code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , snake_case__=3 , snake_case__=None , snake_case__=2 , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = parent
_lowerCAmelCase : List[Any] = batch_size
_lowerCAmelCase : Optional[Any] = image_size
_lowerCAmelCase : List[Any] = patch_size
_lowerCAmelCase : Dict = num_channels
_lowerCAmelCase : int = is_training
_lowerCAmelCase : str = use_labels
_lowerCAmelCase : List[str] = hidden_size
_lowerCAmelCase : Tuple = num_hidden_layers
_lowerCAmelCase : List[str] = num_attention_heads
_lowerCAmelCase : Any = intermediate_size
_lowerCAmelCase : Optional[int] = hidden_act
_lowerCAmelCase : str = hidden_dropout_prob
_lowerCAmelCase : List[Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = type_sequence_label_size
_lowerCAmelCase : List[Any] = initializer_range
_lowerCAmelCase : List[Any] = scope
_lowerCAmelCase : Union[str, Any] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
_lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2
_lowerCAmelCase : Optional[int] = num_patches + 2
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : List[str] = None
if self.use_labels:
_lowerCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase : Tuple = self.get_config()
return config, pixel_values, labels
def a ( self ):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def a ( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = DeiTModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Any = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def a ( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : int = DeiTForMaskedImageModeling(config=snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Optional[int] = model(snake_case__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
_lowerCAmelCase : Any = 1
_lowerCAmelCase : Optional[int] = DeiTForMaskedImageModeling(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase : List[Any] = model(snake_case__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def a ( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.type_sequence_label_size
_lowerCAmelCase : List[str] = DeiTForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Any = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowerCAmelCase : str = 1
_lowerCAmelCase : Any = DeiTForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowerCAmelCase : Optional[int] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : List[str] = config_and_inputs
_lowerCAmelCase : int = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
__magic_name__ = (
{
"feature-extraction": DeiTModel,
"image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = DeiTModelTester(self )
_lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 )
def a ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='DeiT does not use inputs_embeds' )
def a ( self ):
'''simple docstring'''
pass
def a ( self ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : Union[str, Any] = model_class(snake_case__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
_lowerCAmelCase : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : Optional[int] = model_class(snake_case__ )
_lowerCAmelCase : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Tuple = [*signature.parameters.keys()]
_lowerCAmelCase : Any = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def a ( self , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
_lowerCAmelCase : int = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def a ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase : List[Any] = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(snake_case__ )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
_lowerCAmelCase : Tuple = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
_lowerCAmelCase : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
_lowerCAmelCase : str = model(**snake_case__ ).loss
loss.backward()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
_lowerCAmelCase : str = False
_lowerCAmelCase : str = True
for model_class in self.all_model_classes:
if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
_lowerCAmelCase : Tuple = model_class(snake_case__ )
model.gradient_checkpointing_enable()
model.to(snake_case__ )
model.train()
_lowerCAmelCase : Any = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
_lowerCAmelCase : Optional[int] = model(**snake_case__ ).loss
loss.backward()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
_lowerCAmelCase : int = [
{'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float},
{'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long},
{'title': 'regression', 'num_labels': 1, 'dtype': torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(snake_case__ ),
*get_values(snake_case__ ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ):
_lowerCAmelCase : Optional[Any] = problem_type['title']
_lowerCAmelCase : List[str] = problem_type['num_labels']
_lowerCAmelCase : Union[str, Any] = model_class(snake_case__ )
model.to(snake_case__ )
model.train()
_lowerCAmelCase : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ )
if problem_type["num_labels"] > 1:
_lowerCAmelCase : Optional[Any] = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] )
_lowerCAmelCase : Union[str, Any] = inputs['labels'].to(problem_type['dtype'] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=snake_case__ ) as warning_list:
_lowerCAmelCase : Any = model(**snake_case__ ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F'Something is going wrong in the regression problem: intercepted {w.message}' )
loss.backward()
@slow
def a ( self ):
'''simple docstring'''
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : str = DeiTModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def a ( self ):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' )
if is_vision_available()
else None
)
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to(
snake_case__ )
_lowerCAmelCase : int = self.default_image_processor
_lowerCAmelCase : Optional[int] = prepare_img()
_lowerCAmelCase : List[Any] = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ )
# forward pass
with torch.no_grad():
_lowerCAmelCase : int = model(**snake_case__ )
# verify the logits
_lowerCAmelCase : str = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , snake_case__ )
_lowerCAmelCase : Optional[int] = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(snake_case__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = DeiTModel.from_pretrained(
'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' )
_lowerCAmelCase : Any = self.default_image_processor
_lowerCAmelCase : Optional[int] = prepare_img()
_lowerCAmelCase : List[str] = image_processor(images=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Tuple = inputs.pixel_values.to(snake_case__ )
# forward pass to make sure inference works in fp16
with torch.no_grad():
_lowerCAmelCase : Union[str, Any] = model(snake_case__ )
| 25 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
__magic_name__ = 3.0
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , snake_case__ )
@require_multi_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : List[str] = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : List[Any] = """"""
lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = LDMTextToImagePipeline
__magic_name__ = TEXT_TO_IMAGE_PARAMS - {
"negative_prompt",
"negative_prompt_embeds",
"cross_attention_kwargs",
"prompt_embeds",
}
__magic_name__ = PipelineTesterMixin.required_optional_params - {
"num_images_per_prompt",
"callback",
"callback_steps",
}
__magic_name__ = TEXT_TO_IMAGE_BATCH_PARAMS
__magic_name__ = False
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
_lowerCAmelCase : Dict = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , )
torch.manual_seed(0 )
_lowerCAmelCase : Dict = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , )
torch.manual_seed(0 )
_lowerCAmelCase : int = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_lowerCAmelCase : Dict = CLIPTextModel(snake_case__ )
_lowerCAmelCase : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowerCAmelCase : Optional[int] = {
'unet': unet,
'scheduler': scheduler,
'vqvae': vae,
'bert': text_encoder,
'tokenizer': tokenizer,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Any = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowerCAmelCase : Any = self.get_dummy_components()
_lowerCAmelCase : Optional[Any] = LDMTextToImagePipeline(**snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Dict = self.get_dummy_inputs(snake_case__ )
_lowerCAmelCase : int = pipe(**snake_case__ ).images
_lowerCAmelCase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
_lowerCAmelCase : Any = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = torch.manual_seed(snake_case__ )
_lowerCAmelCase : Dict = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : List[str] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ )
_lowerCAmelCase : str = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 3,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : str = self.get_inputs(snake_case__ )
_lowerCAmelCase : str = pipe(**snake_case__ ).images
_lowerCAmelCase : List[str] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
_lowerCAmelCase : List[str] = np.array([0.5_1825, 0.5_2850, 0.5_2543, 0.5_4258, 0.5_2304, 0.5_2569, 0.5_4363, 0.5_5276, 0.5_6878] )
_lowerCAmelCase : int = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1E-3
@nightly
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self , snake_case__ , snake_case__=torch.floataa , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = torch.manual_seed(snake_case__ )
_lowerCAmelCase : Union[str, Any] = np.random.RandomState(snake_case__ ).standard_normal((1, 4, 32, 32) )
_lowerCAmelCase : List[str] = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ )
_lowerCAmelCase : Optional[int] = {
'prompt': 'A painting of a squirrel eating a burger',
'latents': latents,
'generator': generator,
'num_inference_steps': 50,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Any = self.get_inputs(snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**snake_case__ ).images[0]
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' )
_lowerCAmelCase : Optional[int] = np.abs(expected_image - image ).max()
assert max_diff < 1E-3
| 25 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "trajectory_transformer"
__magic_name__ = ["past_key_values"]
__magic_name__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = action_weight
_lowerCAmelCase : Optional[int] = reward_weight
_lowerCAmelCase : Union[str, Any] = value_weight
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Tuple = block_size
_lowerCAmelCase : List[Any] = action_dim
_lowerCAmelCase : List[Any] = observation_dim
_lowerCAmelCase : Union[str, Any] = transition_dim
_lowerCAmelCase : Tuple = learning_rate
_lowerCAmelCase : int = n_layer
_lowerCAmelCase : Any = n_head
_lowerCAmelCase : Tuple = n_embd
_lowerCAmelCase : Optional[Any] = embd_pdrop
_lowerCAmelCase : Union[str, Any] = attn_pdrop
_lowerCAmelCase : Any = resid_pdrop
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : List[Any] = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = kaiming_initializer_range
_lowerCAmelCase : List[Any] = use_cache
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
import queue
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : int = data
_lowerCAmelCase : str = None
_lowerCAmelCase : Union[str, Any] = None
def lowercase ():
"""simple docstring"""
print('\n********Press N to stop entering at any point of time********\n' )
_lowerCAmelCase : Union[str, Any] = input('Enter the value of the root node: ' ).strip().lower()
_lowerCAmelCase : queue.Queue = queue.Queue()
_lowerCAmelCase : Optional[int] = TreeNode(int(_A ) )
q.put(_A )
while not q.empty():
_lowerCAmelCase : str = q.get()
_lowerCAmelCase : Any = f'Enter the left node of {node_found.data}: '
_lowerCAmelCase : Optional[Any] = input(_A ).strip().lower() or 'n'
if check == "n":
return tree_node
_lowerCAmelCase : Optional[int] = TreeNode(int(_A ) )
_lowerCAmelCase : Optional[int] = left_node
q.put(_A )
_lowerCAmelCase : List[Any] = f'Enter the right node of {node_found.data}: '
_lowerCAmelCase : int = input(_A ).strip().lower() or 'n'
if check == "n":
return tree_node
_lowerCAmelCase : int = TreeNode(int(_A ) )
_lowerCAmelCase : Union[str, Any] = right_node
q.put(_A )
raise
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
print(node.data , end=',' )
pre_order(node.left )
pre_order(node.right )
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
in_order(node.left )
print(node.data , end=',' )
in_order(node.right )
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=',' )
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
_lowerCAmelCase : queue.Queue = queue.Queue()
q.put(_A )
while not q.empty():
_lowerCAmelCase : str = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
_lowerCAmelCase : queue.Queue = queue.Queue()
q.put(_A )
while not q.empty():
_lowerCAmelCase : Dict = []
while not q.empty():
_lowerCAmelCase : List[Any] = q.get()
print(node_dequeued.data , end=',' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(_A )
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
_lowerCAmelCase : list[TreeNode] = []
_lowerCAmelCase : int = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=',' )
stack.append(_A )
_lowerCAmelCase : Union[str, Any] = n.left
# end of while means current node doesn't have left child
_lowerCAmelCase : Optional[Any] = stack.pop()
# start to traverse its right child
_lowerCAmelCase : List[Any] = n.right
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
_lowerCAmelCase : list[TreeNode] = []
_lowerCAmelCase : Union[str, Any] = node
while n or stack:
while n:
stack.append(_A )
_lowerCAmelCase : Optional[int] = n.left
_lowerCAmelCase : str = stack.pop()
print(n.data , end=',' )
_lowerCAmelCase : Union[str, Any] = n.right
def lowercase (_A ):
"""simple docstring"""
if not isinstance(_A , _A ) or not node:
return
_lowerCAmelCase , _lowerCAmelCase : str = [], []
_lowerCAmelCase : List[Any] = node
stacka.append(_A )
while stacka: # to find the reversed order of post order, store it in stack2
_lowerCAmelCase : List[Any] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(_A )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=',' )
def lowercase (_A = "" , _A=5_0 , _A="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
_lowerCAmelCase , _lowerCAmelCase : str = divmod(width - len(_A ) - 2 , 2 )
return f'{left * char} {s} {(left + extra) * char}'
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("""Binary Tree Traversals"""))
lowerCAmelCase : TreeNode = build_tree()
print(prompt("""Pre Order Traversal"""))
pre_order(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal"""))
in_order(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal"""))
post_order(node)
print(prompt() + """\n""")
print(prompt("""Level Order Traversal"""))
level_order(node)
print(prompt() + """\n""")
print(prompt("""Actual Level Order Traversal"""))
level_order_actual(node)
print("""*""" * 50 + """\n""")
print(prompt("""Pre Order Traversal - Iteration Version"""))
pre_order_iter(node)
print(prompt() + """\n""")
print(prompt("""In Order Traversal - Iteration Version"""))
in_order_iter(node)
print(prompt() + """\n""")
print(prompt("""Post Order Traversal - Iteration Version"""))
post_order_iter(node)
print(prompt())
| 25 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 25_00_04
lowerCAmelCase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = '<s>'
_lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(snake_case__ ) , 1054 )
def a ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
_lowerCAmelCase : Any = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def a ( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "facebook/mbart-large-50-one-to-many-mmt"
__magic_name__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__magic_name__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
_lowerCAmelCase : Dict = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , snake_case__ )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[0] , snake_case__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : List[Any] = targets['input_ids']
_lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_0004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_0001,
} , )
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import random
from typing import Generic, TypeVar
lowerCAmelCase : List[Any] = TypeVar("""KT""")
lowerCAmelCase : Optional[int] = TypeVar("""VT""")
class UpperCamelCase__ ( Generic[KT, VT] ):
"""simple docstring"""
def __init__( self , snake_case__ = "root" , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = key
_lowerCAmelCase : Tuple = value
_lowerCAmelCase : list[Node[KT, VT]] = []
def __repr__( self ):
'''simple docstring'''
return F'Node({self.key}: {self.value})'
@property
def a ( self ):
'''simple docstring'''
return len(self.forward )
class UpperCamelCase__ ( Generic[KT, VT] ):
"""simple docstring"""
def __init__( self , snake_case__ = 0.5 , snake_case__ = 16 ):
'''simple docstring'''
_lowerCAmelCase : Node[KT, VT] = Node[KT, VT]()
_lowerCAmelCase : List[str] = 0
_lowerCAmelCase : List[str] = p
_lowerCAmelCase : str = max_level
def __str__( self ):
'''simple docstring'''
_lowerCAmelCase : int = list(self )
if len(snake_case__ ) == 0:
return F'SkipList(level={self.level})'
_lowerCAmelCase : Any = max((len(str(snake_case__ ) ) for item in items) , default=4 )
_lowerCAmelCase : List[str] = max(snake_case__ , 4 ) + 4
_lowerCAmelCase : Union[str, Any] = self.head
_lowerCAmelCase : int = []
_lowerCAmelCase : Any = node.forward.copy()
lines.append(F'[{node.key}]'.ljust(snake_case__ , '-' ) + '* ' * len(snake_case__ ) )
lines.append(' ' * label_size + '| ' * len(snake_case__ ) )
while len(node.forward ) != 0:
_lowerCAmelCase : Union[str, Any] = node.forward[0]
lines.append(
F'[{node.key}]'.ljust(snake_case__ , '-' )
+ ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) )
lines.append(' ' * label_size + '| ' * len(snake_case__ ) )
_lowerCAmelCase : Union[str, Any] = node.forward
lines.append('None'.ljust(snake_case__ ) + '* ' * len(snake_case__ ) )
return F'SkipList(level={self.level})\n' + "\n".join(snake_case__ )
def __iter__( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.head
while len(node.forward ) != 0:
yield node.forward[0].key
_lowerCAmelCase : List[Any] = node.forward[0]
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = 1
while random() < self.p and level < self.max_level:
level += 1
return level
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = []
_lowerCAmelCase : Optional[int] = self.head
for i in reversed(range(self.level ) ):
# i < node.level - When node level is lesser than `i` decrement `i`.
# node.forward[i].key < key - Jumping to node with key value higher
# or equal to searched key would result
# in skipping searched key.
while i < node.level and node.forward[i].key < key:
_lowerCAmelCase : Any = node.forward[i]
# Each leftmost node (relative to searched node) will potentially have to
# be updated.
update_vector.append(snake_case__ )
update_vector.reverse() # Note that we were inserting values in reverse order.
