _lowerCAmelCase : Optional[Any] = f.read() _lowerCAmelCase : Any = REPLACE_PATTERNS['init'][0].search(SCREAMING_SNAKE_CASE__ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE__ ) def lowercase (_A=False ): """simple docstring""" _lowerCAmelCase : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _lowerCAmelCase : Tuple = default_version.base_version elif patch: _lowerCAmelCase : str = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: _lowerCAmelCase : Tuple = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. _lowerCAmelCase : Any = input(f'Which version are you releasing? [{default_version}]' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: _lowerCAmelCase : Any = default_version print(f'Updating version to {version}.' ) global_version_update(SCREAMING_SNAKE_CASE__ , patch=SCREAMING_SNAKE_CASE__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = get_version() _lowerCAmelCase : Dict = f'{current_version.major}.{current_version.minor + 1}.0.dev0' _lowerCAmelCase : Optional[Any] = current_version.base_version # Check with the user we got that right. _lowerCAmelCase : List[Any] = input(f'Which version are we developing now? [{dev_version}]' ) if len(SCREAMING_SNAKE_CASE__ ) == 0: _lowerCAmelCase : Optional[int] = dev_version print(f'Updating version to {version}.' ) global_version_update(SCREAMING_SNAKE_CASE__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") lowerCAmelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
366
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = KandinskyVaaInpaintPipeline __magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"] __magic_name__ = [ "image_embeds", "negative_image_embeds", "image", "mask_image", ] __magic_name__ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __magic_name__ = False @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return 32 @property def a ( self ): '''simple docstring''' return self.time_input_dim @property def a ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def a ( self ): '''simple docstring''' return 100 @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Optional[int] = { 'in_channels': 9, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } _lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ ) return model @property def a ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def a ( self ): '''simple docstring''' torch.manual_seed(0 ) _lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.dummy_unet _lowerCAmelCase : List[Any] = self.dummy_movq _lowerCAmelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , ) _lowerCAmelCase : Any = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def a ( self , snake_case__ , snake_case__=0 ): '''simple docstring''' _lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image _lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) _lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa ) _lowerCAmelCase : Dict = 0 if str(snake_case__ ).startswith('mps' ): _lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ ) else: _lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) _lowerCAmelCase : Optional[int] = { 'image': init_image, 'mask_image': mask, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 2, 'guidance_scale': 4.0, 'output_type': 'np', } return inputs def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = 'cpu' _lowerCAmelCase : int = self.get_dummy_components() _lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ ) _lowerCAmelCase : Optional[int] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) ) _lowerCAmelCase : int = output.images _lowerCAmelCase : int = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] _lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1] print(F'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[str] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def a ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[str] = 'a hat' _lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) _lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) _lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowerCAmelCase : Optional[Any] = pipeline( image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowerCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
25
0
'''simple docstring''' lowerCAmelCase : Optional[int] = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} lowerCAmelCase : Union[str, Any] = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Union[str, Any] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_A , _A , _A ) order.append(_A ) return order def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Tuple = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_A , _A , _A ) return component def lowercase (_A ): """simple docstring""" _lowerCAmelCase : int = len(_A ) * [False] _lowerCAmelCase : dict[int, list[int]] = {vert: [] for vert in range(len(_A ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_A ) _lowerCAmelCase : int = [] for i, was_visited in enumerate(_A ): if not was_visited: order += topology_sort(_A , _A , _A ) _lowerCAmelCase : Any = [] _lowerCAmelCase : Union[str, Any] = len(_A ) * [False] for i in range(len(_A ) ): _lowerCAmelCase : Tuple = order[len(_A ) - i - 1] if not visited[vert]: _lowerCAmelCase : Union[str, Any] = find_components(_A , _A , _A ) components_list.append(_A ) return components_list
367
'''simple docstring''' from __future__ import annotations from typing import Any def lowercase (_A ): """simple docstring""" if not postfix_notation: return 0 _lowerCAmelCase : int = {'+', '-', '*', '/'} _lowerCAmelCase : list[Any] = [] for token in postfix_notation: if token in operations: _lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_A ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase : Union[str, Any] = tuple[int, int, int] lowerCAmelCase : Dict = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase lowerCAmelCase : Dict = """ABCDEFGHIJKLMNOPQRSTUVWXYZ""" # -------------------------- default selection -------------------------- # rotors -------------------------- lowerCAmelCase : int = """EGZWVONAHDCLFQMSIPJBYUKXTR""" lowerCAmelCase : List[str] = """FOBHMDKEXQNRAULPGSJVTYICZW""" lowerCAmelCase : Dict = """ZJXESIUQLHAVRMDOYGTNFWPBKC""" # reflector -------------------------- lowerCAmelCase : Dict = { """A""": """N""", """N""": """A""", """B""": """O""", """O""": """B""", """C""": """P""", """P""": """C""", """D""": """Q""", """Q""": """D""", """E""": """R""", """R""": """E""", """F""": """S""", """S""": """F""", """G""": """T""", """T""": """G""", """H""": """U""", """U""": """H""", """I""": """V""", """V""": """I""", """J""": """W""", """W""": """J""", """K""": """X""", """X""": """K""", """L""": """Y""", """Y""": """L""", """M""": """Z""", """Z""": """M""", } # -------------------------- extra rotors -------------------------- lowerCAmelCase : str = """RMDJXFUWGISLHVTCQNKYPBEZOA""" lowerCAmelCase : Dict = """SGLCPQWZHKXAREONTFBVIYJUDM""" lowerCAmelCase : List[Any] = """HVSICLTYKQUBXDWAJZOMFGPREN""" lowerCAmelCase : Union[str, Any] = """RZWQHFMVDBKICJLNTUXAGYPSOE""" lowerCAmelCase : Any = """LFKIJODBEGAMQPXVUHYSTCZRWN""" lowerCAmelCase : List[str] = """KOAEGVDHXPQZMLFTYWJNBRCIUS""" def lowercase (_A , _A , _A ): """simple docstring""" if (unique_rotsel := len(set(a__ ) )) < 3: _lowerCAmelCase : Optional[int] = f'Please use 3 unique rotors (not {unique_rotsel})' raise Exception(a__ ) # Checks if rotor positions are valid _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = rotpos if not 0 < rotorposa <= len(a__ ): _lowerCAmelCase : List[str] = f'First rotor position is not within range of 1..26 ({rotorposa}' raise ValueError(a__ ) if not 0 < rotorposa <= len(a__ ): _lowerCAmelCase : Dict = f'Second rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(a__ ) if not 0 < rotorposa <= len(a__ ): _lowerCAmelCase : Dict = f'Third rotor position is not within range of 1..26 ({rotorposa})' raise ValueError(a__ ) # Validates string and returns dict _lowerCAmelCase : List[Any] = _plugboard(a__ ) return rotpos, rotsel, pbdict def lowercase (_A ): """simple docstring""" if not isinstance(a__ , a__ ): _lowerCAmelCase : Dict = f'Plugboard setting isn\'t type string ({type(a__ )})' raise TypeError(a__ ) elif len(a__ ) % 2 != 0: _lowerCAmelCase : Optional[Any] = f'Odd number of symbols ({len(a__ )})' raise Exception(a__ ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique _lowerCAmelCase : Optional[int] = set() for i in pbstring: if i not in abc: _lowerCAmelCase : Union[str, Any] = f'\'{i}\' not in list of symbols' raise Exception(a__ ) elif i in tmppbl: _lowerCAmelCase : str = f'Duplicate symbol ({i})' raise Exception(a__ ) else: tmppbl.add(a__ ) del tmppbl # Created the dictionary _lowerCAmelCase : List[Any] = {} for j in range(0 , len(a__ ) - 1 , 2 ): _lowerCAmelCase : Optional[int] = pbstring[j + 1] _lowerCAmelCase : List[str] = pbstring[j] return pb def lowercase (_A , _A , _A = (rotora, rotora, rotora) , _A = "" , ): """simple docstring""" _lowerCAmelCase : str = text.upper() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = _validator( a__ , a__ , plugb.upper() ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = rotor_position _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 _lowerCAmelCase : Any = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: _lowerCAmelCase : Optional[int] = plugboard[symbol] # rotor ra -------------------------- _lowerCAmelCase : Union[str, Any] = abc.index(a__ ) + rotorposa _lowerCAmelCase : Optional[int] = rotora[index % len(a__ )] # rotor rb -------------------------- _lowerCAmelCase : List[Any] = abc.index(a__ ) + rotorposa _lowerCAmelCase : Dict = rotora[index % len(a__ )] # rotor rc -------------------------- _lowerCAmelCase : Optional[int] = abc.index(a__ ) + rotorposa _lowerCAmelCase : Optional[Any] = rotora[index % len(a__ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher _lowerCAmelCase : Optional[int] = reflector[symbol] # 2nd rotors _lowerCAmelCase : Tuple = abc[rotora.index(a__ ) - rotorposa] _lowerCAmelCase : Union[str, Any] = abc[rotora.index(a__ ) - rotorposa] _lowerCAmelCase : Optional[int] = abc[rotora.index(a__ ) - rotorposa] # 2nd plugboard if symbol in plugboard: _lowerCAmelCase : List[str] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(a__ ): _lowerCAmelCase : Dict = 0 rotorposa += 1 if rotorposa >= len(a__ ): _lowerCAmelCase : Union[str, Any] = 0 rotorposa += 1 if rotorposa >= len(a__ ): _lowerCAmelCase : str = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(a__ ) return "".join(a__ ) if __name__ == "__main__": lowerCAmelCase : List[Any] = """This is my Python script that emulates the Enigma machine from WWII.""" lowerCAmelCase : str = (1, 1, 1) lowerCAmelCase : Tuple = """pictures""" lowerCAmelCase : Tuple = (rotora, rotora, rotora) lowerCAmelCase : Tuple = enigma(message, rotor_pos, rotor_sel, pb) print("""Encrypted message:""", en) print("""Decrypted message:""", enigma(en, rotor_pos, rotor_sel, pb))
368
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { """google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""", """google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""", """google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""", """google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""", # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mobilenet_v2" def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Union[str, Any] = image_size _lowerCAmelCase : List[Any] = depth_multiplier _lowerCAmelCase : List[Any] = depth_divisible_by _lowerCAmelCase : Optional[Any] = min_depth _lowerCAmelCase : str = expand_ratio _lowerCAmelCase : str = output_stride _lowerCAmelCase : Any = first_layer_is_expansion _lowerCAmelCase : int = finegrained_output _lowerCAmelCase : str = hidden_act _lowerCAmelCase : List[str] = tf_padding _lowerCAmelCase : Optional[int] = classifier_dropout_prob _lowerCAmelCase : int = initializer_range _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : str = semantic_loss_ignore_index class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = version.parse("1.11" ) @property def a ( self ): '''simple docstring''' return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def a ( self ): '''simple docstring''' return 1E-4
25
0
'''simple docstring''' import math def lowercase (_A , _A ): """simple docstring""" if ( not isinstance(_lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def lowercase (_A , _A ): """simple docstring""" if ( not isinstance(_lowerCamelCase , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
369
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : Optional[int] = 'pt' _lowerCAmelCase : Tuple = 'tf' def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(snake_case__ ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ ) model_tf.save_pretrained(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = 'mock_framework' # Framework provided - return whatever the user provides _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) def a ( self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(snake_case__ ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(snake_case__ ) _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ ) self.assertEqual(snake_case__ , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(snake_case__ ): _lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : Any = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : int = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(snake_case__ , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : str = MagicMock(return_value=snake_case__ ) _lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ ) with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch( 'transformers.onnx.features.is_torch_available' , snake_case__ ): with self.assertRaises(snake_case__ ): _lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
25
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = ( "This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image." "It takes two arguments named `image` which should be the original image, and `label` which should be a text " "describing the elements what should be identified in the segmentation mask. The tool returns the mask." ) __magic_name__ = "CIDAS/clipseg-rd64-refined" __magic_name__ = "image_segmenter" __magic_name__ = CLIPSegForImageSegmentation __magic_name__ = ["image", "text"] __magic_name__ = ["image"] def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) def a ( self , snake_case__ ): '''simple docstring''' with torch.no_grad(): _lowerCAmelCase : List[Any] = self.model(**_SCREAMING_SNAKE_CASE ).logits return logits def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = outputs.cpu().detach().numpy() _lowerCAmelCase : Any = 0 _lowerCAmelCase : Optional[Any] = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
370
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: lowerCAmelCase : Optional[int] = None lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = NllbTokenizer __magic_name__ = [] __magic_name__ = [] def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token _lowerCAmelCase : Dict = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[str] = vocab_file _lowerCAmelCase : int = False if not self.vocab_file else True _lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) _lowerCAmelCase : Any = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn' _lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowerCAmelCase : Optional[Any] = src_lang _lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) _lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ ) _lowerCAmelCase : Optional[Any] = tgt_lang_id return inputs def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[str] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : Dict = [] _lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : int = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: _lowerCAmelCase : int = [] _lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : List[str] = [self.eos_token_id] _lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(snake_case__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return _lowerCAmelCase : Union[str, Any] = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
'''simple docstring''' import argparse import importlib from pathlib import Path # Test all the extensions added in the setup lowerCAmelCase : List[str] = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def lowercase (_A ): """simple docstring""" for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") lowerCAmelCase : Dict = parser.parse_args() if args.check_lib: lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""") lowerCAmelCase : int = Path(transformers_module.__file__).parent else: lowerCAmelCase : int = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
25
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def lowercase (_A , _A , _A , _A , _A , ): """simple docstring""" _lowerCAmelCase : int = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid _lowerCAmelCase : Tuple = 1 _lowerCAmelCase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid _lowerCAmelCase : Tuple = init[0] _lowerCAmelCase : List[Any] = init[1] _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell _lowerCAmelCase : List[str] = [[f, g, x, y]] _lowerCAmelCase : Tuple = False # flag that is set when search is complete _lowerCAmelCase : Union[str, Any] = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _lowerCAmelCase : Dict = cell.pop() _lowerCAmelCase : Tuple = next_cell[2] _lowerCAmelCase : str = next_cell[3] _lowerCAmelCase : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: _lowerCAmelCase : Optional[Any] = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions _lowerCAmelCase : Union[str, Any] = x + DIRECTIONS[i][0] _lowerCAmelCase : Optional[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _lowerCAmelCase : Any = g + cost _lowerCAmelCase : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : List[str] = i _lowerCAmelCase : Union[str, Any] = [] _lowerCAmelCase : List[Any] = goal[0] _lowerCAmelCase : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _lowerCAmelCase : Optional[int] = x - DIRECTIONS[action[x][y]][0] _lowerCAmelCase : Optional[int] = y - DIRECTIONS[action[x][y]][1] _lowerCAmelCase : Optional[Any] = xa _lowerCAmelCase : List[str] = ya invpath.append([x, y] ) _lowerCAmelCase : Tuple = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCAmelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCAmelCase = [0, 0] # all coordinates are given in format [y,x] lowerCAmelCase = [len(grid) - 1, len(grid[0]) - 1] lowerCAmelCase = 1 # the cost map which pushes the path closer to the goal lowerCAmelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCAmelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCAmelCase = 99 lowerCAmelCase , lowerCAmelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