# len(node.forward) != 0 - If current node doesn't contain any further
# references then searched key is not present.
# node.forward[0].key == key - Next node key should be equal to search key
# if key is present.
if len(node.forward ) != 0 and node.forward[0].key == key:
return node.forward[0], update_vector
else:
return None, update_vector
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self._locate_node(snake_case__ )
if node is not None:
for i, update_node in enumerate(snake_case__ ):
# Remove or replace all references to removed node.
if update_node.level > i and update_node.forward[i].key == key:
if node.level > i:
_lowerCAmelCase : Optional[int] = node.forward[i]
else:
_lowerCAmelCase : int = update_node.forward[:i]
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : int = self._locate_node(snake_case__ )
if node is not None:
_lowerCAmelCase : Any = value
else:
_lowerCAmelCase : Dict = self.random_level()
if level > self.level:
# After level increase we have to add additional nodes to head.
for _ in range(self.level - 1 , snake_case__ ):
update_vector.append(self.head )
_lowerCAmelCase : Optional[int] = level
_lowerCAmelCase : List[str] = Node(snake_case__ , snake_case__ )
for i, update_node in enumerate(update_vector[:level] ):
# Change references to pass through new node.
if update_node.level > i:
new_node.forward.append(update_node.forward[i] )
if update_node.level < i + 1:
update_node.forward.append(snake_case__ )
else:
_lowerCAmelCase : Union[str, Any] = new_node
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : str = self._locate_node(snake_case__ )
if node is not None:
return node.value
return None
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Any = SkipList()
skip_list.insert('Key1' , 3 )
skip_list.insert('Key2' , 1_2 )
skip_list.insert('Key3' , 4_1 )
skip_list.insert('Key4' , -1_9 )
_lowerCAmelCase : Optional[int] = skip_list.head
_lowerCAmelCase : Any = {}
while node.level != 0:
_lowerCAmelCase : List[str] = node.forward[0]
_lowerCAmelCase : int = node.value
assert len(_A ) == 4
assert all_values["Key1"] == 3
assert all_values["Key2"] == 1_2
assert all_values["Key3"] == 4_1
assert all_values["Key4"] == -1_9
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Any = SkipList()
skip_list.insert('Key1' , 1_0 )
skip_list.insert('Key1' , 1_2 )
skip_list.insert('Key5' , 7 )
skip_list.insert('Key7' , 1_0 )
skip_list.insert('Key10' , 5 )
skip_list.insert('Key7' , 7 )
skip_list.insert('Key5' , 5 )
skip_list.insert('Key10' , 1_0 )
_lowerCAmelCase : Union[str, Any] = skip_list.head
_lowerCAmelCase : Optional[Any] = {}
while node.level != 0:
_lowerCAmelCase : List[Any] = node.forward[0]
_lowerCAmelCase : Any = node.value
if len(_A ) != 4:
print()
assert len(_A ) == 4
assert all_values["Key1"] == 1_2
assert all_values["Key7"] == 7
assert all_values["Key5"] == 5
assert all_values["Key10"] == 1_0
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[Any] = SkipList()
assert skip_list.find('Some key' ) is None
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Tuple = SkipList()
skip_list.insert('Key2' , 2_0 )
assert skip_list.find('Key2' ) == 2_0
skip_list.insert('Some Key' , 1_0 )
skip_list.insert('Key2' , 8 )
skip_list.insert('V' , 1_3 )
assert skip_list.find('Y' ) is None
assert skip_list.find('Key2' ) == 8
assert skip_list.find('Some Key' ) == 1_0
assert skip_list.find('V' ) == 1_3
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = SkipList()
skip_list.delete('Some key' )
assert len(skip_list.head.forward ) == 0
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('V' )
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('Key2' ) is None
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[str] = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('V' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) == 1_4
assert skip_list.find('Key1' ) == 1_2
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('X' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) == 1_2
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('Key1' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) == 1_5
skip_list.delete('Key2' )
assert skip_list.find('V' ) is None
assert skip_list.find('X' ) is None
assert skip_list.find('Key1' ) is None
assert skip_list.find('Key2' ) is None
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[str] = SkipList()
skip_list.insert('Key1' , 1_2 )
skip_list.insert('V' , 1_3 )
skip_list.insert('X' , 1_4_2 )
skip_list.insert('Key2' , 1_5 )
skip_list.delete('X' )
def traverse_keys(_A ):
yield node.key
for forward_node in node.forward:
yield from traverse_keys(_A )
assert len(set(traverse_keys(skip_list.head ) ) ) == 4
def lowercase ():
"""simple docstring"""
def is_sorted(_A ):
return all(next_item >= item for item, next_item in zip(_A , lst[1:] ) )
_lowerCAmelCase : Optional[Any] = SkipList()
for i in range(1_0 ):
skip_list.insert(_A , _A )
assert is_sorted(list(_A ) )
skip_list.delete(5 )
skip_list.delete(8 )
skip_list.delete(2 )
assert is_sorted(list(_A ) )
skip_list.insert(-1_2 , -1_2 )
skip_list.insert(7_7 , 7_7 )
assert is_sorted(list(_A ) )
def lowercase ():
"""simple docstring"""
for _ in range(1_0_0 ):
# Repeat test 100 times due to the probabilistic nature of skip list
# random values == random bugs
test_insert()
test_insert_overrides_existing_value()
test_searching_empty_list_returns_none()
test_search()
test_deleting_item_from_empty_list_do_nothing()
test_deleted_items_are_not_founded_by_find_method()
test_delete_removes_only_given_key()
test_delete_doesnt_leave_dead_nodes()
test_iter_always_yields_sorted_values()
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Any = SkipList()
skip_list.insert(2 , '2' )
skip_list.insert(4 , '4' )
skip_list.insert(6 , '4' )
skip_list.insert(4 , '5' )
skip_list.insert(8 , '4' )
skip_list.insert(9 , '4' )
skip_list.delete(4 )
print(_A )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 25 |
'''simple docstring'''
from math import isqrt
def lowercase (_A ):
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) )
def lowercase (_A = 1_0**6 ):
"""simple docstring"""
_lowerCAmelCase : str = 0
_lowerCAmelCase : str = 1
_lowerCAmelCase : List[str] = 7
while prime_candidate < max_prime:
primes_count += is_prime(_A )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 25_00_04
lowerCAmelCase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = '<s>'
_lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(snake_case__ ) , 1054 )
def a ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
_lowerCAmelCase : Any = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def a ( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "facebook/mbart-large-50-one-to-many-mmt"
__magic_name__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__magic_name__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
_lowerCAmelCase : Dict = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , snake_case__ )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[0] , snake_case__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : List[Any] = targets['input_ids']
_lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_0004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_0001,
} , )
| 25 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mvp"
__magic_name__ = ["past_key_values"]
__magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Optional[Any] = d_model
_lowerCAmelCase : Optional[int] = encoder_ffn_dim
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = encoder_attention_heads
_lowerCAmelCase : Any = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Union[str, Any] = dropout
_lowerCAmelCase : List[Any] = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : Any = init_std
_lowerCAmelCase : Any = encoder_layerdrop
_lowerCAmelCase : Union[str, Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = classifier_dropout
_lowerCAmelCase : List[Any] = use_cache
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase : Optional[Any] = use_prompt
_lowerCAmelCase : Optional[Any] = prompt_length
_lowerCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ):
_lowerCAmelCase : Any = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 25 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import BertTokenizer, BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = tempfile.mkdtemp()
_lowerCAmelCase : Optional[Any] = [
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'的',
'价',
'格',
'是',
'15',
'便',
'alex',
'##andra',
',',
'。',
'-',
't',
'shirt',
]
_lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
_lowerCAmelCase : List[str] = {
'do_resize': True,
'size': {'height': 224, 'width': 224},
'do_center_crop': True,
'crop_size': {'height': 18, 'width': 18},
'do_normalize': True,
'image_mean': [0.4814_5466, 0.457_8275, 0.4082_1073],
'image_std': [0.2686_2954, 0.2613_0258, 0.2757_7711],
'do_convert_rgb': True,
}
_lowerCAmelCase : Dict = os.path.join(self.tmpdirname , snake_case__ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(snake_case__ , snake_case__ )
def a ( self , **snake_case__ ):
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self , **snake_case__ ):
'''simple docstring'''
return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self , **snake_case__ ):
'''simple docstring'''
return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_lowerCAmelCase : Dict = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.get_tokenizer()
_lowerCAmelCase : Any = self.get_rust_tokenizer()
_lowerCAmelCase : Optional[int] = self.get_image_processor()
_lowerCAmelCase : str = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor_slow.save_pretrained(self.tmpdirname )
_lowerCAmelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case__ )
_lowerCAmelCase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
processor_fast.save_pretrained(self.tmpdirname )
_lowerCAmelCase : Tuple = ChineseCLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , snake_case__ )
self.assertIsInstance(processor_fast.tokenizer , snake_case__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , snake_case__ )
self.assertIsInstance(processor_fast.image_processor , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase : Dict = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' )
_lowerCAmelCase : int = self.get_image_processor(do_normalize=snake_case__ )
_lowerCAmelCase : Union[str, Any] = ChineseCLIPProcessor.from_pretrained(
self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case__ )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.get_image_processor()
_lowerCAmelCase : Optional[Any] = self.get_tokenizer()
_lowerCAmelCase : List[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : str = self.prepare_image_inputs()
_lowerCAmelCase : Dict = image_processor(snake_case__ , return_tensors='np' )
_lowerCAmelCase : Tuple = processor(images=snake_case__ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.get_image_processor()
_lowerCAmelCase : List[Any] = self.get_tokenizer()
_lowerCAmelCase : Any = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : List[Any] = 'Alexandra,T-shirt的价格是15便士。'
_lowerCAmelCase : List[Any] = processor(text=snake_case__ )
_lowerCAmelCase : List[Any] = tokenizer(snake_case__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.get_image_processor()
_lowerCAmelCase : Tuple = self.get_tokenizer()
_lowerCAmelCase : Optional[Any] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : int = 'Alexandra,T-shirt的价格是15便士。'
_lowerCAmelCase : List[str] = self.prepare_image_inputs()
_lowerCAmelCase : Union[str, Any] = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_image_processor()
_lowerCAmelCase : Optional[Any] = self.get_tokenizer()
_lowerCAmelCase : int = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCAmelCase : str = processor.batch_decode(snake_case__ )
_lowerCAmelCase : Optional[Any] = tokenizer.batch_decode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.get_image_processor()
_lowerCAmelCase : Optional[Any] = self.get_tokenizer()
_lowerCAmelCase : Optional[int] = ChineseCLIPProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : str = 'Alexandra,T-shirt的价格是15便士。'
_lowerCAmelCase : Tuple = self.prepare_image_inputs()
_lowerCAmelCase : List[Any] = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 25 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
lowerCAmelCase : str = None
lowerCAmelCase : Optional[int] = {
"""7B""": 1_10_08,
"""13B""": 1_38_24,
"""30B""": 1_79_20,
"""65B""": 2_20_16,
"""70B""": 2_86_72,
}
lowerCAmelCase : Optional[int] = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowercase (_A , _A=1 , _A=2_5_6 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase (_A ):
"""simple docstring"""
with open(_A , 'r' ) as f:
return json.load(_A )
def lowercase (_A , _A ):
"""simple docstring"""
with open(_A , 'w' ) as f:
json.dump(_A , _A )
def lowercase (_A , _A , _A , _A=True ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' )
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) )
_lowerCAmelCase : List[str] = NUM_SHARDS[model_size]
_lowerCAmelCase : str = params['n_layers']
_lowerCAmelCase : Optional[int] = params['n_heads']
_lowerCAmelCase : int = n_heads // num_shards
_lowerCAmelCase : Optional[int] = params['dim']
_lowerCAmelCase : Union[str, Any] = dim // n_heads
_lowerCAmelCase : Union[str, Any] = 10_000.0
_lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA
_lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase : Optional[int] = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase : Union[str, Any] = n_heads
_lowerCAmelCase : Any = n_heads_per_shard
_lowerCAmelCase : Optional[Any] = dim
# permute for sliced rotary
def permute(_A , _A=n_heads , _A=dim , _A=dim ):
return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
_lowerCAmelCase : List[Any] = [
torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' )
for i in range(_A )
]
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Union[str, Any] = {'weight_map': {}}
for layer_i in range(_A ):
_lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase : List[str] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) )
_lowerCAmelCase : Optional[int] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , )
_lowerCAmelCase : Dict = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A )
_lowerCAmelCase : Dict = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : Tuple = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : int = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase : Optional[Any] = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
_lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : List[str] = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
_lowerCAmelCase : List[str] = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase : int = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
# Write configs
_lowerCAmelCase : Tuple = {'total_size': param_count * 2}
write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) )
_lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
_lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6
_lowerCAmelCase : List[Any] = LlamaConfig(
hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , )
config.save_pretrained(_A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
_lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(_A , safe_serialization=_A )
shutil.rmtree(_A )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase : List[Any] = tokenizer_class(_A )
tokenizer.save_pretrained(_A )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' )
_lowerCAmelCase : Any = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , _A )
if __name__ == "__main__":
main()
| 25 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = ["torch", "torchsde"]
def __init__( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
requires_backends(self , ['torch', 'torchsde'] )
@classmethod
def a ( cls , *snake_case__ , **snake_case__ ):
'''simple docstring'''
requires_backends(cls , ['torch', 'torchsde'] )
@classmethod
def a ( cls , *snake_case__ , **snake_case__ ):
'''simple docstring'''
requires_backends(cls , ['torch', 'torchsde'] )
| 25 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = 1
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
def a ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 25 | 1 |
'''simple docstring'''
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=0.0 , snake_case__ = None , snake_case__ = "geglu" , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = "layer_norm" , snake_case__ = False , ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[int] = only_cross_attention
_lowerCAmelCase : Tuple = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero'
_lowerCAmelCase : List[str] = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm'
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'
F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
_lowerCAmelCase : List[Any] = AdaLayerNorm(snake_case__ , snake_case__ )
elif self.use_ada_layer_norm_zero:
_lowerCAmelCase : List[Any] = AdaLayerNormZero(snake_case__ , snake_case__ )
else:
_lowerCAmelCase : Optional[int] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ )
_lowerCAmelCase : Optional[Any] = Attention(
query_dim=snake_case__ , heads=snake_case__ , dim_head=snake_case__ , dropout=snake_case__ , bias=snake_case__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=snake_case__ , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
_lowerCAmelCase : Optional[Any] = (
AdaLayerNorm(snake_case__ , snake_case__ )
if self.use_ada_layer_norm
else nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ )
)
_lowerCAmelCase : List[Any] = Attention(
query_dim=snake_case__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=snake_case__ , dim_head=snake_case__ , dropout=snake_case__ , bias=snake_case__ , upcast_attention=snake_case__ , ) # is self-attn if encoder_hidden_states is none
else:
_lowerCAmelCase : Union[str, Any] = None
_lowerCAmelCase : int = None
# 3. Feed-forward
_lowerCAmelCase : Optional[int] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ )
_lowerCAmelCase : Union[str, Any] = FeedForward(snake_case__ , dropout=snake_case__ , activation_fn=snake_case__ , final_dropout=snake_case__ )
# let chunk size default to None
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : Union[str, Any] = 0
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = chunk_size
_lowerCAmelCase : Tuple = dim
def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , ):
'''simple docstring'''
if self.use_ada_layer_norm:
_lowerCAmelCase : Union[str, Any] = self.norma(snake_case__ , snake_case__ )
elif self.use_ada_layer_norm_zero:
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = self.norma(
snake_case__ , snake_case__ , snake_case__ , hidden_dtype=hidden_states.dtype )
else:
_lowerCAmelCase : Union[str, Any] = self.norma(snake_case__ )
_lowerCAmelCase : str = cross_attention_kwargs if cross_attention_kwargs is not None else {}
_lowerCAmelCase : Union[str, Any] = self.attna(
snake_case__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=snake_case__ , **snake_case__ , )
if self.use_ada_layer_norm_zero:
_lowerCAmelCase : int = gate_msa.unsqueeze(1 ) * attn_output
_lowerCAmelCase : str = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
_lowerCAmelCase : List[str] = (
self.norma(snake_case__ , snake_case__ ) if self.use_ada_layer_norm else self.norma(snake_case__ )
)
_lowerCAmelCase : Optional[int] = self.attna(
snake_case__ , encoder_hidden_states=snake_case__ , attention_mask=snake_case__ , **snake_case__ , )
_lowerCAmelCase : Optional[int] = attn_output + hidden_states
# 3. Feed-forward
_lowerCAmelCase : Optional[Any] = self.norma(snake_case__ )
if self.use_ada_layer_norm_zero:
_lowerCAmelCase : Any = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' )
_lowerCAmelCase : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
_lowerCAmelCase : str = torch.cat(