350
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
0
'''simple docstring''' from collections.abc import Callable def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : float = a _lowerCAmelCase : float = b if function(UpperCamelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(UpperCamelCase__ ) == 0: return b elif ( function(UpperCamelCase__ ) * function(UpperCamelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _lowerCAmelCase : float = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(UpperCamelCase__ ) == 0: return mid elif function(UpperCamelCase__ ) * function(UpperCamelCase__ ) < 0: _lowerCAmelCase : Tuple = mid else: _lowerCAmelCase : Dict = mid _lowerCAmelCase : Optional[int] = start + (end - start) / 2.0 return mid def lowercase (_A ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
351
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 0 __magic_name__ = False __magic_name__ = 3.0 class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def a ( self ): '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowerCAmelCase : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , snake_case__ ) @require_multi_gpu def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(snake_case__ , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler]) lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00) lowerCAmelCase : List[str] = accelerator.prepare(model) # Check the values changed in kwargs lowerCAmelCase : List[Any] = """""" lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowerCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
352
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Optional[Any] = { """CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": ( """https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json""" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "trajectory_transformer" __magic_name__ = ["past_key_values"] __magic_name__ = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = action_weight _lowerCAmelCase : Optional[int] = reward_weight _lowerCAmelCase : Union[str, Any] = value_weight _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Tuple = block_size _lowerCAmelCase : List[Any] = action_dim _lowerCAmelCase : List[Any] = observation_dim _lowerCAmelCase : Union[str, Any] = transition_dim _lowerCAmelCase : Tuple = learning_rate _lowerCAmelCase : int = n_layer _lowerCAmelCase : Any = n_head _lowerCAmelCase : Tuple = n_embd _lowerCAmelCase : Optional[Any] = embd_pdrop _lowerCAmelCase : Union[str, Any] = attn_pdrop _lowerCAmelCase : Any = resid_pdrop _lowerCAmelCase : Optional[Any] = initializer_range _lowerCAmelCase : List[Any] = layer_norm_eps _lowerCAmelCase : Union[str, Any] = kaiming_initializer_range _lowerCAmelCase : List[Any] = use_cache super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
25
0
'''simple docstring''' import gc import threading import time import psutil import torch class UpperCamelCase__ : """simple docstring""" def __init__( self ): '''simple docstring''' _lowerCAmelCase : List[str] = psutil.Process() _lowerCAmelCase : int = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = -1 while True: _lowerCAmelCase : Tuple = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = True _lowerCAmelCase : Any = threading.Thread(target=self.peak_monitor ) _lowerCAmelCase : List[str] = True self.thread.start() def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = False self.thread.join() return self.cpu_memory_peak lowerCAmelCase : List[str] = PeakCPUMemory() def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase : Any = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase : List[Any] = torch.cuda.memory_allocated(_lowerCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Optional[int] = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem _lowerCAmelCase : str = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**2_0 _lowerCAmelCase : Optional[int] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**2_0 # GPU mem for i in range(torch.cuda.device_count() ): _lowerCAmelCase : Union[str, Any] = (torch.cuda.memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**2_0 _lowerCAmelCase : List[Any] = (torch.cuda.max_memory_allocated(_lowerCAmelCase ) - start_measures[str(_lowerCAmelCase )]) / 2**2_0 return measures def lowercase (_A , _A ): """simple docstring""" print(f'{description}:' ) print(f'- Time: {measures["time"]:.2f}s' ) for i in range(torch.cuda.device_count() ): print(f'- GPU {i} allocated: {measures[str(_lowerCAmelCase )]:.2f}MiB' ) _lowerCAmelCase : Dict = measures[f'{i}-peak'] print(f'- GPU {i} peak: {peak:.2f}MiB' ) print(f'- CPU RAM allocated: {measures["cpu"]:.2f}MiB' ) print(f'- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB' )
353
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase : Union[str, Any] = 25_00_04 lowerCAmelCase : int = 25_00_20 @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = MBartaaTokenizer __magic_name__ = MBartaaTokenizerFast __magic_name__ = True __magic_name__ = True def a ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = '<s>' _lowerCAmelCase : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(snake_case__ ) , 1054 ) def a ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ ) _lowerCAmelCase : Any = tokenizer.tokenize('This is a test' ) self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , ) def a ( self ): '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): _lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True _lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way _lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False _lowerCAmelCase : Optional[int] = tempfile.mkdtemp() _lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) _lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ ) _lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = "facebook/mbart-large-50-one-to-many-mmt" __magic_name__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] __magic_name__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] __magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def a ( cls ): '''simple docstring''' _lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' ) _lowerCAmelCase : Dict = 1 return cls def a ( self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def a ( self ): '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) _lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] _lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) _lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , snake_case__ ) _lowerCAmelCase : List[str] = 10 _lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def a ( self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) _lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' ) _lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , ) _lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' ) _lowerCAmelCase : str = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' ) _lowerCAmelCase : List[Any] = targets['input_ids'] _lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(snake_case__ ) , { # en_XX, A, test, EOS 'input_ids': [[25_0004, 62, 3034, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_0001, } , )
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" if n_term == "": return [] _lowerCAmelCase : Any = [] for temp in range(int(_A ) ): series.append(f'1/{temp + 1}' if series else '1' ) return series if __name__ == "__main__": lowerCAmelCase : str = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
354
'''simple docstring''' from math import isqrt def lowercase (_A ): """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) ) def lowercase (_A = 1_0**6 ): """simple docstring""" _lowerCAmelCase : str = 0 _lowerCAmelCase : str = 1 _lowerCAmelCase : List[str] = 7 while prime_candidate < max_prime: primes_count += is_prime(_A ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
25