[self.ff(snake_case__ ) for hid_slice in norm_hidden_states.chunk(snake_case__ , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
_lowerCAmelCase : Tuple = self.ff(snake_case__ )
if self.use_ada_layer_norm_zero:
_lowerCAmelCase : int = gate_mlp.unsqueeze(1 ) * ff_output
_lowerCAmelCase : Dict = ff_output + hidden_states
return hidden_states
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ = None , snake_case__ = 4 , snake_case__ = 0.0 , snake_case__ = "geglu" , snake_case__ = False , ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[Any] = int(dim * mult )
_lowerCAmelCase : Optional[Any] = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
_lowerCAmelCase : Tuple = GELU(snake_case__ , snake_case__ )
if activation_fn == "gelu-approximate":
_lowerCAmelCase : Any = GELU(snake_case__ , snake_case__ , approximate='tanh' )
elif activation_fn == "geglu":
_lowerCAmelCase : Tuple = GEGLU(snake_case__ , snake_case__ )
elif activation_fn == "geglu-approximate":
_lowerCAmelCase : Any = ApproximateGELU(snake_case__ , snake_case__ )
_lowerCAmelCase : Union[str, Any] = nn.ModuleList([] )
# project in
self.net.append(snake_case__ )
# project dropout
self.net.append(nn.Dropout(snake_case__ ) )
# project out
self.net.append(nn.Linear(snake_case__ , snake_case__ ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(snake_case__ ) )
def a ( self , snake_case__ ):
'''simple docstring'''
for module in self.net:
_lowerCAmelCase : List[Any] = module(snake_case__ )
return hidden_states
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ , snake_case__ = "none" ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : str = nn.Linear(snake_case__ , snake_case__ )
_lowerCAmelCase : List[Any] = approximate
def a ( self , snake_case__ ):
'''simple docstring'''
if gate.device.type != "mps":
return F.gelu(snake_case__ , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.proj(snake_case__ )
_lowerCAmelCase : str = self.gelu(snake_case__ )
return hidden_states
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Tuple = nn.Linear(snake_case__ , dim_out * 2 )
def a ( self , snake_case__ ):
'''simple docstring'''
if gate.device.type != "mps":
return F.gelu(snake_case__ )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Dict = self.proj(snake_case__ ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(snake_case__ )
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = nn.Linear(snake_case__ , snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.proj(snake_case__ )
return x * torch.sigmoid(1.702 * x )
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Optional[Any] = nn.Embedding(snake_case__ , snake_case__ )
_lowerCAmelCase : List[Any] = nn.SiLU()
_lowerCAmelCase : Optional[int] = nn.Linear(snake_case__ , embedding_dim * 2 )
_lowerCAmelCase : Optional[int] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ )
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.linear(self.silu(self.emb(snake_case__ ) ) )
_lowerCAmelCase , _lowerCAmelCase : List[Any] = torch.chunk(snake_case__ , 2 )
_lowerCAmelCase : Optional[Any] = self.norm(snake_case__ ) * (1 + scale) + shift
return x
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Union[str, Any] = CombinedTimestepLabelEmbeddings(snake_case__ , snake_case__ )
_lowerCAmelCase : Dict = nn.SiLU()
_lowerCAmelCase : Tuple = nn.Linear(snake_case__ , 6 * embedding_dim , bias=snake_case__ )
_lowerCAmelCase : Optional[Any] = nn.LayerNorm(snake_case__ , elementwise_affine=snake_case__ , eps=1E-6 )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.linear(self.silu(self.emb(snake_case__ , snake_case__ , hidden_dtype=snake_case__ ) ) )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = emb.chunk(6 , dim=1 )
_lowerCAmelCase : Any = self.norm(snake_case__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = 1E-5 ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : Dict = num_groups
_lowerCAmelCase : Dict = eps
if act_fn is None:
_lowerCAmelCase : Union[str, Any] = None
else:
_lowerCAmelCase : List[Any] = get_activation(snake_case__ )
_lowerCAmelCase : int = nn.Linear(snake_case__ , out_dim * 2 )
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
if self.act:
_lowerCAmelCase : List[Any] = self.act(snake_case__ )
_lowerCAmelCase : Optional[int] = self.linear(snake_case__ )
_lowerCAmelCase : str = emb[:, :, None, None]
_lowerCAmelCase , _lowerCAmelCase : Any = emb.chunk(2 , dim=1 )
_lowerCAmelCase : int = F.group_norm(snake_case__ , self.num_groups , eps=self.eps )
_lowerCAmelCase : List[Any] = x * (1 + scale) + shift
return x
| 25 |
'''simple docstring'''
lowerCAmelCase : List[str] = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase : List[str] = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 25 | 1 |
'''simple docstring'''
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=False , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=33 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ):
'''simple docstring'''
_lowerCAmelCase : str = parent
_lowerCAmelCase : List[str] = batch_size
_lowerCAmelCase : Dict = seq_length
_lowerCAmelCase : int = is_training
_lowerCAmelCase : str = use_input_mask
_lowerCAmelCase : Optional[int] = use_token_type_ids
_lowerCAmelCase : Any = use_labels
_lowerCAmelCase : List[str] = vocab_size
_lowerCAmelCase : Union[str, Any] = hidden_size
_lowerCAmelCase : Optional[int] = num_hidden_layers
_lowerCAmelCase : Optional[int] = num_attention_heads
_lowerCAmelCase : Dict = intermediate_size
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : List[str] = hidden_dropout_prob
_lowerCAmelCase : int = attention_probs_dropout_prob
_lowerCAmelCase : str = max_position_embeddings
_lowerCAmelCase : List[Any] = type_vocab_size
_lowerCAmelCase : Optional[Any] = type_sequence_label_size
_lowerCAmelCase : Tuple = initializer_range
_lowerCAmelCase : str = num_labels
_lowerCAmelCase : Optional[int] = num_choices
_lowerCAmelCase : Dict = scope
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowerCAmelCase : List[str] = None
if self.use_input_mask:
_lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] )
_lowerCAmelCase : Optional[Any] = None
_lowerCAmelCase : List[str] = None
_lowerCAmelCase : List[str] = None
if self.use_labels:
_lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowerCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
_lowerCAmelCase : Union[str, Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def a ( self ):
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = EsmModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : str = model(snake_case__ , attention_mask=snake_case__ )
_lowerCAmelCase : Union[str, Any] = model(snake_case__ )
_lowerCAmelCase : Any = model(snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : int = EsmForMaskedLM(config=snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Dict = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : int = self.num_labels
_lowerCAmelCase : Dict = EsmForTokenClassification(config=snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : List[str] = model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.prepare_config_and_inputs()
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Dict = config_and_inputs
_lowerCAmelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = False
__magic_name__ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
__magic_name__ = ()
__magic_name__ = (
{
"feature-extraction": EsmModel,
"fill-mask": EsmForMaskedLM,
"text-classification": EsmForSequenceClassification,
"token-classification": EsmForTokenClassification,
"zero-shot": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
__magic_name__ = True
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = EsmModelTester(self )
_lowerCAmelCase : Tuple = ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def a ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase : int = type
self.model_tester.create_and_check_model(*snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case__ )
@slow
def a ( self ):
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Dict = EsmModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()[0]
_lowerCAmelCase : Dict = EsmEmbeddings(config=snake_case__ )
_lowerCAmelCase : List[Any] = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
_lowerCAmelCase : List[str] = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
_lowerCAmelCase : Optional[Any] = create_position_ids_from_input_ids(snake_case__ , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(snake_case__ , snake_case__ ) ) )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs()[0]
_lowerCAmelCase : Any = EsmEmbeddings(config=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.empty(2 , 4 , 30 )
_lowerCAmelCase : Dict = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
_lowerCAmelCase : List[str] = torch.as_tensor([expected_single_positions, expected_single_positions] )
_lowerCAmelCase : Optional[int] = embeddings.create_position_ids_from_inputs_embeds(snake_case__ )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(snake_case__ , snake_case__ ) ) )
@unittest.skip('Esm does not support embedding resizing' )
def a ( self ):
'''simple docstring'''
pass
@unittest.skip('Esm does not support embedding resizing' )
def a ( self ):
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def a ( self ):
'''simple docstring'''
pass
@require_torch
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@slow
def a ( self ):
'''simple docstring'''
with torch.no_grad():
_lowerCAmelCase : Optional[int] = EsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
_lowerCAmelCase : str = torch.tensor([[0, 1, 2, 3, 4, 5]] )
_lowerCAmelCase : Tuple = model(snake_case__ )[0]
_lowerCAmelCase : int = 33
_lowerCAmelCase : Dict = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , snake_case__ )
_lowerCAmelCase : Optional[int] = torch.tensor(
[[[8.9215, -10.5898, -6.4671], [-6.3967, -13.9114, -1.1212], [-7.7812, -13.9516, -3.7406]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) )
@slow
def a ( self ):
'''simple docstring'''
with torch.no_grad():
_lowerCAmelCase : List[str] = EsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
model.eval()
_lowerCAmelCase : Tuple = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_lowerCAmelCase : Dict = model(snake_case__ )[0]
# compare the actual values for a slice.
_lowerCAmelCase : str = torch.tensor(
[[[0.1444, 0.5413, 0.3248], [0.3034, 0.0053, 0.3108], [0.3228, -0.2499, 0.3415]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1E-4 ) )
| 25 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = [
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 | 1 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
return 1_0 - x * x
def lowercase (_A , _A ):
"""simple docstring"""
if equation(_A ) * equation(_A ) >= 0:
raise ValueError('Wrong space!' )
_lowerCAmelCase : List[str] = a
while (b - a) >= 0.01:
# Find middle point
_lowerCAmelCase : Optional[int] = (a + b) / 2
# Check if middle point is root
if equation(_A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(_A ) * equation(_A ) < 0:
_lowerCAmelCase : Optional[int] = c
else:
_lowerCAmelCase : Tuple = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 25 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "nat"
__magic_name__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = patch_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Tuple = embed_dim
_lowerCAmelCase : Any = depths
_lowerCAmelCase : Dict = len(snake_case__ )
_lowerCAmelCase : str = num_heads
_lowerCAmelCase : Dict = kernel_size
_lowerCAmelCase : Union[str, Any] = mlp_ratio
_lowerCAmelCase : int = qkv_bias
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = drop_path_rate
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
_lowerCAmelCase : Any = layer_scale_init_value
_lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 25 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import PoolFormerImageProcessor
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=0.9 , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = size if size is not None else {'shortest_edge': 30}
_lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {'height': 30, 'width': 30}
_lowerCAmelCase : Dict = parent
_lowerCAmelCase : str = batch_size
_lowerCAmelCase : Tuple = num_channels
_lowerCAmelCase : Dict = min_resolution
_lowerCAmelCase : Dict = max_resolution
_lowerCAmelCase : str = do_resize_and_center_crop
_lowerCAmelCase : Dict = size
_lowerCAmelCase : Optional[Any] = crop_pct
_lowerCAmelCase : Optional[int] = crop_size
_lowerCAmelCase : Optional[int] = do_normalize
_lowerCAmelCase : str = image_mean
_lowerCAmelCase : int = image_std
def a ( self ):
'''simple docstring'''
return {
"size": self.size,
"do_resize_and_center_crop": self.do_resize_and_center_crop,
"crop_pct": self.crop_pct,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = PoolFormerImageProcessor if is_vision_available() else None
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = PoolFormerImageProcessingTester(self )
@property
def a ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(snake_case__ , 'do_resize_and_center_crop' ) )
self.assertTrue(hasattr(snake_case__ , 'size' ) )
self.assertTrue(hasattr(snake_case__ , 'crop_pct' ) )
self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) )
self.assertTrue(hasattr(snake_case__ , 'image_mean' ) )
self.assertTrue(hasattr(snake_case__ , 'image_std' ) )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 30} )
self.assertEqual(image_processor.crop_size , {'height': 30, 'width': 30} )
_lowerCAmelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def a ( self ):
'''simple docstring'''
pass
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_lowerCAmelCase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , Image.Image )
# Test not batched input
_lowerCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase : Optional[Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_lowerCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , np.ndarray )
# Test not batched input
_lowerCAmelCase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase : List[Any] = image_processing(snake_case__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_lowerCAmelCase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ )
for image in image_inputs:
self.assertIsInstance(snake_case__ , torch.Tensor )
# Test not batched input
_lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_lowerCAmelCase : str = image_processing(snake_case__ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 25 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : str = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""roberta-base""": 5_12,
"""roberta-large""": 5_12,
"""roberta-large-mnli""": 5_12,
"""distilroberta-base""": 5_12,
"""roberta-base-openai-detector""": 5_12,
"""roberta-large-openai-detector""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = RobertaTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : List[Any] = add_prefix_space
_lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
_lowerCAmelCase : Union[str, Any] = 'post_processor'
_lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ )
if tokenizer_component_instance:
_lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase : Any = tuple(state['sep'] )
if "cls" in state:
_lowerCAmelCase : str = tuple(state['cls'] )
_lowerCAmelCase : List[str] = False
if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : int = add_prefix_space
_lowerCAmelCase : Tuple = True
if state.get('trim_offsets' , snake_case__ ) != trim_offsets:
_lowerCAmelCase : Union[str, Any] = trim_offsets
_lowerCAmelCase : Optional[int] = True
if changes_to_apply:
_lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) )
_lowerCAmelCase : Optional[int] = component_class(**snake_case__ )
setattr(self.backend_tokenizer , snake_case__ , snake_case__ )
@property
def a ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value
_lowerCAmelCase : Tuple = value
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Any = {
"""studio-ousia/luke-base""": """https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json""",
"""studio-ousia/luke-large""": """https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "luke"
def __init__( self , snake_case__=5_0267 , snake_case__=50_0000 , snake_case__=768 , snake_case__=256 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=True , snake_case__=None , snake_case__=1 , snake_case__=0 , snake_case__=2 , **snake_case__ , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
_lowerCAmelCase : Union[str, Any] = vocab_size
_lowerCAmelCase : Any = entity_vocab_size
_lowerCAmelCase : Optional[Any] = hidden_size
_lowerCAmelCase : Union[str, Any] = entity_emb_size
_lowerCAmelCase : int = num_hidden_layers
_lowerCAmelCase : Union[str, Any] = num_attention_heads
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : Optional[int] = intermediate_size
_lowerCAmelCase : Any = hidden_dropout_prob
_lowerCAmelCase : str = attention_probs_dropout_prob
_lowerCAmelCase : Tuple = max_position_embeddings
_lowerCAmelCase : int = type_vocab_size
_lowerCAmelCase : List[str] = initializer_range
_lowerCAmelCase : Union[str, Any] = layer_norm_eps
_lowerCAmelCase : Any = use_entity_aware_attention
_lowerCAmelCase : Union[str, Any] = classifier_dropout
| 25 |
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag.
lowerCAmelCase : Optional[int] = 1 # The second color of the flag.
lowerCAmelCase : int = 2 # The third color of the flag.
lowerCAmelCase : Any = (red, white, blue)
def lowercase (_A ):
"""simple docstring"""
if not sequence:
return []
if len(_A ) == 1:
return list(_A )
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = len(_A ) - 1
_lowerCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values'
raise ValueError(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip()
lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = TypeError(
'Matrices must be formed from a list of zero or more lists containing at '
'least one and the same number of values, each of which must be of type '
'int or float.' )
if len(snake_case__ ) != 0:
_lowerCAmelCase : int = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(snake_case__ ) != cols:
raise error
for value in row:
if not isinstance(snake_case__ , (int, float) ):
raise error
_lowerCAmelCase : Tuple = rows
else:
_lowerCAmelCase : Dict = []
def a ( self ):
'''simple docstring'''
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def a ( self ):
'''simple docstring'''
return len(self.rows )
@property
def a ( self ):
'''simple docstring'''
return len(self.rows[0] )
@property
def a ( self ):
'''simple docstring'''
return (self.num_rows, self.num_columns)
@property
def a ( self ):
'''simple docstring'''
return self.order[0] == self.order[1]
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(snake_case__ )
def a ( self ):
'''simple docstring'''
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def a ( self ):
'''simple docstring'''
return bool(self.determinant() )
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(snake_case__ ).determinant()
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
if (row + column) % 2 == 0:
return self.get_minor(snake_case__ , snake_case__ )
return -1 * self.get_minor(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
return Matrix(
[
[self.get_minor(snake_case__ , snake_case__ ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def a ( self ):
'''simple docstring'''
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.determinant()
if not determinant:
raise TypeError('Only matrices with a non-zero determinant have an inverse' )
return self.adjugate() * (1 / determinant)
def __repr__( self ):
'''simple docstring'''
return str(self.rows )
def __str__( self ):
'''simple docstring'''
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
'[' + '. '.join([str(snake_case__ ) for value in row] ) + '.]'