0
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase : int = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) lowerCAmelCase : str = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) lowerCAmelCase : Union[str, Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) lowerCAmelCase : Any = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) lowerCAmelCase : Optional[int] = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 14]), ('2H 5D 3C AS 5S', False, [14, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [14, 13, 12, 11, 10]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase : Any = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) lowerCAmelCase : Tuple = ( ('JH AH TH KH QH', 23), ('JH 9H TH KH QH', 22), ('JC KH JS JD JH', 21), ('KH KC 3S 3H 3D', 20), ('8C 9C 5C 3C TC', 19), ('JS QS 9H TS KH', 18), ('7C 7S KH 2H 7H', 17), ('3C KH 5D 5S KH', 16), ('QH 8H KD JH 8S', 15), ('2D 6D 9D TH 7D', 14), ) def lowercase (): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase : Dict = randrange(len(__UpperCAmelCase ) ), randrange(len(__UpperCAmelCase ) ) _lowerCAmelCase : Union[str, Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowerCAmelCase , _lowerCAmelCase : Optional[int] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase (_A = 1_0_0 ): """simple docstring""" return (generate_random_hand() for _ in range(__UpperCAmelCase )) @pytest.mark.parametrize('hand, expected' , __UpperCAmelCase ) def lowercase (_A , _A ): """simple docstring""" assert PokerHand(__UpperCAmelCase )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , __UpperCAmelCase ) def lowercase (_A , _A ): """simple docstring""" assert PokerHand(__UpperCAmelCase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , __UpperCAmelCase ) def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Dict = PokerHand(__UpperCAmelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , __UpperCAmelCase ) def lowercase (_A , _A ): """simple docstring""" assert PokerHand(__UpperCAmelCase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , __UpperCAmelCase ) def lowercase (_A , _A ): """simple docstring""" assert PokerHand(__UpperCAmelCase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , __UpperCAmelCase ) def lowercase (_A , _A , _A ): """simple docstring""" assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def lowercase (_A , _A , _A ): """simple docstring""" assert PokerHand(__UpperCAmelCase ).compare_with(PokerHand(__UpperCAmelCase ) ) == expected def lowercase (): """simple docstring""" _lowerCAmelCase : Tuple = [PokerHand(__UpperCAmelCase ) for hand in SORTED_HANDS] _lowerCAmelCase : Tuple = poker_hands.copy() shuffle(__UpperCAmelCase ) _lowerCAmelCase : List[str] = chain(sorted(__UpperCAmelCase ) ) for index, hand in enumerate(__UpperCAmelCase ): assert hand == poker_hands[index] def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=__UpperCAmelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase (): """simple docstring""" _lowerCAmelCase : Union[str, Any] = PokerHand('2C 4S AS 3D 5C' ) _lowerCAmelCase : Any = True _lowerCAmelCase : Union[str, Any] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[Any] = 0 _lowerCAmelCase : Union[str, Any] = os.path.abspath(os.path.dirname(__UpperCAmelCase ) ) _lowerCAmelCase : Any = os.path.join(__UpperCAmelCase , 'poker_hands.txt' ) with open(__UpperCAmelCase ) as file_hand: for line in file_hand: _lowerCAmelCase : int = line[:1_4].strip() _lowerCAmelCase : Union[str, Any] = line[1_5:].strip() _lowerCAmelCase , _lowerCAmelCase : str = PokerHand(__UpperCAmelCase ), PokerHand(__UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = player.compare_with(__UpperCAmelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
355
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : List[Any] = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "mvp" __magic_name__ = ["past_key_values"] __magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ): '''simple docstring''' _lowerCAmelCase : List[Any] = vocab_size _lowerCAmelCase : Any = max_position_embeddings _lowerCAmelCase : Optional[Any] = d_model _lowerCAmelCase : Optional[int] = encoder_ffn_dim _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = encoder_attention_heads _lowerCAmelCase : Any = decoder_ffn_dim _lowerCAmelCase : Optional[Any] = decoder_layers _lowerCAmelCase : int = decoder_attention_heads _lowerCAmelCase : Union[str, Any] = dropout _lowerCAmelCase : List[Any] = attention_dropout _lowerCAmelCase : List[str] = activation_dropout _lowerCAmelCase : Optional[Any] = activation_function _lowerCAmelCase : Any = init_std _lowerCAmelCase : Any = encoder_layerdrop _lowerCAmelCase : Union[str, Any] = decoder_layerdrop _lowerCAmelCase : Optional[int] = classifier_dropout _lowerCAmelCase : List[Any] = use_cache _lowerCAmelCase : Optional[int] = encoder_layers _lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowerCAmelCase : Optional[Any] = use_prompt _lowerCAmelCase : Optional[Any] = prompt_length _lowerCAmelCase : Any = prompt_mid_dim super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ): _lowerCAmelCase : Any = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
25
0
'''simple docstring''' import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=32 , snake_case__=2 , snake_case__=3 , snake_case__=16 , snake_case__=[1, 2, 1] , snake_case__=[2, 2, 4] , snake_case__=2 , snake_case__=2.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=False , snake_case__=True , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=10 , snake_case__=8 , ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : List[str] = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Any = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : str = depths _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : str = window_size _lowerCAmelCase : List[Any] = mlp_ratio _lowerCAmelCase : Optional[int] = qkv_bias _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Union[str, Any] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : int = use_absolute_embeddings _lowerCAmelCase : Any = patch_norm _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : Dict = initializer_range _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : int = scope _lowerCAmelCase : List[Any] = use_labels _lowerCAmelCase : Tuple = type_sequence_label_size _lowerCAmelCase : Optional[Any] = encoder_stride def a ( self ): '''simple docstring''' _lowerCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def a ( self ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = SwinvaModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCAmelCase : Any = model(lowerCamelCase__ ) _lowerCAmelCase : Tuple = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase : List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = SwinvaForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCAmelCase : Any = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : List[Any] = SwinvaForMaskedImageModeling(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Dict = self.type_sequence_label_size _lowerCAmelCase : Dict = SwinvaForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCAmelCase : List[str] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = config_and_inputs _lowerCAmelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) __magic_name__ = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = SwinvaModelTester(self ) _lowerCAmelCase : Tuple = ConfigTester(self , config_class=lowerCamelCase__ , embed_dim=37 ) def a ( self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @unittest.skip(reason='Got `CUDA error: misaligned address` with PyTorch 2.0.0.' ) def a ( self ): '''simple docstring''' pass @unittest.skip(reason='Swinv2 does not use inputs_embeds' ) def a ( self ): '''simple docstring''' pass def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : str = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Any = model_class(lowerCamelCase__ ) _lowerCAmelCase : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : str = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Any = True for model_class in self.all_model_classes: _lowerCAmelCase : Any = True _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Tuple = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCAmelCase : Optional[int] = outputs.attentions _lowerCAmelCase : List[Any] = len(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowerCAmelCase : Optional[int] = True _lowerCAmelCase : Optional[Any] = config.window_size**2 _lowerCAmelCase : str = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCAmelCase : List[str] = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) _lowerCAmelCase : int = len(lowerCamelCase__ ) # Check attention is always last and order is fine _lowerCAmelCase : Tuple = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : Optional[int] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : str = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) if