for row in self.rows
] )
+ "]"
)
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TypeError('Row must be a list containing all ints and/or floats' )
if not isinstance(snake_case__ , snake_case__ ):
raise type_error
for value in row:
if not isinstance(snake_case__ , (int, float) ):
raise type_error
if len(snake_case__ ) != self.num_columns:
raise ValueError(
'Row must be equal in length to the other rows in the matrix' )
if position is None:
self.rows.append(snake_case__ )
else:
_lowerCAmelCase : Optional[Any] = self.rows[0:position] + [row] + self.rows[position:]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TypeError(
'Column must be a list containing all ints and/or floats' )
if not isinstance(snake_case__ , snake_case__ ):
raise type_error
for value in column:
if not isinstance(snake_case__ , (int, float) ):
raise type_error
if len(snake_case__ ) != self.num_rows:
raise ValueError(
'Column must be equal in length to the other columns in the matrix' )
if position is None:
_lowerCAmelCase : List[Any] = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
_lowerCAmelCase : Union[str, Any] = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__( self , snake_case__ ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
return NotImplemented
return self.rows == other.rows
def __ne__( self , snake_case__ ):
'''simple docstring'''
return not self == other
def __neg__( self ):
'''simple docstring'''
return self * -1
def __add__( self , snake_case__ ):
'''simple docstring'''
if self.order != other.order:
raise ValueError('Addition requires matrices of the same order' )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__( self , snake_case__ ):
'''simple docstring'''
if self.order != other.order:
raise ValueError('Subtraction requires matrices of the same order' )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__( self , snake_case__ ):
'''simple docstring'''
if isinstance(snake_case__ , (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(snake_case__ , snake_case__ ):
if self.num_columns != other.num_rows:
raise ValueError(
'The number of columns in the first matrix must '
'be equal to the number of rows in the second' )
return Matrix(
[
[Matrix.dot_product(snake_case__ , snake_case__ ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
'A Matrix can only be multiplied by an int, float, or another matrix' )
def __pow__( self , snake_case__ ):
'''simple docstring'''
if not isinstance(snake_case__ , snake_case__ ):
raise TypeError('A Matrix can only be raised to the power of an int' )
if not self.is_square:
raise ValueError('Only square matrices can be raised to a power' )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
'Only invertable matrices can be raised to a negative power' )
_lowerCAmelCase : List[Any] = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def a ( cls , snake_case__ , snake_case__ ):
'''simple docstring'''
return sum(row[i] * column[i] for i in range(len(snake_case__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1]
_lowerCAmelCase : int = 6
_lowerCAmelCase : Dict = 1
_lowerCAmelCase : Optional[int] = 1_9_0_1
_lowerCAmelCase : Optional[Any] = 0
while year < 2_0_0_1:
day += 7
if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
elif day > 2_9 and month == 2:
month += 1
_lowerCAmelCase : List[str] = day - 2_9
else:
if day > days_per_month[month - 1]:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
if month > 1_2:
year += 1
_lowerCAmelCase : Optional[int] = 1
if year < 2_0_0_1 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 25 | 1 |
'''simple docstring'''
lowerCAmelCase : Dict = [
"""DownloadConfig""",
"""DownloadManager""",
"""DownloadMode""",
"""StreamingDownloadManager""",
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 25 |
'''simple docstring'''
def lowercase (_A = 1_0_0_0_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = set(range(3 , _A , 2 ) )
primes.add(2 )
for p in range(3 , _A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _A , _A ) ) )
_lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )]
for p in primes:
for n in range(_A , limit + 1 , _A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase : Tuple = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCAmelCase : str = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""")
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : int = _re_indent.search(_A )
return "" if search is None else search.groups()[0]
def lowercase (_A , _A="" , _A=None , _A=None ):
"""simple docstring"""
_lowerCAmelCase : int = 0
_lowerCAmelCase : Dict = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_A ):
index += 1
_lowerCAmelCase : Dict = ['\n'.join(lines[:index] )]
else:
_lowerCAmelCase : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : List[Any] = [lines[index]]
index += 1
while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_A ) )
if index < len(_A ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Union[str, Any] = []
else:
blocks.append('\n'.join(_A ) )
_lowerCAmelCase : List[str] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_A ) > 0:
blocks.append('\n'.join(_A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_A ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowercase (_A ):
"""simple docstring"""
def _inner(_A ):
return key(_A ).lower().replace('_' , '' )
return _inner
def lowercase (_A , _A=None ):
"""simple docstring"""
def noop(_A ):
return x
if key is None:
_lowerCAmelCase : List[Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()]
_lowerCAmelCase : Dict = ignore_underscore(_A )
return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A )
def lowercase (_A ):
"""simple docstring"""
def _replace(_A ):
_lowerCAmelCase : Dict = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]"
_lowerCAmelCase : Tuple = import_statement.split('\n' )
if len(_A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1
_lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] )
_lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : List[str] = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] )
return "\n".join(_A )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A )
return import_statement
def lowercase (_A , _A=True ):
"""simple docstring"""
with open(_A , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Tuple = split_code_in_indented_blocks(
_A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : Tuple = main_blocks[block_idx]
_lowerCAmelCase : int = block.split('\n' )
# Get to the start of the imports.
_lowerCAmelCase : Tuple = 0
while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Dict = len(_A )
else:
line_idx += 1
if line_idx >= len(_A ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None]
_lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[Any] = []
for i in range(len(_A ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(_A )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(_A ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_A , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_A ) )
def lowercase (_A=True ):
"""simple docstring"""
_lowerCAmelCase : int = []
for root, _, files in os.walk(_A ):
if "__init__.py" in files:
_lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A )
if result:
_lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )]
if len(_A ) > 0:
raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCAmelCase : List[str] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 25 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase : Tuple = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCAmelCase : str = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""")
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : int = _re_indent.search(_A )
return "" if search is None else search.groups()[0]
def lowercase (_A , _A="" , _A=None , _A=None ):
"""simple docstring"""
_lowerCAmelCase : int = 0
_lowerCAmelCase : Dict = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_A ):
index += 1
_lowerCAmelCase : Dict = ['\n'.join(lines[:index] )]
else:
_lowerCAmelCase : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : List[Any] = [lines[index]]
index += 1
while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_A ) )
if index < len(_A ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Union[str, Any] = []
else:
blocks.append('\n'.join(_A ) )
_lowerCAmelCase : List[str] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_A ) > 0:
blocks.append('\n'.join(_A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_A ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowercase (_A ):
"""simple docstring"""
def _inner(_A ):
return key(_A ).lower().replace('_' , '' )
return _inner
def lowercase (_A , _A=None ):
"""simple docstring"""
def noop(_A ):
return x
if key is None:
_lowerCAmelCase : List[Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()]
_lowerCAmelCase : Dict = ignore_underscore(_A )
return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A )
def lowercase (_A ):
"""simple docstring"""
def _replace(_A ):
_lowerCAmelCase : Dict = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]"
_lowerCAmelCase : Tuple = import_statement.split('\n' )
if len(_A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1
_lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] )
_lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : List[str] = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] )
return "\n".join(_A )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A )
return import_statement
def lowercase (_A , _A=True ):
"""simple docstring"""
with open(_A , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Tuple = split_code_in_indented_blocks(
_A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : Tuple = main_blocks[block_idx]
_lowerCAmelCase : int = block.split('\n' )
# Get to the start of the imports.
_lowerCAmelCase : Tuple = 0
while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Dict = len(_A )
else:
line_idx += 1
if line_idx >= len(_A ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None]
_lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[Any] = []
for i in range(len(_A ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(_A )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(_A ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_A , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_A ) )
def lowercase (_A=True ):
"""simple docstring"""
_lowerCAmelCase : int = []
for root, _, files in os.walk(_A ):
if "__init__.py" in files:
_lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A )
if result:
_lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )]
if len(_A ) > 0:
raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCAmelCase : List[str] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Dict = [randint(-1_0_0_0 , 1_0_0_0 ) for i in range(1_0 )]
_lowerCAmelCase : Any = randint(-5_0_0_0 , 5_0_0_0 )
return (arr, r)
lowerCAmelCase : Optional[int] = make_dataset()
def lowercase (_A , _A ):
"""simple docstring"""
for triplet in permutations(_A , 3 ):
if sum(_A ) == target:
return tuple(sorted(_A ) )
return (0, 0, 0)
def lowercase (_A , _A ):
"""simple docstring"""
arr.sort()
_lowerCAmelCase : Optional[int] = len(_A )
for i in range(n - 1 ):
_lowerCAmelCase , _lowerCAmelCase : Any = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[str] = '\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n'
_lowerCAmelCase : Union[str, Any] = '\ntriplet_sum1(*dataset)\n'
_lowerCAmelCase : List[Any] = '\ntriplet_sum2(*dataset)\n'
_lowerCAmelCase : Dict = repeat(setup=_A , stmt=_A , repeat=5 , number=1_0_0_0_0 )
_lowerCAmelCase : str = repeat(setup=_A , stmt=_A , repeat=5 , number=1_0_0_0_0 )
return (min(_A ), min(_A ))
if __name__ == "__main__":
from doctest import testmod
testmod()
lowerCAmelCase : List[str] = solution_times()
print(F'''The time for naive implementation is {times[0]}.''')
print(F'''The time for optimized implementation is {times[1]}.''')
| 25 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25 | 1 |
'''simple docstring'''
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = len(_A )
_lowerCAmelCase : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
_lowerCAmelCase : Dict = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
_lowerCAmelCase : int = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
_lowerCAmelCase : List[Any] = subset[i - 1][j]
if arr[i - 1] <= j:
_lowerCAmelCase : Union[str, Any] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def lowercase (_A ):
"""simple docstring"""
if not postfix_notation:
return 0
_lowerCAmelCase : int = {'+', '-', '*', '/'}
_lowerCAmelCase : list[Any] = []
for token in postfix_notation:
if token in operations:
_lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_A ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "bert-generation"
def __init__( self , snake_case__=5_0358 , snake_case__=1024 , snake_case__=24 , snake_case__=16 , snake_case__=4096 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=0 , snake_case__=2 , snake_case__=1 , snake_case__="absolute" , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
_lowerCAmelCase : List[str] = vocab_size
_lowerCAmelCase : int = hidden_size
_lowerCAmelCase : Any = num_hidden_layers
_lowerCAmelCase : Optional[Any] = num_attention_heads
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : str = intermediate_size
_lowerCAmelCase : Tuple = hidden_dropout_prob
_lowerCAmelCase : List[str] = attention_probs_dropout_prob
_lowerCAmelCase : Optional[int] = max_position_embeddings
_lowerCAmelCase : Any = initializer_range
_lowerCAmelCase : Optional[int] = layer_norm_eps
_lowerCAmelCase : List[str] = position_embedding_type
_lowerCAmelCase : Any = use_cache
| 25 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] = {
"""google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""",
"""google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""",
"""google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mobilenet_v2"
def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.' )
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Union[str, Any] = image_size
_lowerCAmelCase : List[Any] = depth_multiplier
_lowerCAmelCase : List[Any] = depth_divisible_by
_lowerCAmelCase : Optional[Any] = min_depth
_lowerCAmelCase : str = expand_ratio
_lowerCAmelCase : str = output_stride
_lowerCAmelCase : Any = first_layer_is_expansion
_lowerCAmelCase : int = finegrained_output
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : List[str] = tf_padding
_lowerCAmelCase : Optional[int] = classifier_dropout_prob
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Optional[int] = layer_norm_eps
_lowerCAmelCase : str = semantic_loss_ignore_index
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = version.parse("1.11" )
@property
def a ( self ):
'''simple docstring'''
return OrderedDict([('pixel_values', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})] )
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
return 1E-4
| 25 | 1 |
'''simple docstring'''
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(snake_case__ , 'tf_padding' ) )
self.parent.assertTrue(hasattr(snake_case__ , 'depth_multiplier' ) )
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=13 , snake_case__=3 , snake_case__=32 , snake_case__=0.25 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=1280 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=10 , snake_case__=None , ):
'''simple docstring'''
_lowerCAmelCase : str = parent
_lowerCAmelCase : Tuple = batch_size
_lowerCAmelCase : Dict = num_channels
_lowerCAmelCase : List[Any] = image_size
_lowerCAmelCase : int = depth_multiplier
_lowerCAmelCase : int = depth_divisible_by
_lowerCAmelCase : str = min_depth
_lowerCAmelCase : Any = expand_ratio
_lowerCAmelCase : int = tf_padding
_lowerCAmelCase : Dict = output_stride
_lowerCAmelCase : List[str] = first_layer_is_expansion
_lowerCAmelCase : Tuple = finegrained_output
_lowerCAmelCase : int = hidden_act
_lowerCAmelCase : Tuple = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
_lowerCAmelCase : Any = classifier_dropout_prob
_lowerCAmelCase : int = use_labels
_lowerCAmelCase : List[Any] = is_training
_lowerCAmelCase : List[str] = num_labels
_lowerCAmelCase : Dict = initializer_range
_lowerCAmelCase : Union[str, Any] = scope
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Union[str, Any] = None
_lowerCAmelCase : Union[str, Any] = None
if self.use_labels:
_lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels )
_lowerCAmelCase : int = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
_lowerCAmelCase : Optional[int] = self.get_config()
return config, pixel_values, labels, pixel_labels
def a ( self ):
'''simple docstring'''
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MobileNetVaModel(config=snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : str = model(snake_case__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
self.parent.assertEqual(
result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.num_labels
_lowerCAmelCase : List[str] = MobileNetVaForImageClassification(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : List[str] = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.num_labels
_lowerCAmelCase : List[str] = MobileNetVaForSemanticSegmentation(snake_case__ )
model.to(snake_case__ )
model.eval()
_lowerCAmelCase : Any = model(snake_case__ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
_lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.prepare_config_and_inputs()
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = config_and_inputs
_lowerCAmelCase : List[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
__magic_name__ = (
{
"feature-extraction": MobileNetVaModel,
"image-classification": MobileNetVaForImageClassification,
"image-segmentation": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = MobileNetVaModelTester(self )
_lowerCAmelCase : Dict = MobileNetVaConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ )
def a ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='MobileNetV2 does not use inputs_embeds' )
def a ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileNetV2 does not support input and output embeddings' )
def a ( self ):
'''simple docstring'''
pass
@unittest.skip(reason='MobileNetV2 does not output attentions' )
def a ( self ):
'''simple docstring'''
pass
def a ( self ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : Dict = model_class(snake_case__ )
_lowerCAmelCase : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowerCAmelCase : Any = [*signature.parameters.keys()]
_lowerCAmelCase : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case__ )
def a ( self ):
'''simple docstring'''
def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ):
_lowerCAmelCase : List[str] = model_class(snake_case__ )
model.to(snake_case__ )
model.eval()
with torch.no_grad():
_lowerCAmelCase : List[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) )
_lowerCAmelCase : Optional[int] = outputs.hidden_states
_lowerCAmelCase : Dict = 16
self.assertEqual(len(snake_case__ ) , snake_case__ )
_lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : str = True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowerCAmelCase : str = True
check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ )
@slow
def a ( self ):
'''simple docstring'''
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : str = MobileNetVaModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def a ( self ):
'''simple docstring'''
return (
MobileNetVaImageProcessor.from_pretrained('google/mobilenet_v2_1.0_224' ) if is_vision_available() else None
)
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = MobileNetVaForImageClassification.from_pretrained('google/mobilenet_v2_1.0_224' ).to(snake_case__ )
_lowerCAmelCase : Any = self.default_image_processor
_lowerCAmelCase : Tuple = prepare_img()
_lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ )
# forward pass
with torch.no_grad():
_lowerCAmelCase : Union[str, Any] = model(**snake_case__ )
# verify the logits
_lowerCAmelCase : int = torch.Size((1, 1001) )
self.assertEqual(outputs.logits.shape , snake_case__ )
_lowerCAmelCase : str = torch.tensor([0.2445, -1.1993, 0.1905] ).to(snake_case__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = MobileNetVaForSemanticSegmentation.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
_lowerCAmelCase : Union[str, Any] = model.to(snake_case__ )
_lowerCAmelCase : str = MobileNetVaImageProcessor.from_pretrained('google/deeplabv3_mobilenet_v2_1.0_513' )
_lowerCAmelCase : int = prepare_img()
_lowerCAmelCase : Tuple = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ )
# forward pass
with torch.no_grad():
_lowerCAmelCase : str = model(**snake_case__ )
_lowerCAmelCase : int = outputs.logits
# verify the logits
_lowerCAmelCase : int = torch.Size((1, 21, 65, 65) )
self.assertEqual(logits.shape , snake_case__ )
_lowerCAmelCase : List[str] = torch.tensor(
[
[[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]],
[[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]],
[[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]],
] , device=snake_case__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1E-4 ) )
| 25 |
'''simple docstring'''
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase : Optional[int] = 'pt'
_lowerCAmelCase : Tuple = 'tf'
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'mock_framework'
# Framework provided - return whatever the user provides
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase : Any = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase : int = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase : str = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
| 25 | 1 |
'''simple docstring'''
from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def lowercase (_A ):
"""simple docstring"""
if not is_accelerate_available():
return method
_lowerCAmelCase : Tuple = version.parse(accelerate.__version__ ).base_version
if version.parse(_A ) < version.parse('0.17.0' ):
return method
def wrapper(self , *_A , **_A ):
if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ):
self._hf_hook.pre_forward(self )
return method(self , *_A , **_A )
return wrapper
| 25 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Any = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""facebook/nllb-large-en-ro""": 10_24,
"""facebook/nllb-200-distilled-600M""": 10_24,
}
# fmt: off
lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = NllbTokenizer
__magic_name__ = []
__magic_name__ = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
_lowerCAmelCase : Dict = legacy_behaviour
super().__init__(
vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : int = False if not self.vocab_file else True
_lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_lowerCAmelCase : Any = {
lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn'
_lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang )
_lowerCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def a ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_lowerCAmelCase : Optional[Any] = src_lang
_lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ )
_lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ )
_lowerCAmelCase : Optional[Any] = tgt_lang_id
return inputs
def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[str] = src_lang
_lowerCAmelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ )
def a ( self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def a ( self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : Dict = []
_lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : int = [self.eos_token_id]
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : int = []
_lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : List[str] = [self.eos_token_id]
_lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : str = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory.' )
return
_lowerCAmelCase : Union[str, Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tensorflow_text_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_bert""": ["""BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BertConfig""", """BertOnnxConfig"""],
"""tokenization_bert""": ["""BasicTokenizer""", """BertTokenizer""", """WordpieceTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple = ["""BertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[str] = [
"""BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BertForMaskedLM""",
"""BertForMultipleChoice""",
"""BertForNextSentencePrediction""",
"""BertForPreTraining""",
"""BertForQuestionAnswering""",
"""BertForSequenceClassification""",
"""BertForTokenClassification""",
"""BertLayer""",
"""BertLMHeadModel""",
"""BertModel""",
"""BertPreTrainedModel""",
"""load_tf_weights_in_bert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple = [
"""TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBertEmbeddings""",
"""TFBertForMaskedLM""",
"""TFBertForMultipleChoice""",
"""TFBertForNextSentencePrediction""",
"""TFBertForPreTraining""",
"""TFBertForQuestionAnswering""",
"""TFBertForSequenceClassification""",
"""TFBertForTokenClassification""",
"""TFBertLMHeadModel""",
"""TFBertMainLayer""",
"""TFBertModel""",
"""TFBertPreTrainedModel""",
]
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = ["""TFBertTokenizer"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any = [
"""FlaxBertForCausalLM""",
"""FlaxBertForMaskedLM""",
"""FlaxBertForMultipleChoice""",
"""FlaxBertForNextSentencePrediction""",
"""FlaxBertForPreTraining""",
"""FlaxBertForQuestionAnswering""",
"""FlaxBertForSequenceClassification""",
"""FlaxBertForTokenClassification""",
"""FlaxBertModel""",
"""FlaxBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig
from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_fast import BertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bert import (
BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
BertForMaskedLM,
BertForMultipleChoice,
BertForNextSentencePrediction,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertForTokenClassification,
BertLayer,
BertLMHeadModel,
BertModel,
BertPreTrainedModel,
load_tf_weights_in_bert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_bert import (
TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBertEmbeddings,
TFBertForMaskedLM,
TFBertForMultipleChoice,
TFBertForNextSentencePrediction,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertForTokenClassification,
TFBertLMHeadModel,
TFBertMainLayer,
TFBertModel,
TFBertPreTrainedModel,
)
try:
if not is_tensorflow_text_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_bert_tf import TFBertTokenizer
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_bert import (
FlaxBertForCausalLM,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
FlaxBertPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCAmelCase : List[str] = [
"""kernels/rwkv/wkv_cuda.cu""",
"""kernels/rwkv/wkv_op.cpp""",
"""kernels/deformable_detr/ms_deform_attn.h""",
"""kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""",
"""models/graphormer/algos_graphormer.pyx""",
]
def lowercase (_A ):
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""")
lowerCAmelCase : Dict = parser.parse_args()
if args.check_lib:
lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""")
lowerCAmelCase : int = Path(transformers_module.__file__).parent
else:
lowerCAmelCase : int = Path.cwd() / """build/lib/transformers"""
if not test_custom_files_are_present(transformers_path):
raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
| 25 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def lowercase (_A ):
"""simple docstring"""
if "model" in orig_key:
_lowerCAmelCase : Union[str, Any] = orig_key.replace('model.' , '' )
if "norm1" in orig_key:
_lowerCAmelCase : int = orig_key.replace('norm1' , 'attention.output.LayerNorm' )
if "norm2" in orig_key:
_lowerCAmelCase : Tuple = orig_key.replace('norm2' , 'output.LayerNorm' )
if "norm" in orig_key:
_lowerCAmelCase : int = orig_key.replace('norm' , 'LayerNorm' )
if "transformer" in orig_key:
_lowerCAmelCase : Optional[int] = orig_key.split('.' )[0].split('_' )[-1]
_lowerCAmelCase : Union[str, Any] = orig_key.replace(f'transformer_{layer_num}' , f'encoder.layer.{layer_num}' )
if "mha.attn" in orig_key:
_lowerCAmelCase : str = orig_key.replace('mha.attn' , 'attention.self' )
if "mha" in orig_key:
_lowerCAmelCase : List[Any] = orig_key.replace('mha' , 'attention' )
if "W_q" in orig_key:
_lowerCAmelCase : Optional[int] = orig_key.replace('W_q' , 'self.query' )
if "W_k" in orig_key:
_lowerCAmelCase : Dict = orig_key.replace('W_k' , 'self.key' )
if "W_v" in orig_key:
_lowerCAmelCase : Optional[Any] = orig_key.replace('W_v' , 'self.value' )
if "ff1" in orig_key:
_lowerCAmelCase : Dict = orig_key.replace('ff1' , 'intermediate.dense' )
if "ff2" in orig_key:
_lowerCAmelCase : List[str] = orig_key.replace('ff2' , 'output.dense' )
if "ff" in orig_key:
_lowerCAmelCase : str = orig_key.replace('ff' , 'output.dense' )
if "mlm_class" in orig_key:
_lowerCAmelCase : int = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' )
if "mlm" in orig_key:
_lowerCAmelCase : Any = orig_key.replace('mlm' , 'cls.predictions.transform' )
if "cls" not in orig_key:
_lowerCAmelCase : Any = 'yoso.' + orig_key
return orig_key
def lowercase (_A , _A ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_A )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
_lowerCAmelCase : Optional[int] = val
_lowerCAmelCase : Union[str, Any] = orig_state_dict['cls.predictions.decoder.bias']
_lowerCAmelCase : List[Any] = torch.arange(_A ).expand((1, -1) ) + 2
return orig_state_dict
def lowercase (_A , _A , _A ):
"""simple docstring"""
_lowerCAmelCase : Any = torch.load(_A , map_location='cpu' )['model_state_dict']
_lowerCAmelCase : Union[str, Any] = YosoConfig.from_json_file(_A )
_lowerCAmelCase : int = YosoForMaskedLM(_A )
_lowerCAmelCase : List[str] = convert_checkpoint_helper(config.max_position_embeddings , _A )
print(model.load_state_dict(_A ) )
model.eval()
model.save_pretrained(_A )
print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' )
if __name__ == "__main__":
lowerCAmelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for YOSO model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
lowerCAmelCase : int = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 25 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_lowerCAmelCase : List[str] = ''
_lowerCAmelCase : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_A ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
_lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )]
# for each character in new_string find corresponding palindromic string
_lowerCAmelCase : Any = 0
for j in range(len(_A ) ):
_lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_A )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_lowerCAmelCase : List[str] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741
_lowerCAmelCase : int = j + k - 1
# update max_length and start position
if max_length < length[j]:
_lowerCAmelCase : Dict = length[j]
_lowerCAmelCase : Optional[int] = j
# create that string
_lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
lowerCAmelCase : List[str] = """bert-base-cased"""
lowerCAmelCase : Dict = """fp16"""
lowerCAmelCase : Any = """bf16"""
lowerCAmelCase : Any = [FPaa, BFaa]
@require_fsdp
@require_cuda
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().setUp()
_lowerCAmelCase : List[str] = dict(
ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , )
def a ( self ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(snake_case__ ):
_lowerCAmelCase : List[str] = self.dist_env.copy()
_lowerCAmelCase : Optional[Any] = F'{i + 1}'
_lowerCAmelCase : Optional[Any] = strategy
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def a ( self ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(snake_case__ ):
_lowerCAmelCase : str = self.dist_env.copy()
_lowerCAmelCase : str = prefetch_policy
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : List[Any] = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def a ( self ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(snake_case__ ):
_lowerCAmelCase : List[str] = self.dist_env.copy()
_lowerCAmelCase : str = state_dict_type
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : str = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = AutoModel.from_pretrained(snake_case__ )
for policy in FSDP_AUTO_WRAP_POLICY:
_lowerCAmelCase : List[str] = self.dist_env.copy()
_lowerCAmelCase : int = policy
if policy == "TRANSFORMER_BASED_WRAP":
_lowerCAmelCase : str = 'BertLayer'
elif policy == "SIZE_BASED_WRAP":
_lowerCAmelCase : List[Any] = '2000'
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : Optional[Any] = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(snake_case__ )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
_lowerCAmelCase : Any = self.dist_env.copy()
_lowerCAmelCase : str = 'TRANSFORMER_BASED_WRAP'
_lowerCAmelCase : Optional[Any] = 'T5Layer'
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : int = FullyShardedDataParallelPlugin()
with self.assertRaises(snake_case__ ) as cm:
fsdp_plugin.set_auto_wrap_policy(snake_case__ )
self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception ) )
_lowerCAmelCase : List[Any] = self.dist_env.copy()
_lowerCAmelCase : Optional[int] = 'SIZE_BASED_WRAP'
_lowerCAmelCase : List[str] = '0'
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : Tuple = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(snake_case__ )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def a ( self ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
_lowerCAmelCase : Dict = self.dist_env.copy()
_lowerCAmelCase : int = mp_dtype
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : List[str] = Accelerator()
if mp_dtype == "fp16":
_lowerCAmelCase : Any = torch.floataa
elif mp_dtype == "bf16":
_lowerCAmelCase : List[Any] = torch.bfloataa
_lowerCAmelCase : Tuple = MixedPrecision(param_dtype=snake_case__ , reduce_dtype=snake_case__ , buffer_dtype=snake_case__ )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , snake_case__ )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , snake_case__ ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(snake_case__ )
def a ( self ):
'''simple docstring'''
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
_lowerCAmelCase : List[Any] = self.dist_env.copy()
_lowerCAmelCase : Dict = str(snake_case__ ).lower()
with mockenv_context(**snake_case__ ):
_lowerCAmelCase : List[Any] = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=snake_case__ ) )
@require_fsdp
@require_multi_gpu
@slow
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().setUp()
_lowerCAmelCase : List[str] = 0.82
_lowerCAmelCase : int = [
'fsdp_shard_grad_op_transformer_based_wrap',
'fsdp_full_shard_transformer_based_wrap',
]
_lowerCAmelCase : Any = {
'multi_gpu_fp16': 3200,
'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2000,
'fsdp_full_shard_transformer_based_wrap_fp16': 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
_lowerCAmelCase : str = 160
_lowerCAmelCase : Any = 160
_lowerCAmelCase : Optional[Any] = inspect.getfile(accelerate.test_utils )
_lowerCAmelCase : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'external_deps'] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = os.path.join(self.test_scripts_folder , 'test_performance.py' )
_lowerCAmelCase : Dict = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp']
for config in self.performance_configs:
_lowerCAmelCase : List[Any] = cmd.copy()
for i, strategy in enumerate(snake_case__ ):
if strategy.lower() in config:
cmd_config.append(F'--fsdp_sharding_strategy={i+1}' )
break
if "fp32" in config:
cmd_config.append('--mixed_precision=no' )
else:
cmd_config.append('--mixed_precision=fp16' )
if "cpu_offload" in config:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
F'--output_dir={self.tmpdir}',
F'--performance_lower_bound={self.performance_lower_bound}',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = os.path.join(self.test_scripts_folder , 'test_checkpointing.py' )
_lowerCAmelCase : Any = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
'--use_fsdp',
'--mixed_precision=fp16',
'--fsdp_transformer_layer_cls_to_wrap=BertLayer',
]
for i, strategy in enumerate(snake_case__ ):
_lowerCAmelCase : List[str] = cmd.copy()
cmd_config.append(F'--fsdp_sharding_strategy={i+1}' )
if strategy != "FULL_SHARD":
continue
_lowerCAmelCase : Any = len(snake_case__ )
for state_dict_type in FSDP_STATE_DICT_TYPE:
_lowerCAmelCase : List[Any] = cmd_config[:state_dict_config_index]
cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}' )
cmd_config.extend(
[
self.test_file_path,
F'--output_dir={self.tmpdir}',
'--partial_train_epoch=1',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
_lowerCAmelCase : Any = cmd_config[:-1]
_lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdir , 'epoch_0' )
cmd_config.extend(
[
F'--resume_from_checkpoint={resume_from_checkpoint}',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py' )
_lowerCAmelCase : Dict = [
'accelerate',
'launch',
'--num_processes=2',
'--num_machines=1',
'--machine_rank=0',
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
_lowerCAmelCase : str = cmd.copy()
if "fp16" in spec:
cmd_config.extend(['--mixed_precision=fp16'] )
else:
cmd_config.extend(['--mixed_precision=no'] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(['--use_fsdp'] )
for i, strategy in enumerate(snake_case__ ):
if strategy.lower() in spec:
cmd_config.append(F'--fsdp_sharding_strategy={i+1}' )
break
if "cpu_offload" in spec:
cmd_config.append('--fsdp_offload_params=True' )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(F'--fsdp_auto_wrap_policy={policy}' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer' )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append('--fsdp_min_num_params=2000' )
cmd_config.extend(
[
self.test_file_path,
F'--output_dir={self.tmpdir}',
F'--peak_memory_upper_bound={peak_mem_upper_bound}',
F'--n_train={self.n_train}',
F'--n_val={self.n_val}',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
| 25 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
__magic_name__ = 3.0
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , snake_case__ )
@require_multi_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : List[str] = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : List[Any] = """"""
lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 | 1 |
'''simple docstring'''
import re
from filelock import FileLock
try:
import nltk
lowerCAmelCase : Dict = True
except (ImportError, ModuleNotFoundError):
lowerCAmelCase : str = False
if NLTK_AVAILABLE:
with FileLock(""".lock""") as lock:
nltk.download("""punkt""", quiet=True)
def lowercase (_A ):
"""simple docstring"""
re.sub('<n>' , '' , _A ) # remove pegasus newline char
assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)"
return "\n".join(nltk.sent_tokenize(_A ) )
| 25 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "trajectory_transformer"
__magic_name__ = ["past_key_values"]
__magic_name__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = action_weight
_lowerCAmelCase : Optional[int] = reward_weight
_lowerCAmelCase : Union[str, Any] = value_weight
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Tuple = block_size
_lowerCAmelCase : List[Any] = action_dim
_lowerCAmelCase : List[Any] = observation_dim
_lowerCAmelCase : Union[str, Any] = transition_dim
_lowerCAmelCase : Tuple = learning_rate
_lowerCAmelCase : int = n_layer
_lowerCAmelCase : Any = n_head
_lowerCAmelCase : Tuple = n_embd
_lowerCAmelCase : Optional[Any] = embd_pdrop
_lowerCAmelCase : Union[str, Any] = attn_pdrop
_lowerCAmelCase : Any = resid_pdrop
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : List[Any] = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = kaiming_initializer_range
_lowerCAmelCase : List[Any] = use_cache
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
lowerCAmelCase : Tuple = {
"""configuration_xlm_roberta""": [
"""XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XLMRobertaConfig""",
"""XLMRobertaOnnxConfig""",
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = ["""XLMRobertaTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = ["""XLMRobertaTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : int = [