hasattr(self.model_tester , 'num_hidden_states_types' ): _lowerCAmelCase : Any = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states _lowerCAmelCase : str = 2 self.assertEqual(out_len + added_hidden_states , len(lowerCamelCase__ ) ) _lowerCAmelCase : Any = outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _lowerCAmelCase : Any = outputs.hidden_states _lowerCAmelCase : Union[str, Any] = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # Swinv2 has a different seq_length _lowerCAmelCase : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase : Optional[int] = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = reshaped_hidden_states[0].shape _lowerCAmelCase : Optional[Any] = ( reshaped_hidden_states[0].view(lowerCamelCase__ , lowerCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _lowerCAmelCase : Dict = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Union[str, Any] = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : str = 3 _lowerCAmelCase : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase : int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase : Optional[int] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase : Union[str, Any] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _lowerCAmelCase : str = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True self.check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , (padded_height, padded_width) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def a ( self ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = SwinvaModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : Optional[int] = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: _lowerCAmelCase : Dict = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ) if is_vision_available() else None ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = SwinvaForImageClassification.from_pretrained('microsoft/swinv2-tiny-patch4-window8-256' ).to( lowerCamelCase__ ) _lowerCAmelCase : Optional[int] = self.default_image_processor _lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase : Union[str, Any] = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : List[str] = model(**lowerCamelCase__ ) # verify the logits _lowerCAmelCase : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCAmelCase : Optional[int] = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
356
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) lowerCAmelCase : str = None lowerCAmelCase : Optional[int] = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } lowerCAmelCase : Optional[int] = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase (_A , _A=1 , _A=2_5_6 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase (_A ): """simple docstring""" with open(_A , 'r' ) as f: return json.load(_A ) def lowercase (_A , _A ): """simple docstring""" with open(_A , 'w' ) as f: json.dump(_A , _A ) def lowercase (_A , _A , _A , _A=True ): """simple docstring""" os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' ) os.makedirs(_A , exist_ok=_A ) _lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) ) _lowerCAmelCase : List[str] = NUM_SHARDS[model_size] _lowerCAmelCase : str = params['n_layers'] _lowerCAmelCase : Optional[int] = params['n_heads'] _lowerCAmelCase : int = n_heads // num_shards _lowerCAmelCase : Optional[int] = params['dim'] _lowerCAmelCase : Union[str, Any] = dim // n_heads _lowerCAmelCase : Union[str, Any] = 10_000.0 _lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads _lowerCAmelCase : Optional[int] = dim // num_key_value_heads else: # compatibility with other checkpoints _lowerCAmelCase : Union[str, Any] = n_heads _lowerCAmelCase : Any = n_heads_per_shard _lowerCAmelCase : Optional[Any] = dim # permute for sliced rotary def permute(_A , _A=n_heads , _A=dim , _A=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f'Fetching all parameters from the checkpoint at {input_base_path}.' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowerCAmelCase : List[Any] = [ torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' ) for i in range(_A ) ] _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : Union[str, Any] = {'weight_map': {}} for layer_i in range(_A ): _lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : str = { f'model.layers.{layer_i}.self_attn.q_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wq.weight'] ), f'model.layers.{layer_i}.self_attn.k_proj.weight': permute( loaded[f'layers.{layer_i}.attention.wk.weight'] ), f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'], f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'], f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'], f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'], f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'], f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'], f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowerCAmelCase : str = { f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][ f'layers.{layer_i}.attention_norm.weight' ].clone(), f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][ f'layers.{layer_i}.ffn_norm.weight' ].clone(), } _lowerCAmelCase : List[str] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) _lowerCAmelCase : Optional[int] = permute( torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wk.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) _lowerCAmelCase : Dict = torch.cat( [ loaded[i][f'layers.{layer_i}.attention.wv.weight'].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) _lowerCAmelCase : Dict = torch.cat( [loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : Tuple = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 ) _lowerCAmelCase : List[Any] = torch.cat( [loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 ) _lowerCAmelCase : int = inv_freq for k, v in state_dict.items(): _lowerCAmelCase : Optional[Any] = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) _lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin' if model_size == "7B": # Unsharded _lowerCAmelCase : List[str] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowerCAmelCase : List[str] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): _lowerCAmelCase : int = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs _lowerCAmelCase : Tuple = {'total_size': param_count * 2} write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) ) _lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6 _lowerCAmelCase : List[Any] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' ) _lowerCAmelCase : List[Any] = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def lowercase (): """simple docstring""" _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' ) _lowerCAmelCase : Any = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
25
0
'''simple docstring''' from ...processing_utils import ProcessorMixin class UpperCamelCase__ ( a_ ): """simple docstring""" __magic_name__ = "SpeechT5FeatureExtractor" __magic_name__ = "SpeechT5Tokenizer" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__(lowercase_ , lowercase_ ) def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = kwargs.pop('audio' , lowercase_ ) _lowerCAmelCase : Tuple = kwargs.pop('text' , lowercase_ ) _lowerCAmelCase : Optional[int] = kwargs.pop('text_target' , lowercase_ ) _lowerCAmelCase : Tuple = kwargs.pop('audio_target' , lowercase_ ) _lowerCAmelCase : List[Any] = kwargs.pop('sampling_rate' , lowercase_ ) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' ) if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' ) if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' ) if audio is not None: _lowerCAmelCase : Tuple = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) elif text is not None: _lowerCAmelCase : Any = self.tokenizer(lowercase_ , **lowercase_ ) else: _lowerCAmelCase : Dict = None if audio_target is not None: _lowerCAmelCase : int = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_ ) _lowerCAmelCase : Tuple = targets['''input_values'''] elif text_target is not None: _lowerCAmelCase : Union[str, Any] = self.tokenizer(lowercase_ , **lowercase_ ) _lowerCAmelCase : int = targets['''input_ids'''] else: _lowerCAmelCase : List[Any] = None if inputs is None: return targets if targets is not None: _lowerCAmelCase : List[Any] = labels _lowerCAmelCase : List[Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: _lowerCAmelCase : Tuple = decoder_attention_mask return inputs def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = kwargs.pop('input_values' , lowercase_ ) _lowerCAmelCase : Dict = kwargs.pop('input_ids' , lowercase_ ) _lowerCAmelCase : Dict = kwargs.pop('labels' , lowercase_ ) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' ) if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' ) if input_values is not None: _lowerCAmelCase : List[str] = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) elif input_ids is not None: _lowerCAmelCase : Optional[Any] = self.tokenizer.pad(lowercase_ , **lowercase_ ) else: _lowerCAmelCase : Tuple = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_ ) and "input_ids" in labels[0]): _lowerCAmelCase : Optional[int] = self.tokenizer.pad(lowercase_ , **lowercase_ ) _lowerCAmelCase : str = targets['''input_ids'''] else: _lowerCAmelCase : Any = self.feature_extractor.feature_size _lowerCAmelCase : Optional[int] = self.feature_extractor.num_mel_bins _lowerCAmelCase : str = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_ ) _lowerCAmelCase : Any = feature_size_hack _lowerCAmelCase : int = targets['''input_values'''] else: _lowerCAmelCase : List[Any] = None if inputs is None: return targets if targets is not None: _lowerCAmelCase : int = labels _lowerCAmelCase : List[Any] = targets.get('attention_mask' ) if decoder_attention_mask is not None: _lowerCAmelCase : Any = decoder_attention_mask return inputs def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_ )