"""XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMRobertaForCausalLM""",
"""XLMRobertaForMaskedLM""",
"""XLMRobertaForMultipleChoice""",
"""XLMRobertaForQuestionAnswering""",
"""XLMRobertaForSequenceClassification""",
"""XLMRobertaForTokenClassification""",
"""XLMRobertaModel""",
"""XLMRobertaPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLMRobertaForCausalLM""",
"""TFXLMRobertaForMaskedLM""",
"""TFXLMRobertaForMultipleChoice""",
"""TFXLMRobertaForQuestionAnswering""",
"""TFXLMRobertaForSequenceClassification""",
"""TFXLMRobertaForTokenClassification""",
"""TFXLMRobertaModel""",
"""TFXLMRobertaPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any = [
"""FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FlaxXLMRobertaForMaskedLM""",
"""FlaxXLMRobertaForCausalLM""",
"""FlaxXLMRobertaForMultipleChoice""",
"""FlaxXLMRobertaForQuestionAnswering""",
"""FlaxXLMRobertaForSequenceClassification""",
"""FlaxXLMRobertaForTokenClassification""",
"""FlaxXLMRobertaModel""",
"""FlaxXLMRobertaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 25_00_04
lowerCAmelCase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = '<s>'
_lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(snake_case__ ) , 1054 )
def a ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
_lowerCAmelCase : Any = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def a ( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "facebook/mbart-large-50-one-to-many-mmt"
__magic_name__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__magic_name__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
_lowerCAmelCase : Dict = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , snake_case__ )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[0] , snake_case__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : List[Any] = targets['input_ids']
_lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_0004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_0001,
} , )
| 25 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
"""speechbrain/m-ctc-t-large""": """https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json""",
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mctct"
def __init__( self , snake_case__=8065 , snake_case__=1536 , snake_case__=36 , snake_case__=6144 , snake_case__=4 , snake_case__=384 , snake_case__=920 , snake_case__=1E-5 , snake_case__=0.3 , snake_case__="relu" , snake_case__=0.02 , snake_case__=0.3 , snake_case__=0.3 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=1 , snake_case__=0.3 , snake_case__=1 , snake_case__=(7,) , snake_case__=(3,) , snake_case__=80 , snake_case__=1 , snake_case__=None , snake_case__="sum" , snake_case__=False , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ )
_lowerCAmelCase : Dict = vocab_size
_lowerCAmelCase : Any = hidden_size
_lowerCAmelCase : List[Any] = num_hidden_layers
_lowerCAmelCase : List[str] = intermediate_size
_lowerCAmelCase : Union[str, Any] = num_attention_heads
_lowerCAmelCase : Dict = attention_head_dim
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Any = layer_norm_eps
_lowerCAmelCase : Optional[Any] = layerdrop
_lowerCAmelCase : Optional[Any] = hidden_act
_lowerCAmelCase : Union[str, Any] = initializer_range
_lowerCAmelCase : Any = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : Optional[int] = pad_token_id
_lowerCAmelCase : Optional[Any] = bos_token_id
_lowerCAmelCase : Dict = eos_token_id
_lowerCAmelCase : Optional[int] = conv_glu_dim
_lowerCAmelCase : List[str] = conv_dropout
_lowerCAmelCase : Tuple = num_conv_layers
_lowerCAmelCase : Optional[Any] = input_feat_per_channel
_lowerCAmelCase : Union[str, Any] = input_channels
_lowerCAmelCase : Optional[int] = conv_channels
_lowerCAmelCase : Optional[int] = ctc_loss_reduction
_lowerCAmelCase : Any = ctc_zero_infinity
# prevents config testing fail with exporting to json
_lowerCAmelCase : Union[str, Any] = list(snake_case__ )
_lowerCAmelCase : Dict = list(snake_case__ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '
F'but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, '
F'`config.num_conv_layers = {self.num_conv_layers}`.' )
| 25 |
'''simple docstring'''
from math import isqrt
def lowercase (_A ):
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) )
def lowercase (_A = 1_0**6 ):
"""simple docstring"""
_lowerCAmelCase : str = 0
_lowerCAmelCase : str = 1
_lowerCAmelCase : List[str] = 7
while prime_candidate < max_prime:
primes_count += is_prime(_A )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
from collections import deque
from math import floor
from random import random
from time import time
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {}
def a ( self , snake_case__ , snake_case__ , snake_case__=1 ):
'''simple docstring'''
if self.graph.get(snake_case__ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
_lowerCAmelCase : List[str] = [[w, v]]
if not self.graph.get(snake_case__ ):
_lowerCAmelCase : Any = []
def a ( self ):
'''simple docstring'''
return list(self.graph )
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
if self.graph.get(snake_case__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(snake_case__ )
def a ( self , snake_case__=-2 , snake_case__=-1 ):
'''simple docstring'''
if s == d:
return []
_lowerCAmelCase : Any = []
_lowerCAmelCase : str = []
if s == -2:
_lowerCAmelCase : Union[str, Any] = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : List[Any] = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(snake_case__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : List[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(snake_case__ ) != 0:
_lowerCAmelCase : Dict = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : int = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return visited
def a ( self , snake_case__=-1 ):
'''simple docstring'''
if c == -1:
_lowerCAmelCase : str = floor(random() * 1_0000 ) + 10
for i in range(snake_case__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_lowerCAmelCase : List[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(snake_case__ , snake_case__ , 1 )
def a ( self , snake_case__=-2 ):
'''simple docstring'''
_lowerCAmelCase : Tuple = deque()
_lowerCAmelCase : Any = []
if s == -2:
_lowerCAmelCase : Dict = list(self.graph )[0]
d.append(snake_case__ )
visited.append(snake_case__ )
while d:
_lowerCAmelCase : Optional[Any] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def a ( self , snake_case__ ):
'''simple docstring'''
return len(self.graph[u] )
def a ( self , snake_case__=-2 ):
'''simple docstring'''
_lowerCAmelCase : Any = []
_lowerCAmelCase : Optional[int] = []
if s == -2:
_lowerCAmelCase : Tuple = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : Any = s
_lowerCAmelCase : Dict = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : Tuple = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : str = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(snake_case__ ) != 0:
_lowerCAmelCase : List[str] = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : Optional[Any] = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return sorted_nodes
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
_lowerCAmelCase : str = []
_lowerCAmelCase : Tuple = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : Any = -2
_lowerCAmelCase : str = []
_lowerCAmelCase : Optional[int] = s
_lowerCAmelCase : List[str] = False
_lowerCAmelCase : Tuple = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : Dict = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase : int = len(snake_case__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase : Tuple = True
if len(snake_case__ ) != 0:
_lowerCAmelCase : Dict = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : Any = False
indirect_parents.append(snake_case__ )
_lowerCAmelCase : str = s
_lowerCAmelCase : Optional[int] = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return list(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
_lowerCAmelCase : str = []
_lowerCAmelCase : List[Any] = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : Dict = -2
_lowerCAmelCase : Any = []
_lowerCAmelCase : List[str] = s
_lowerCAmelCase : str = False
_lowerCAmelCase : int = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : Tuple = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase : Optional[Any] = len(snake_case__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : List[str] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase : int = True
if len(snake_case__ ) != 0:
_lowerCAmelCase : Dict = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : List[Any] = False
indirect_parents.append(snake_case__ )
_lowerCAmelCase : Any = s
_lowerCAmelCase : str = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return False
def a ( self , snake_case__=-2 , snake_case__=-1 ):
'''simple docstring'''
_lowerCAmelCase : Tuple = time()
self.dfs(snake_case__ , snake_case__ )
_lowerCAmelCase : Any = time()
return end - begin
def a ( self , snake_case__=-2 ):
'''simple docstring'''
_lowerCAmelCase : Dict = time()
self.bfs(snake_case__ )
_lowerCAmelCase : List[str] = time()
return end - begin
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = {}
def a ( self , snake_case__ , snake_case__ , snake_case__=1 ):
'''simple docstring'''
if self.graph.get(snake_case__ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
_lowerCAmelCase : Any = [[w, v]]
# add the other way
if self.graph.get(snake_case__ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
_lowerCAmelCase : str = [[w, u]]
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
if self.graph.get(snake_case__ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(snake_case__ )
# the other way round
if self.graph.get(snake_case__ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(snake_case__ )
def a ( self , snake_case__=-2 , snake_case__=-1 ):
'''simple docstring'''
if s == d:
return []
_lowerCAmelCase : Dict = []
_lowerCAmelCase : int = []
if s == -2:
_lowerCAmelCase : int = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : int = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : Union[str, Any] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(snake_case__ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : Tuple = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(snake_case__ ) != 0:
_lowerCAmelCase : List[str] = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : int = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return visited
def a ( self , snake_case__=-1 ):
'''simple docstring'''
if c == -1:
_lowerCAmelCase : Tuple = floor(random() * 1_0000 ) + 10
for i in range(snake_case__ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
_lowerCAmelCase : Optional[Any] = floor(random() * c ) + 1
if n != i:
self.add_pair(snake_case__ , snake_case__ , 1 )
def a ( self , snake_case__=-2 ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = deque()
_lowerCAmelCase : Union[str, Any] = []
if s == -2:
_lowerCAmelCase : Any = list(self.graph )[0]
d.append(snake_case__ )
visited.append(snake_case__ )
while d:
_lowerCAmelCase : Any = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def a ( self , snake_case__ ):
'''simple docstring'''
return len(self.graph[u] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : Dict = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : Optional[int] = -2
_lowerCAmelCase : Optional[Any] = []
_lowerCAmelCase : List[str] = s
_lowerCAmelCase : Union[str, Any] = False
_lowerCAmelCase : Optional[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase : List[Any] = len(snake_case__ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : Union[str, Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase : str = True
if len(snake_case__ ) != 0:
_lowerCAmelCase : str = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : List[str] = False
indirect_parents.append(snake_case__ )
_lowerCAmelCase : List[Any] = s
_lowerCAmelCase : int = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return list(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = []
_lowerCAmelCase : Union[str, Any] = []
_lowerCAmelCase : List[Any] = list(self.graph )[0]
stack.append(snake_case__ )
visited.append(snake_case__ )
_lowerCAmelCase : Optional[int] = -2
_lowerCAmelCase : Optional[int] = []
_lowerCAmelCase : List[str] = s
_lowerCAmelCase : List[Any] = False
_lowerCAmelCase : List[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
_lowerCAmelCase : List[str] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
_lowerCAmelCase : int = len(snake_case__ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
_lowerCAmelCase : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
_lowerCAmelCase : str = True
if len(snake_case__ ) != 0:
_lowerCAmelCase : List[Any] = stack[len(snake_case__ ) - 1]
else:
_lowerCAmelCase : Union[str, Any] = False
indirect_parents.append(snake_case__ )
_lowerCAmelCase : Optional[Any] = s
_lowerCAmelCase : Dict = ss
# check if se have reached the starting point
if len(snake_case__ ) == 0:
return False
def a ( self ):
'''simple docstring'''
return list(self.graph )
def a ( self , snake_case__=-2 , snake_case__=-1 ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = time()
self.dfs(snake_case__ , snake_case__ )
_lowerCAmelCase : List[Any] = time()
return end - begin
def a ( self , snake_case__=-2 ):
'''simple docstring'''
_lowerCAmelCase : List[str] = time()
self.bfs(snake_case__ )
_lowerCAmelCase : str = time()
return end - begin
| 25 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mvp"
__magic_name__ = ["past_key_values"]
__magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Optional[Any] = d_model
_lowerCAmelCase : Optional[int] = encoder_ffn_dim
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = encoder_attention_heads
_lowerCAmelCase : Any = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Union[str, Any] = dropout
_lowerCAmelCase : List[Any] = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : Any = init_std
_lowerCAmelCase : Any = encoder_layerdrop
_lowerCAmelCase : Union[str, Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = classifier_dropout
_lowerCAmelCase : List[Any] = use_cache
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase : Optional[Any] = use_prompt
_lowerCAmelCase : Optional[Any] = prompt_length
_lowerCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ):
_lowerCAmelCase : Any = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 25 | 1 |
'''simple docstring'''
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
lowerCAmelCase : str = TypeVar("""T""")
class UpperCamelCase__ ( Generic[T] ):
"""simple docstring"""
def __init__( self , snake_case__ = True ):
'''simple docstring'''
_lowerCAmelCase : dict[T, list[T]] = {} # dictionary of lists
_lowerCAmelCase : Any = directed
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(snake_case__ )
self.adj_list[destination_vertex].append(snake_case__ )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(snake_case__ )
_lowerCAmelCase : Tuple = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(snake_case__ )
_lowerCAmelCase : int = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
_lowerCAmelCase : Union[str, Any] = [destination_vertex]
_lowerCAmelCase : List[Any] = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(snake_case__ )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(snake_case__ )
_lowerCAmelCase : Any = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
_lowerCAmelCase : int = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
_lowerCAmelCase : Tuple = [destination_vertex]
_lowerCAmelCase : List[str] = []
return self
def __repr__( self ):
'''simple docstring'''
return pformat(self.adj_list )
| 25 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
lowerCAmelCase : str = None
lowerCAmelCase : Optional[int] = {
"""7B""": 1_10_08,
"""13B""": 1_38_24,
"""30B""": 1_79_20,
"""65B""": 2_20_16,
"""70B""": 2_86_72,
}
lowerCAmelCase : Optional[int] = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowercase (_A , _A=1 , _A=2_5_6 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase (_A ):
"""simple docstring"""
with open(_A , 'r' ) as f:
return json.load(_A )
def lowercase (_A , _A ):
"""simple docstring"""
with open(_A , 'w' ) as f:
json.dump(_A , _A )
def lowercase (_A , _A , _A , _A=True ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' )
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) )
_lowerCAmelCase : List[str] = NUM_SHARDS[model_size]
_lowerCAmelCase : str = params['n_layers']
_lowerCAmelCase : Optional[int] = params['n_heads']
_lowerCAmelCase : int = n_heads // num_shards
_lowerCAmelCase : Optional[int] = params['dim']
_lowerCAmelCase : Union[str, Any] = dim // n_heads
_lowerCAmelCase : Union[str, Any] = 10_000.0
_lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA
_lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase : Optional[int] = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase : Union[str, Any] = n_heads
_lowerCAmelCase : Any = n_heads_per_shard
_lowerCAmelCase : Optional[Any] = dim
# permute for sliced rotary
def permute(_A , _A=n_heads , _A=dim , _A=dim ):
return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
_lowerCAmelCase : List[Any] = [
torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' )
for i in range(_A )
]
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Union[str, Any] = {'weight_map': {}}
for layer_i in range(_A ):
_lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase : List[str] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) )
_lowerCAmelCase : Optional[int] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , )
_lowerCAmelCase : Dict = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A )
_lowerCAmelCase : Dict = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : Tuple = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : int = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase : Optional[Any] = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
_lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : List[str] = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
_lowerCAmelCase : List[str] = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase : int = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
# Write configs
_lowerCAmelCase : Tuple = {'total_size': param_count * 2}
write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) )
_lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
_lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6
_lowerCAmelCase : List[Any] = LlamaConfig(
hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , )
config.save_pretrained(_A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
_lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(_A , safe_serialization=_A )
shutil.rmtree(_A )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase : List[Any] = tokenizer_class(_A )
tokenizer.save_pretrained(_A )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' )
_lowerCAmelCase : Any = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , _A )
if __name__ == "__main__":
main()
| 25 | 1 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""vocab_file""": """vocab.json""",
"""merges_file""": """merges.txt""",
"""tokenizer_config_file""": """tokenizer_config.json""",
}
lowerCAmelCase : Optional[Any] = {
"""vocab_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"""
},
"""merges_file""": {
"""facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"""
},
"""tokenizer_config_file""": {
"""facebook/blenderbot_small-90M""": (
"""https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"""
)
},
}
lowerCAmelCase : Any = {
"""facebook/blenderbot_small-90M""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = BlenderbotSmallTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
ByteLevelBPETokenizer(
vocab=snake_case__ , merges=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , ) , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , **snake_case__ , )
_lowerCAmelCase : Optional[int] = add_prefix_space
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : List[str] = [self.sep_token_id]
_lowerCAmelCase : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = 1
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
def a ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 25 | 1 |
'''simple docstring'''
import mpmath # for roots of unity
import numpy as np
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__=None , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = list(poly_a or [0] )[:]
_lowerCAmelCase : Union[str, Any] = list(poly_b or [0] )[:]
# Remove leading zero coefficients
while self.polyA[-1] == 0:
self.polyA.pop()
_lowerCAmelCase : int = len(self.polyA )
while self.polyB[-1] == 0:
self.polyB.pop()
_lowerCAmelCase : Dict = len(self.polyB )
# Add 0 to make lengths equal a power of 2
_lowerCAmelCase : Dict = int(
2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) )
while len(self.polyA ) < self.c_max_length:
self.polyA.append(0 )
while len(self.polyB ) < self.c_max_length:
self.polyB.append(0 )
# A complex root used for the fourier transform
_lowerCAmelCase : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) )
# The product
_lowerCAmelCase : Union[str, Any] = self.__multiply()
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB]
# Corner case
if len(snake_case__ ) <= 1:
return dft[0]
#
_lowerCAmelCase : Union[str, Any] = self.c_max_length // 2
while next_ncol > 0:
_lowerCAmelCase : List[str] = [[] for i in range(snake_case__ )]
_lowerCAmelCase : str = self.root**next_ncol
# First half of next step
_lowerCAmelCase : str = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(snake_case__ ):
new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] )
current_root *= root
# Second half of next step
_lowerCAmelCase : List[str] = 1
for j in range(self.c_max_length // (next_ncol * 2) ):
for i in range(snake_case__ ):
new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] )
current_root *= root
# Update
_lowerCAmelCase : Optional[int] = new_dft
_lowerCAmelCase : Dict = next_ncol // 2
return dft[0]
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.__dft('A' )
_lowerCAmelCase : int = self.__dft('B' )
_lowerCAmelCase : List[Any] = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]]
del dft_a
del dft_b
# Corner Case
if len(inverce_c[0] ) <= 1:
return inverce_c[0]
# Inverse DFT
_lowerCAmelCase : List[Any] = 2
while next_ncol <= self.c_max_length:
_lowerCAmelCase : Optional[int] = [[] for i in range(snake_case__ )]
_lowerCAmelCase : List[Any] = self.root ** (next_ncol // 2)
_lowerCAmelCase : Tuple = 1
# First half of next step
for j in range(self.c_max_length // next_ncol ):
for i in range(next_ncol // 2 ):
# Even positions
new_inverse_c[i].append(
(
inverce_c[i][j]
+ inverce_c[i][j + self.c_max_length // next_ncol]
)
/ 2 )
# Odd positions
new_inverse_c[i + next_ncol // 2].append(
(
inverce_c[i][j]
- inverce_c[i][j + self.c_max_length // next_ncol]
)
/ (2 * current_root) )
current_root *= root
# Update
_lowerCAmelCase : Tuple = new_inverse_c
next_ncol *= 2
# Unpack
_lowerCAmelCase : Dict = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c]
# Remove leading 0's
while inverce_c[-1] == 0:
inverce_c.pop()
return inverce_c
def __str__( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'A = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A] ) )
_lowerCAmelCase : Optional[int] = 'B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B] ) )
_lowerCAmelCase : int = 'A*B = ' + ' + '.join(
F'{coef}*x^{i}' for coef, i in enumerate(self.product ) )
return F'{a}\n{b}\n{c}'
# Unit tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
lowerCAmelCase : List[str] = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase : List[str] = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 25 | 1 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCAmelCase : List[str] = [
"""kernels/rwkv/wkv_cuda.cu""",
"""kernels/rwkv/wkv_op.cpp""",
"""kernels/deformable_detr/ms_deform_attn.h""",
"""kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""",
"""models/graphormer/algos_graphormer.pyx""",
]
def lowercase (_A ):
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""")
lowerCAmelCase : Dict = parser.parse_args()
if args.check_lib:
lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""")
lowerCAmelCase : int = Path(transformers_module.__file__).parent
else:
lowerCAmelCase : int = Path.cwd() / """build/lib/transformers"""
if not test_custom_files_are_present(transformers_path):
raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
| 25 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = [
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 | 1 |
'''simple docstring'''
def lowercase (_A , _A ):
"""simple docstring"""
if not (isinstance(_A , _A ) and isinstance(_A , _A )):
raise ValueError('longest_common_substring() takes two strings for inputs' )
_lowerCAmelCase : Optional[Any] = len(_A )
_lowerCAmelCase : str = len(_A )
_lowerCAmelCase : str = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : str = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
_lowerCAmelCase : List[Any] = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
_lowerCAmelCase : Union[str, Any] = i
_lowerCAmelCase : Dict = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "nat"
__magic_name__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = patch_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Tuple = embed_dim
_lowerCAmelCase : Any = depths
_lowerCAmelCase : Dict = len(snake_case__ )
_lowerCAmelCase : str = num_heads
_lowerCAmelCase : Dict = kernel_size
_lowerCAmelCase : Union[str, Any] = mlp_ratio
_lowerCAmelCase : int = qkv_bias
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = drop_path_rate
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
_lowerCAmelCase : Any = layer_scale_init_value
_lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 25 | 1 |
'''simple docstring'''
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase : Tuple = logging.getLogger()
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Optional[int] = '\n'.join(_A )
Path(_A ).open('w' ).writelines(_A )
lowerCAmelCase : List[Any] = """patrickvonplaten/t5-tiny-random"""
lowerCAmelCase : List[Any] = """sshleifer/bart-tiny-random"""
lowerCAmelCase : Optional[Any] = """sshleifer/tiny-mbart"""
lowerCAmelCase : Any = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
_lowerCAmelCase : Optional[Any] = input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
_lowerCAmelCase : Any = [' New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County.']
_dump_articles(snake_case__ , snake_case__ )
_lowerCAmelCase : str = str(Path(self.get_auto_remove_tmp_dir() ) / 'scores.json' )
_lowerCAmelCase : Any = 'translation_en_to_de' if model == T5_TINY else 'summarization'
_lowerCAmelCase : List[Any] = F'\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n '.split()
with patch.object(snake_case__ , 'argv' , snake_case__ ):
run_generate()
assert Path(snake_case__ ).exists()
# os.remove(Path(output_file_name))
def a ( self ):
'''simple docstring'''
self.run_eval_tester(snake_case__ )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def a ( self , snake_case__ ):
'''simple docstring'''
self.run_eval_tester(snake_case__ )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = Path(self.get_auto_remove_tmp_dir() ) / 'utest_input.source'
_lowerCAmelCase : Tuple = input_file_name.parent / 'utest_output.txt'
assert not output_file_name.exists()
_lowerCAmelCase : str = {
'en': ['Machine learning is great, isn\'t it?', 'I like to eat bananas', 'Tomorrow is another great day!'],
'de': [
'Maschinelles Lernen ist großartig, oder?',
'Ich esse gerne Bananen',
'Morgen ist wieder ein toller Tag!',
],
}
_lowerCAmelCase : Optional[Any] = Path(self.get_auto_remove_tmp_dir() )
_lowerCAmelCase : List[Any] = str(tmp_dir / 'scores.json' )
_lowerCAmelCase : List[Any] = str(tmp_dir / 'val.target' )
_dump_articles(snake_case__ , text['en'] )
_dump_articles(snake_case__ , text['de'] )
_lowerCAmelCase : Union[str, Any] = 'translation_en_to_de' if model == T5_TINY else 'summarization'
_lowerCAmelCase : List[Any] = F'\n run_eval_search.py\n {model}\n {str(snake_case__ )}\n {str(snake_case__ )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n '.split()
testargs.extend(['--search', 'num_beams=1:2 length_penalty=0.9:1.0'] )
with patch.object(snake_case__ , 'argv' , snake_case__ ):
with CaptureStdout() as cs:
run_search()
_lowerCAmelCase : int = [' num_beams | length_penalty', model, 'Best score args']
_lowerCAmelCase : Any = ['Info']
if "translation" in task:
expected_strings.append('bleu' )
else:
expected_strings.extend(snake_case__ )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(snake_case__ ).exists()
os.remove(Path(snake_case__ ) )
| 25 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : str = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""roberta-base""": 5_12,
"""roberta-large""": 5_12,
"""roberta-large-mnli""": 5_12,
"""distilroberta-base""": 5_12,
"""roberta-base-openai-detector""": 5_12,
"""roberta-large-openai-detector""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = RobertaTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : List[Any] = add_prefix_space
_lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
_lowerCAmelCase : Union[str, Any] = 'post_processor'
_lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ )
if tokenizer_component_instance:
_lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase : Any = tuple(state['sep'] )
if "cls" in state:
_lowerCAmelCase : str = tuple(state['cls'] )
_lowerCAmelCase : List[str] = False
if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : int = add_prefix_space
_lowerCAmelCase : Tuple = True
if state.get('trim_offsets' , snake_case__ ) != trim_offsets:
_lowerCAmelCase : Union[str, Any] = trim_offsets
_lowerCAmelCase : Optional[int] = True
if changes_to_apply:
_lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) )
_lowerCAmelCase : Optional[int] = component_class(**snake_case__ )
setattr(self.backend_tokenizer , snake_case__ , snake_case__ )
@property
def a ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value
_lowerCAmelCase : Tuple = value
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 | 1 |
'''simple docstring'''
from PIL import Image
def lowercase (_A , _A ):
"""simple docstring"""
def brightness(_A ) -> float:
return 1_2_8 + level + (c - 1_2_8)
if not -255.0 <= level <= 255.0:
raise ValueError('level must be between -255.0 (black) and 255.0 (white)' )
return img.point(_A )
if __name__ == "__main__":
# Load image
with Image.open("""image_data/lena.jpg""") as img:
# Change brightness to 100
lowerCAmelCase : Optional[int] = change_brightness(img, 1_00)
brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
| 25 |
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag.
lowerCAmelCase : Optional[int] = 1 # The second color of the flag.
lowerCAmelCase : int = 2 # The third color of the flag.
lowerCAmelCase : Any = (red, white, blue)
def lowercase (_A ):
"""simple docstring"""
if not sequence:
return []
if len(_A ) == 1:
return list(_A )
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = len(_A ) - 1
_lowerCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values'
raise ValueError(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip()
lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 25 | 1 |
'''simple docstring'''
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Dict = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = BartphoTokenizer
__magic_name__ = False
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
_lowerCAmelCase : Any = ['▁This', '▁is', '▁a', '▁t', 'est']
_lowerCAmelCase : Optional[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
_lowerCAmelCase : Tuple = {'unk_token': '<unk>'}
_lowerCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['monolingual_vocab_file'] )
with open(self.monolingual_vocab_file , 'w' , encoding='utf-8' ) as fp:
for token in vocab_tokens:
fp.write(F'{token} {vocab_tokens[token]}\n' )
_lowerCAmelCase : List[Any] = BartphoTokenizer(snake_case__ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self , **snake_case__ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : int = 'This is a là test'
_lowerCAmelCase : Optional[int] = 'This is a<unk><unk> test'
return input_text, output_text
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = BartphoTokenizer(snake_case__ , self.monolingual_vocab_file , **self.special_tokens_map )
_lowerCAmelCase : Any = 'This is a là test'
_lowerCAmelCase : Optional[Any] = '▁This ▁is ▁a ▁l à ▁t est'.split()
_lowerCAmelCase : List[Any] = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
_lowerCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token]
_lowerCAmelCase : Optional[Any] = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
| 25 |
'''simple docstring'''
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1]
_lowerCAmelCase : int = 6
_lowerCAmelCase : Dict = 1
_lowerCAmelCase : Optional[int] = 1_9_0_1
_lowerCAmelCase : Optional[Any] = 0
while year < 2_0_0_1:
day += 7
if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
elif day > 2_9 and month == 2:
month += 1
_lowerCAmelCase : List[str] = day - 2_9
else:
if day > days_per_month[month - 1]:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
if month > 1_2:
year += 1
_lowerCAmelCase : Optional[int] = 1
if year < 2_0_0_1 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 25 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/config.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/config.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/config.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/config.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json""",
"""roberta-large-openai-detector""": """https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "roberta"
def __init__( self , snake_case__=5_0265 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
_lowerCAmelCase : List[str] = vocab_size
_lowerCAmelCase : Optional[int] = hidden_size
_lowerCAmelCase : Union[str, Any] = num_hidden_layers
_lowerCAmelCase : str = num_attention_heads
_lowerCAmelCase : int = hidden_act
_lowerCAmelCase : int = intermediate_size
_lowerCAmelCase : Tuple = hidden_dropout_prob
_lowerCAmelCase : Optional[int] = attention_probs_dropout_prob
_lowerCAmelCase : Union[str, Any] = max_position_embeddings
_lowerCAmelCase : str = type_vocab_size
_lowerCAmelCase : Any = initializer_range
_lowerCAmelCase : str = layer_norm_eps
_lowerCAmelCase : Optional[int] = position_embedding_type
_lowerCAmelCase : Optional[Any] = use_cache
_lowerCAmelCase : Dict = classifier_dropout
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def a ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCAmelCase : Tuple = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 25 |
'''simple docstring'''
def lowercase (_A = 1_0_0_0_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = set(range(3 , _A , 2 ) )
primes.add(2 )
for p in range(3 , _A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _A , _A ) ) )
_lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )]
for p in primes:
for n in range(_A , limit + 1 , _A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
lowerCAmelCase : Union[str, Any] = {
"""debug""": logging.DEBUG,
"""info""": logging.INFO,
"""warning""": logging.WARNING,
"""error""": logging.ERROR,
"""critical""": logging.CRITICAL,
}
lowerCAmelCase : Optional[int] = logging.WARNING
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Any = os.getenv('DATASETS_VERBOSITY' , _A )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'Unknown option DATASETS_VERBOSITY={env_level_str}, '
f'has to be one of: { ", ".join(log_levels.keys() ) }' )
return _default_log_level
def lowercase ():
"""simple docstring"""
return __name__.split('.' )[0]
def lowercase ():
"""simple docstring"""
return logging.getLogger(_get_library_name() )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Any = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def lowercase (_A = None ):
"""simple docstring"""
if name is None:
_lowerCAmelCase : List[Any] = _get_library_name()
return logging.getLogger(_A )
def lowercase ():
"""simple docstring"""
return _get_library_root_logger().getEffectiveLevel()
def lowercase (_A ):
"""simple docstring"""
_get_library_root_logger().setLevel(_A )
def lowercase ():
"""simple docstring"""
return set_verbosity(_A )
def lowercase ():
"""simple docstring"""
return set_verbosity(_A )
def lowercase ():
"""simple docstring"""
return set_verbosity(_A )
def lowercase ():
"""simple docstring"""
return set_verbosity(_A )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[str] = False
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument
'''simple docstring'''
_lowerCAmelCase : Dict = args[0] if args else None
def __iter__( self ):
'''simple docstring'''
return iter(self._iterator )
def __getattr__( self , snake_case__ ):
'''simple docstring'''
def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ):
'''simple docstring'''
return self
def __exit__( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
return
lowerCAmelCase : str = True
class UpperCamelCase__ :
"""simple docstring"""
def __call__( self , *snake_case__ , snake_case__=False , **snake_case__ ):
'''simple docstring'''
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*snake_case__ , **snake_case__ )
else:
return EmptyTqdm(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ )
def a ( self ):
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
lowerCAmelCase : Dict = _tqdm_cls()
def lowercase ():
"""simple docstring"""
global _tqdm_active
return bool(_tqdm_active )
def lowercase ():
"""simple docstring"""
global _tqdm_active
_lowerCAmelCase : Optional[int] = True
def lowercase ():
"""simple docstring"""
global _tqdm_active
_lowerCAmelCase : Optional[int] = False
| 25 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase : Tuple = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCAmelCase : str = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""")
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : int = _re_indent.search(_A )
return "" if search is None else search.groups()[0]
def lowercase (_A , _A="" , _A=None , _A=None ):
"""simple docstring"""
_lowerCAmelCase : int = 0
_lowerCAmelCase : Dict = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_A ):
index += 1
_lowerCAmelCase : Dict = ['\n'.join(lines[:index] )]
else:
_lowerCAmelCase : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : List[Any] = [lines[index]]
index += 1
while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_A ) )
if index < len(_A ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Union[str, Any] = []
else:
blocks.append('\n'.join(_A ) )
_lowerCAmelCase : List[str] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_A ) > 0:
blocks.append('\n'.join(_A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_A ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowercase (_A ):
"""simple docstring"""
def _inner(_A ):
return key(_A ).lower().replace('_' , '' )
return _inner
def lowercase (_A , _A=None ):
"""simple docstring"""
def noop(_A ):
return x
if key is None:
_lowerCAmelCase : List[Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()]
_lowerCAmelCase : Dict = ignore_underscore(_A )
return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A )
def lowercase (_A ):
"""simple docstring"""
def _replace(_A ):
_lowerCAmelCase : Dict = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]"
_lowerCAmelCase : Tuple = import_statement.split('\n' )
if len(_A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1
_lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] )
_lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : List[str] = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] )
return "\n".join(_A )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A )
return import_statement
def lowercase (_A , _A=True ):
"""simple docstring"""
with open(_A , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Tuple = split_code_in_indented_blocks(
_A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : Tuple = main_blocks[block_idx]
_lowerCAmelCase : int = block.split('\n' )