357
'''simple docstring''' import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class UpperCamelCase__ : """simple docstring""" __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = None __magic_name__ = None __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = True __magic_name__ = None __magic_name__ = 1 __magic_name__ = None __magic_name__ = False __magic_name__ = None __magic_name__ = None def a ( self ): '''simple docstring''' return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
25
0
'''simple docstring''' from typing import Tuple, Union from ...modeling_outputs import BackboneOutput from ...modeling_utils import PreTrainedModel from ...utils import is_timm_available, is_torch_available, requires_backends from ...utils.backbone_utils import BackboneMixin from .configuration_timm_backbone import TimmBackboneConfig if is_timm_available(): import timm if is_torch_available(): from torch import Tensor class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "pixel_values" __magic_name__ = False __magic_name__ = TimmBackboneConfig def __init__( self , snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(self , 'timm' ) super().__init__(__A ) _lowerCAmelCase : Optional[Any] = config if config.backbone is None: raise ValueError('backbone is not set in the config. Please set it to a timm model name.' ) if config.backbone not in timm.list_models(): raise ValueError(F'backbone {config.backbone} is not supported by timm.' ) if hasattr(__A , 'out_features' ) and config.out_features is not None: raise ValueError('out_features is not supported by TimmBackbone. Please use out_indices instead.' ) _lowerCAmelCase : Union[str, Any] = getattr(__A , 'use_pretrained_backbone' , __A ) if pretrained is None: raise ValueError('use_pretrained_backbone is not set in the config. Please set it to True or False.' ) # We just take the final layer by default. This matches the default for the transformers models. _lowerCAmelCase : List[Any] = config.out_indices if getattr(__A , 'out_indices' , __A ) is not None else (-1,) _lowerCAmelCase : Tuple = timm.create_model( config.backbone , pretrained=__A , features_only=config.features_only , in_chans=config.num_channels , out_indices=__A , **__A , ) # These are used to control the output of the model when called. If output_hidden_states is True, then # return_layers is modified to include all layers. _lowerCAmelCase : Dict = self._backbone.return_layers _lowerCAmelCase : List[str] = {layer['module']: str(__A ) for i, layer in enumerate(self._backbone.feature_info.info )} super()._init_backbone(__A ) @classmethod def a ( cls , snake_case__ , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(cls , ['vision', 'timm'] ) from ...models.timm_backbone import TimmBackboneConfig _lowerCAmelCase : Union[str, Any] = kwargs.pop('config' , TimmBackboneConfig() ) _lowerCAmelCase : List[Any] = kwargs.pop('use_timm_backbone' , __A ) if not use_timm: raise ValueError('use_timm_backbone must be True for timm backbones' ) _lowerCAmelCase : Any = kwargs.pop('num_channels' , config.num_channels ) _lowerCAmelCase : str = kwargs.pop('features_only' , config.features_only ) _lowerCAmelCase : List[Any] = kwargs.pop('use_pretrained_backbone' , config.use_pretrained_backbone ) _lowerCAmelCase : str = kwargs.pop('out_indices' , config.out_indices ) _lowerCAmelCase : Optional[Any] = TimmBackboneConfig( backbone=__A , num_channels=__A , features_only=__A , use_pretrained_backbone=__A , out_indices=__A , ) return super()._from_config(__A , **__A ) def a ( self , snake_case__ ): '''simple docstring''' pass def a ( self , snake_case__ , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = return_dict if return_dict is not None else self.config.use_return_dict _lowerCAmelCase : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _lowerCAmelCase : str = output_attentions if output_attentions is not None else self.config.output_attentions if output_attentions: raise ValueError('Cannot output attentions for timm backbones at the moment' ) if output_hidden_states: # We modify the return layers to include all the stages of the backbone _lowerCAmelCase : Union[str, Any] = self._all_layers _lowerCAmelCase : Tuple = self._backbone(__A , **__A ) _lowerCAmelCase : Optional[int] = self._return_layers _lowerCAmelCase : List[str] = tuple(hidden_states[i] for i in self.out_indices ) else: _lowerCAmelCase : Optional[Any] = self._backbone(__A , **__A ) _lowerCAmelCase : Any = None _lowerCAmelCase : Union[str, Any] = tuple(__A ) _lowerCAmelCase : Optional[Any] = tuple(__A ) if hidden_states is not None else None if not return_dict: _lowerCAmelCase : List[str] = (feature_maps,) if output_hidden_states: _lowerCAmelCase : str = output + (hidden_states,) return output return BackboneOutput(feature_maps=__A , hidden_states=__A , attentions=__A )
358
'''simple docstring''' lowerCAmelCase : List[str] = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase : List[str] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
25
0
'''simple docstring''' import os def lowercase (_A = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: _lowerCAmelCase : Dict = [ [int(_A ) for element in line.split(',' )] for line in input_file.readlines() ] _lowerCAmelCase : str = len(_A ) _lowerCAmelCase : List[Any] = len(matrix[0] ) _lowerCAmelCase : str = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): _lowerCAmelCase : Dict = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): _lowerCAmelCase : Optional[int] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): _lowerCAmelCase : Union[str, Any] = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowerCAmelCase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
359
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : Union[str, Any] = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
25
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ): '''simple docstring''' _lowerCAmelCase : Optional[int] = parent _lowerCAmelCase : int = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Dict = True _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[str] = 32 _lowerCAmelCase : str = 2 _lowerCAmelCase : List[Any] = 4 _lowerCAmelCase : List[str] = 37 _lowerCAmelCase : Union[str, Any] = 'gelu' _lowerCAmelCase : List[str] = 0.1 _lowerCAmelCase : List[Any] = 0.1 _lowerCAmelCase : Dict = 512 _lowerCAmelCase : List[Any] = 16 _lowerCAmelCase : Dict = 2 _lowerCAmelCase : Optional[int] = 0.02 _lowerCAmelCase : List[str] = 3 _lowerCAmelCase : Tuple = 4 _lowerCAmelCase : Tuple = None def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Optional[Any] = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : Optional[int] = None _lowerCAmelCase : Tuple = None _lowerCAmelCase : int = None if self.use_labels: _lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=lowerCamelCase_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFRoFormerModel(config=lowerCamelCase_ ) _lowerCAmelCase : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : Optional[int] = model(lowerCamelCase_ ) _lowerCAmelCase : str = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = True _lowerCAmelCase : Dict = TFRoFormerForCausalLM(config=lowerCamelCase_ ) _lowerCAmelCase : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : Tuple = model(lowerCamelCase_ )['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = TFRoFormerForMaskedLM(config=lowerCamelCase_ ) _lowerCAmelCase : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : str = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : int = TFRoFormerForSequenceClassification(config=lowerCamelCase_ ) _lowerCAmelCase : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : List[str] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.num_choices _lowerCAmelCase : Dict = TFRoFormerForMultipleChoice(config=lowerCamelCase_ ) _lowerCAmelCase : Tuple = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : Any = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(lowerCamelCase_ , 1 ) , (1, self.num_choices, 1) ) _lowerCAmelCase : List[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _lowerCAmelCase : str = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = self.num_labels _lowerCAmelCase : Tuple = TFRoFormerForTokenClassification(config=lowerCamelCase_ ) _lowerCAmelCase : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : Union[str, Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = TFRoFormerForQuestionAnswering(config=lowerCamelCase_ ) _lowerCAmelCase : List[str] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _lowerCAmelCase : Dict = model(lowerCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[Any] = config_and_inputs _lowerCAmelCase : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) __magic_name__ = ( { "feature-extraction": TFRoFormerModel, "fill-mask": TFRoFormerForMaskedLM, "question-answering": TFRoFormerForQuestionAnswering, "text-classification": TFRoFormerForSequenceClassification, "text-generation": TFRoFormerForCausalLM, "token-classification": TFRoFormerForTokenClassification, "zero-shot": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) __magic_name__ = False __magic_name__ = False def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = TFRoFormerModelTester(self ) _lowerCAmelCase : List[str] = ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase_ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base' ) self.assertIsNotNone(lowerCamelCase_ ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : int = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowerCAmelCase : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase : int = model(lowerCamelCase_ )[0] # TODO Replace vocab size _lowerCAmelCase : List[str] = 5_0000 _lowerCAmelCase : Optional[int] = [1, 6, vocab_size] self.assertEqual(output.shape , lowerCamelCase_ ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. _lowerCAmelCase : Optional[Any] = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase_ , atol=1E-4 ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 1E-4 def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = tf.constant([[4, 10]] ) _lowerCAmelCase : List[str] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) _lowerCAmelCase : List[Any] = emba(input_ids.shape ) _lowerCAmelCase : Dict = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , atol=self.tolerance ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) _lowerCAmelCase : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) _lowerCAmelCase : Dict = emba.weight[:3, :5] tf.debugging.assert_near(lowerCamelCase_ , lowerCamelCase_ , atol=self.tolerance ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" __magic_name__ = 1E-4 def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _lowerCAmelCase : Optional[Any] = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 _lowerCAmelCase : Dict = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) _lowerCAmelCase : Any = embed_positions([2, 16, 768] )[None, None, :, :] _lowerCAmelCase , _lowerCAmelCase : List[str] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase : Tuple = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) _lowerCAmelCase : Optional[int] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , lowerCamelCase_ , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , lowerCamelCase_ , atol=self.tolerance )
360
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase : List[Any] = logging.get_logger(__name__) lowerCAmelCase : Tuple = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = "nat" __magic_name__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = patch_size _lowerCAmelCase : List[str] = num_channels _lowerCAmelCase : Tuple = embed_dim _lowerCAmelCase : Any = depths _lowerCAmelCase : Dict = len(snake_case__ ) _lowerCAmelCase : str = num_heads _lowerCAmelCase : Dict = kernel_size _lowerCAmelCase : Union[str, Any] = mlp_ratio _lowerCAmelCase : int = qkv_bias _lowerCAmelCase : Optional[Any] = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : List[str] = drop_path_rate _lowerCAmelCase : Union[str, Any] = hidden_act _lowerCAmelCase : Tuple = layer_norm_eps _lowerCAmelCase : Dict = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) ) _lowerCAmelCase : Any = layer_scale_init_value _lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices( out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
25
0
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase : List[str] = {"""UserAgent""": UserAgent().random} def lowercase (_A ): """simple docstring""" _lowerCAmelCase : str = script.contents[0] _lowerCAmelCase : str = json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = F'https://www.instagram.com/{username}/' _lowerCAmelCase : int = self.get_json() def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = requests.get(self.url , headers=snake_case__ ).text _lowerCAmelCase : Optional[Any] = BeautifulSoup(snake_case__ , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): '''simple docstring''' return F'{self.__class__.__name__}(\'{self.username}\')' def __str__( self ): '''simple docstring''' return F'{self.fullname} ({self.username}) is {self.biography}' @property def a ( self ): '''simple docstring''' return self.user_data["username"] @property def a ( self ): '''simple docstring''' return self.user_data["full_name"] @property def a ( self ): '''simple docstring''' return self.user_data["biography"] @property def a ( self ): '''simple docstring''' return self.user_data["business_email"] @property def a ( self ): '''simple docstring''' return self.user_data["external_url"] @property def a ( self ): '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def a ( self ): '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def a ( self ): '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def a ( self ): '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def a ( self ): '''simple docstring''' return self.user_data["is_verified"] @property def a ( self ): '''simple docstring''' return self.user_data["is_private"] def lowercase (_A = "github" ): """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions _lowerCAmelCase : Tuple = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : Dict = InstagramUser("""github""") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
361
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : str = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : List[str] = { """roberta-base""": 5_12, """roberta-large""": 5_12, """roberta-large-mnli""": 5_12, """distilroberta-base""": 5_12, """roberta-base-openai-detector""": 5_12, """roberta-large-openai-detector""": 5_12, } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = ["input_ids", "attention_mask"] __magic_name__ = RobertaTokenizer def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) _lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) ) _lowerCAmelCase : List[Any] = add_prefix_space _lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ ) _lowerCAmelCase : Union[str, Any] = add_prefix_space _lowerCAmelCase : Union[str, Any] = 'post_processor' _lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: _lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCAmelCase : Any = tuple(state['sep'] ) if "cls" in state: _lowerCAmelCase : str = tuple(state['cls'] ) _lowerCAmelCase : List[str] = False if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space: _lowerCAmelCase : int = add_prefix_space _lowerCAmelCase : Tuple = True if state.get('trim_offsets' , snake_case__ ) != trim_offsets: _lowerCAmelCase : Union[str, Any] = trim_offsets _lowerCAmelCase : Optional[int] = True if changes_to_apply: _lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) ) _lowerCAmelCase : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property def a ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value _lowerCAmelCase : Tuple = value def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def a ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def a ( self , snake_case__ , snake_case__=None ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def a ( self , snake_case__ , snake_case__ = None ): '''simple docstring''' _lowerCAmelCase : str = [self.sep_token_id] _lowerCAmelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
25
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=100 , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , ): '''simple docstring''' _lowerCAmelCase : int = parent _lowerCAmelCase : str = vocab_size _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Tuple = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Optional[int] = num_channels _lowerCAmelCase : Any = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : List[str] = num_hidden_layers _lowerCAmelCase : int = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : str = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Tuple = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = num_patches + 1 def a ( self ): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : Union[str, Any] = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values, labels def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = FlaxBeitModel(config=lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = FlaxBeitForMaskedImageModeling(config=lowerCAmelCase__ ) _lowerCAmelCase : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.type_sequence_label_size _lowerCAmelCase : List[str] = FlaxBeitForImageClassification(config=lowerCAmelCase__ ) _lowerCAmelCase : int = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase : int = 1 _lowerCAmelCase : List[Any] = FlaxBeitForImageClassification(lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase : Any = model(lowerCAmelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCamelCase__ ( a__ , unittest.TestCase ): """simple docstring""" __magic_name__ = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def a ( self ): '''simple docstring''' _lowerCAmelCase : int = FlaxBeitModelTester(self ) _lowerCAmelCase : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def a ( self ): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(lowerCAmelCase__ ) _lowerCAmelCase : Any = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : List[Any] = [*signature.parameters.keys()] _lowerCAmelCase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCAmelCase : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = model_class(lowerCAmelCase__ ) @jax.jit def model_jitted(snake_case__ , **snake_case__ ): return model(pixel_values=lowerCAmelCase__ , **lowerCAmelCase__ ) with self.subTest('JIT Enabled' ): _lowerCAmelCase : Tuple = model_jitted(**lowerCAmelCase__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCAmelCase : Optional[Any] = model_jitted(**lowerCAmelCase__ ).to_tuple() self.assertEqual(len(lowerCAmelCase__ ) , len(lowerCAmelCase__ ) ) for jitted_output, output in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ ) def a ( self ): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def a ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : str = model_class_name.from_pretrained('microsoft/beit-base-patch16-224' ) _lowerCAmelCase : List[str] = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(lowerCAmelCase__ ) def lowercase (): """simple docstring""" _lowerCAmelCase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @require_flax class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def a ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxBeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ) _lowerCAmelCase : List[str] = self.default_image_processor _lowerCAmelCase : Dict = prepare_img() _lowerCAmelCase : Tuple = image_processor(images=lowerCAmelCase__ , return_tensors='np' ).pixel_values # prepare bool_masked_pos _lowerCAmelCase : List[Any] = np.ones((1, 196) , dtype=lowerCAmelCase__ ) # forward pass _lowerCAmelCase : str = model(pixel_values=lowerCAmelCase__ , bool_masked_pos=lowerCAmelCase__ ) _lowerCAmelCase : int = outputs.logits # verify the logits _lowerCAmelCase : List[Any] = (1, 196, 8192) self.assertEqual(logits.shape , lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = np.array( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , lowerCAmelCase__ , atol=1E-2 ) ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : Dict = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ) _lowerCAmelCase : Any = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : List[str] = image_processor(images=lowerCAmelCase__ , return_tensors='np' ) # forward pass _lowerCAmelCase : Optional[int] = model(**lowerCAmelCase__ ) _lowerCAmelCase : List[Any] = outputs.logits # verify the logits _lowerCAmelCase : Optional[int] = (1, 1000) self.assertEqual(logits.shape , lowerCAmelCase__ ) _lowerCAmelCase : List[str] = np.array([-1.2385, -1.0987, -1.0108] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) _lowerCAmelCase : Dict = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ ) @slow def a ( self ): '''simple docstring''' _lowerCAmelCase : int = FlaxBeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ) _lowerCAmelCase : int = self.default_image_processor _lowerCAmelCase : Optional[int] = prepare_img() _lowerCAmelCase : Optional[Any] = image_processor(images=lowerCAmelCase__ , return_tensors='np' ) # forward pass _lowerCAmelCase : str = model(**lowerCAmelCase__ ) _lowerCAmelCase : str = outputs.logits # verify the logits _lowerCAmelCase : str = (1, 2_1841) self.assertEqual(logits.shape , lowerCAmelCase__ ) _lowerCAmelCase : str = np.array([1.6881, -0.2787, 0.5901] ) self.assertTrue(np.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) ) _lowerCAmelCase : Optional[Any] = 2396 self.assertEqual(logits.argmax(-1 ).item() , lowerCAmelCase__ )
362
'''simple docstring''' lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag. lowerCAmelCase : Optional[int] = 1 # The second color of the flag. lowerCAmelCase : int = 2 # The third color of the flag. lowerCAmelCase : Any = (red, white, blue) def lowercase (_A ): """simple docstring""" if not sequence: return [] if len(_A ) == 1: return list(_A ) _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : List[str] = len(_A ) - 1 _lowerCAmelCase : Optional[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: _lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid] high -= 1 else: _lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values' raise ValueError(_A ) return sequence if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip() lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")] print(F'''{dutch_national_flag_sort(unsorted)}''')
25
0
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : List[str] = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Tuple = [chr(i + 6_5 ) for i in range(2_6 )] # Remove duplicate characters from key _lowerCAmelCase : str = remove_duplicates(key.upper() ) _lowerCAmelCase : Any = len(_A ) # First fill cipher with key characters _lowerCAmelCase : List[str] = {alphabet[i]: char for i, char in enumerate(_A )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_A ) , 2_6 ): _lowerCAmelCase : Dict = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 _lowerCAmelCase : Dict = alphabet[i - offset] _lowerCAmelCase : Union[str, Any] = char return cipher_alphabet def lowercase (_A , _A ): """simple docstring""" return "".join(cipher_map.get(_A , _A ) for ch in message.upper() ) def lowercase (_A , _A ): """simple docstring""" _lowerCAmelCase : Dict = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_A , _A ) for ch in message.upper() ) def lowercase (): """simple docstring""" _lowerCAmelCase : str = input('Enter message to encode or decode: ' ).strip() _lowerCAmelCase : Union[str, Any] = input('Enter keyword: ' ).strip() _lowerCAmelCase : Dict = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: _lowerCAmelCase : Tuple = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) _lowerCAmelCase : Optional[int] = create_cipher_map(_A ) print(func(_A , _A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
363
'''simple docstring''' def lowercase (): """simple docstring""" _lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1] _lowerCAmelCase : int = 6 _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Optional[int] = 1_9_0_1 _lowerCAmelCase : Optional[Any] = 0 while year < 2_0_0_1: day += 7 if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] elif day > 2_9 and month == 2: month += 1 _lowerCAmelCase : List[str] = day - 2_9 else: if day > days_per_month[month - 1]: month += 1 _lowerCAmelCase : List[str] = day - days_per_month[month - 2] if month > 1_2: year += 1 _lowerCAmelCase : Optional[int] = 1 if year < 2_0_0_1 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
25
0
'''simple docstring''' class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[Any] = len(lowerCAmelCase_ ) _lowerCAmelCase : List[str] = [0] * len_array if len_array > 0: _lowerCAmelCase : List[str] = array[0] for i in range(1 , lowerCAmelCase_ ): _lowerCAmelCase : Optional[int] = self.prefix_sum[i - 1] + array[i] def a ( self , snake_case__ , snake_case__ ): '''simple docstring''' if start == 0: return self.prefix_sum[end] return self.prefix_sum[end] - self.prefix_sum[start - 1] def a ( self , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Optional[int] = {0} for sum_item in self.prefix_sum: if sum_item - target_sum in sums: return True sums.add(lowerCAmelCase_ ) return False if __name__ == "__main__": import doctest doctest.testmod()
364
'''simple docstring''' def lowercase (_A = 1_0_0_0_0_0_0 ): """simple docstring""" _lowerCAmelCase : Any = set(range(3 , _A , 2 ) ) primes.add(2 ) for p in range(3 , _A , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , _A , _A ) ) ) _lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )] for p in primes: for n in range(_A , limit + 1 , _A ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
25
0