# Get to the start of the imports.
_lowerCAmelCase : Tuple = 0
while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Dict = len(_A )
else:
line_idx += 1
if line_idx >= len(_A ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None]
_lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[Any] = []
for i in range(len(_A ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(_A )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(_A ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_A , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_A ) )
def lowercase (_A=True ):
"""simple docstring"""
_lowerCAmelCase : int = []
for root, _, files in os.walk(_A ):
if "__init__.py" in files:
_lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A )
if result:
_lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )]
if len(_A ) > 0:
raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCAmelCase : List[str] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase (_A ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : List[str] = str(_A )
_lowerCAmelCase : Any = [n]
for i in range(1 , len(_A ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def lowercase (_A ):
"""simple docstring"""
if len(str(_A ) ) > 3:
if not is_prime(int(str(_A )[-3:] ) ) or not is_prime(int(str(_A )[:3] ) ):
return False
return True
def lowercase (_A = 1_1 ):
"""simple docstring"""
_lowerCAmelCase : list[int] = []
_lowerCAmelCase : Optional[int] = 1_3
while len(_A ) != count:
if validate(_A ):
_lowerCAmelCase : Any = list_truncated_nums(_A )
if all(is_prime(_A ) for i in list_nums ):
list_truncated_primes.append(_A )
num += 2
return list_truncated_primes
def lowercase ():
"""simple docstring"""
return sum(compute_truncated_primes(1_1 ) )
if __name__ == "__main__":
print(F'''{sum(compute_truncated_primes(11)) = }''')
| 25 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = [
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def lowercase (_A ):
"""simple docstring"""
if not postfix_notation:
return 0
_lowerCAmelCase : int = {'+', '-', '*', '/'}
_lowerCAmelCase : list[Any] = []
for token in postfix_notation:
if token in operations:
_lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_A ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
from string import ascii_uppercase
lowerCAmelCase : Any = {char: i for i, char in enumerate(ascii_uppercase)}
lowerCAmelCase : Union[str, Any] = dict(enumerate(ascii_uppercase))
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : int = len(_A )
_lowerCAmelCase : str = 0
while True:
if x == i:
_lowerCAmelCase : Dict = 0
if len(_A ) == len(_A ):
break
key += key[i]
i += 1
return key
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = ''
_lowerCAmelCase : Any = 0
for letter in message:
if letter == " ":
cipher_text += " "
else:
_lowerCAmelCase : List[str] = (dicta[letter] - dicta[key_new[i]]) % 2_6
i += 1
cipher_text += dicta[x]
return cipher_text
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : str = ''
_lowerCAmelCase : List[str] = 0
for letter in cipher_text:
if letter == " ":
or_txt += " "
else:
_lowerCAmelCase : Optional[int] = (dicta[letter] + dicta[key_new[i]] + 2_6) % 2_6
i += 1
or_txt += dicta[x]
return or_txt
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : str = 'THE GERMAN ATTACK'
_lowerCAmelCase : int = 'SECRET'
_lowerCAmelCase : str = generate_key(_A , _A )
_lowerCAmelCase : int = cipher_text(_A , _A )
print(f'Encrypted Text = {s}' )
print(f'Original Text = {original_text(_A , _A )}' )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 25 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] = {
"""google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""",
"""google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""",
"""google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mobilenet_v2"
def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.' )
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Union[str, Any] = image_size
_lowerCAmelCase : List[Any] = depth_multiplier
_lowerCAmelCase : List[Any] = depth_divisible_by
_lowerCAmelCase : Optional[Any] = min_depth
_lowerCAmelCase : str = expand_ratio
_lowerCAmelCase : str = output_stride
_lowerCAmelCase : Any = first_layer_is_expansion
_lowerCAmelCase : int = finegrained_output
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : List[str] = tf_padding
_lowerCAmelCase : Optional[int] = classifier_dropout_prob
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Optional[int] = layer_norm_eps
_lowerCAmelCase : str = semantic_loss_ignore_index
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = version.parse("1.11" )
@property
def a ( self ):
'''simple docstring'''
return OrderedDict([('pixel_values', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})] )
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
return 1E-4
| 25 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "nat"
__magic_name__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = patch_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Tuple = embed_dim
_lowerCAmelCase : Any = depths
_lowerCAmelCase : Dict = len(snake_case__ )
_lowerCAmelCase : str = num_heads
_lowerCAmelCase : Dict = kernel_size
_lowerCAmelCase : Union[str, Any] = mlp_ratio
_lowerCAmelCase : int = qkv_bias
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = drop_path_rate
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
_lowerCAmelCase : Any = layer_scale_init_value
_lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 25 |
'''simple docstring'''
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase : Optional[int] = 'pt'
_lowerCAmelCase : Tuple = 'tf'
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'mock_framework'
# Framework provided - return whatever the user provides
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase : Any = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase : int = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase : str = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
| 25 | 1 |
'''simple docstring'''
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : List[str] = logging.get_logger(__name__)
lowerCAmelCase : List[str] = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "efficientformer"
def __init__( self , snake_case__ = [3, 2, 6, 4] , snake_case__ = [48, 96, 224, 448] , snake_case__ = [True, True, True, True] , snake_case__ = 448 , snake_case__ = 32 , snake_case__ = 4 , snake_case__ = 7 , snake_case__ = 5 , snake_case__ = 8 , snake_case__ = 4 , snake_case__ = 0.0 , snake_case__ = 16 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = 1 , snake_case__ = True , snake_case__ = True , snake_case__ = 1E-5 , snake_case__ = "gelu" , snake_case__ = 0.02 , snake_case__ = 1E-12 , snake_case__ = 224 , snake_case__ = 1E-05 , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Optional[int] = hidden_act
_lowerCAmelCase : Tuple = hidden_dropout_prob
_lowerCAmelCase : Dict = hidden_sizes
_lowerCAmelCase : Tuple = num_hidden_layers
_lowerCAmelCase : Dict = num_attention_heads
_lowerCAmelCase : List[str] = initializer_range
_lowerCAmelCase : int = layer_norm_eps
_lowerCAmelCase : List[str] = patch_size
_lowerCAmelCase : int = num_channels
_lowerCAmelCase : List[Any] = depths
_lowerCAmelCase : Dict = mlp_expansion_ratio
_lowerCAmelCase : Tuple = downsamples
_lowerCAmelCase : Optional[int] = dim
_lowerCAmelCase : str = key_dim
_lowerCAmelCase : Any = attention_ratio
_lowerCAmelCase : Any = resolution
_lowerCAmelCase : str = pool_size
_lowerCAmelCase : Optional[int] = downsample_patch_size
_lowerCAmelCase : Optional[int] = downsample_stride
_lowerCAmelCase : Dict = downsample_pad
_lowerCAmelCase : Any = drop_path_rate
_lowerCAmelCase : Union[str, Any] = num_metaad_blocks
_lowerCAmelCase : Any = distillation
_lowerCAmelCase : Tuple = use_layer_scale
_lowerCAmelCase : Optional[int] = layer_scale_init_value
_lowerCAmelCase : List[Any] = image_size
_lowerCAmelCase : Tuple = batch_norm_eps
| 25 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Any = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""facebook/nllb-large-en-ro""": 10_24,
"""facebook/nllb-200-distilled-600M""": 10_24,
}
# fmt: off
lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = NllbTokenizer
__magic_name__ = []
__magic_name__ = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
_lowerCAmelCase : Dict = legacy_behaviour
super().__init__(
vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : int = False if not self.vocab_file else True
_lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_lowerCAmelCase : Any = {
lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn'
_lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang )
_lowerCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def a ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_lowerCAmelCase : Optional[Any] = src_lang
_lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ )
_lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ )
_lowerCAmelCase : Optional[Any] = tgt_lang_id
return inputs
def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[str] = src_lang
_lowerCAmelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ )
def a ( self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def a ( self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : Dict = []
_lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : int = [self.eos_token_id]
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : int = []
_lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : List[str] = [self.eos_token_id]
_lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : str = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory.' )
return
_lowerCAmelCase : Union[str, Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 | 1 |
'''simple docstring'''
def lowercase (_A , _A ):
"""simple docstring"""
return 1 if input_a == input_a else 0
def lowercase ():
"""simple docstring"""
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 25 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCAmelCase : List[str] = [
"""kernels/rwkv/wkv_cuda.cu""",
"""kernels/rwkv/wkv_op.cpp""",
"""kernels/deformable_detr/ms_deform_attn.h""",
"""kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""",
"""models/graphormer/algos_graphormer.pyx""",
]
def lowercase (_A ):
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""")
lowerCAmelCase : Dict = parser.parse_args()
if args.check_lib:
lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""")
lowerCAmelCase : int = Path(transformers_module.__file__).parent
else:
lowerCAmelCase : int = Path.cwd() / """build/lib/transformers"""
if not test_custom_files_are_present(transformers_path):
raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
| 25 | 1 |
'''simple docstring'''
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase ():
"""simple docstring"""
raise RuntimeError('CUDA out of memory.' )
class UpperCamelCase__ ( nn.Module ):
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
super().__init__()
_lowerCAmelCase : List[str] = nn.Linear(3 , 4 )
_lowerCAmelCase : str = nn.BatchNormad(4 )
_lowerCAmelCase : int = nn.Linear(4 , 5 )
def a ( self , snake_case__ ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(snake_case__ ) ) )
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(snake_case__ ):
nonlocal batch_sizes
batch_sizes.append(snake_case__ )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(snake_case__ , [128, 64, 32, 16, 8] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(snake_case__ , snake_case__ ):
nonlocal batch_sizes
batch_sizes.append(snake_case__ )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
_lowerCAmelCase , _lowerCAmelCase : str = mock_training_loop_function('hello' )
self.assertListEqual(snake_case__ , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, 'hello'] )
def a ( self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(snake_case__ ):
pass
with self.assertRaises(snake_case__ ) as cm:
mock_training_loop_function()
self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] )
def a ( self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(snake_case__ ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(snake_case__ ) as cm:
mock_training_loop_function()
self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] )
def a ( self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(snake_case__ , snake_case__ , snake_case__ ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(snake_case__ ) as cm:
mock_training_loop_function(128 , 'hello' , 'world' )
self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] )
self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] )
def a ( self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(snake_case__ ):
raise ValueError('Oops, we had an error!' )
with self.assertRaises(snake_case__ ) as cm:
mock_training_loop_function()
self.assertIn('Oops, we had an error!' , cm.exception.args[0] )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = torch.cuda.memory_allocated()
_lowerCAmelCase : Union[str, Any] = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , snake_case__ )
_lowerCAmelCase : List[Any] = release_memory(snake_case__ )
self.assertEqual(torch.cuda.memory_allocated() , snake_case__ )
| 25 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_lowerCAmelCase : List[str] = ''
_lowerCAmelCase : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_A ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
_lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )]
# for each character in new_string find corresponding palindromic string
_lowerCAmelCase : Any = 0
for j in range(len(_A ) ):
_lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_A )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_lowerCAmelCase : List[str] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741
_lowerCAmelCase : int = j + k - 1
# update max_length and start position
if max_length < length[j]:
_lowerCAmelCase : Dict = length[j]
_lowerCAmelCase : Optional[int] = j
# create that string
_lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = CodeGenTokenizer
__magic_name__ = CodeGenTokenizerFast
__magic_name__ = True
__magic_name__ = {"add_prefix_space": True}
__magic_name__ = False
def a ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowerCAmelCase : Optional[int] = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
'<|endoftext|>',
]
_lowerCAmelCase : Optional[int] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
_lowerCAmelCase : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
_lowerCAmelCase : str = {'unk_token': '<unk>'}
_lowerCAmelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(snake_case__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(snake_case__ ) )
def a ( self , **snake_case__ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self , **snake_case__ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = 'lower newer'
_lowerCAmelCase : List[str] = 'lower newer'
return input_text, output_text
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_lowerCAmelCase : Optional[int] = 'lower newer'
_lowerCAmelCase : int = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er']
_lowerCAmelCase : Dict = tokenizer.tokenize(snake_case__ , add_prefix_space=snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
_lowerCAmelCase : Optional[Any] = tokens + [tokenizer.unk_token]
_lowerCAmelCase : Tuple = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
_lowerCAmelCase : Union[str, Any] = self.get_tokenizer()
_lowerCAmelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=snake_case__ )
_lowerCAmelCase : Optional[Any] = 'lower newer'
# Testing tokenization
_lowerCAmelCase : Optional[Any] = tokenizer.tokenize(snake_case__ , add_prefix_space=snake_case__ )
_lowerCAmelCase : List[str] = rust_tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Testing conversion to ids without special tokens
_lowerCAmelCase : List[str] = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ , add_prefix_space=snake_case__ )
_lowerCAmelCase : Tuple = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Testing conversion to ids with special tokens
_lowerCAmelCase : Tuple = self.get_rust_tokenizer(add_prefix_space=snake_case__ )
_lowerCAmelCase : Dict = tokenizer.encode(snake_case__ , add_prefix_space=snake_case__ )
_lowerCAmelCase : Optional[Any] = rust_tokenizer.encode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
# Testing the unknown token
_lowerCAmelCase : Union[str, Any] = tokens + [rust_tokenizer.unk_token]
_lowerCAmelCase : Any = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
pass
def a ( self , snake_case__=15 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
# Simple input
_lowerCAmelCase : Optional[int] = 'This is a simple input'
_lowerCAmelCase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2']
_lowerCAmelCase : List[str] = ('This is a simple input', 'This is a pair')
_lowerCAmelCase : Any = [
('This is a simple input 1', 'This is a simple input 2'),
('This is a simple pair 1', 'This is a simple pair 2'),
]
# Simple input tests
self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding='max_length' )
# Simple input
self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' )
# Simple input
self.assertRaises(
snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' , )
# Pair input
self.assertRaises(snake_case__ , tokenizer_r.encode , snake_case__ , max_length=snake_case__ , padding='max_length' )
# Pair input
self.assertRaises(snake_case__ , tokenizer_r.encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' )
# Pair input
self.assertRaises(
snake_case__ , tokenizer_r.batch_encode_plus , snake_case__ , max_length=snake_case__ , padding='max_length' , )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' )
# Simple input
_lowerCAmelCase : List[Any] = 'This is a simple input'
_lowerCAmelCase : List[str] = ['This is a simple input looooooooong', 'This is a simple input']
_lowerCAmelCase : List[str] = ('This is a simple input', 'This is a pair')
_lowerCAmelCase : List[Any] = [
('This is a simple input loooooong', 'This is a simple input'),
('This is a simple pair loooooong', 'This is a simple pair'),
]
_lowerCAmelCase : int = tokenizer.pad_token_id
_lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ , padding='max_length' , max_length=30 , return_tensors='np' )
_lowerCAmelCase : Optional[Any] = tokenizer(snake_case__ , padding=snake_case__ , truncate=snake_case__ , return_tensors='np' )
_lowerCAmelCase : Optional[int] = tokenizer(*snake_case__ , padding='max_length' , max_length=60 , return_tensors='np' )
_lowerCAmelCase : Tuple = tokenizer(snake_case__ , padding=snake_case__ , truncate=snake_case__ , return_tensors='np' )
# s
# test single string max_length padding
self.assertEqual(out_s['input_ids'].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s['input_ids'] )
self.assertTrue(0 in out_s['attention_mask'] )
# s2
# test automatic padding
self.assertEqual(out_sa['input_ids'].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa['input_ids'][0] )
self.assertFalse(0 in out_sa['attention_mask'][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa['input_ids'][1] )
self.assertTrue(0 in out_sa['attention_mask'][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p['input_ids'].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p['input_ids'] )
self.assertTrue(0 in out_p['attention_mask'] )
# p2
# test automatic padding pair
self.assertEqual(out_pa['input_ids'].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa['input_ids'][0] )
self.assertFalse(0 in out_pa['attention_mask'][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa['input_ids'][1] )
self.assertTrue(0 in out_pa['attention_mask'][1] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = '$$$'
_lowerCAmelCase : List[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=snake_case__ , add_bos_token=snake_case__ )
_lowerCAmelCase : Optional[int] = 'This is a simple input'
_lowerCAmelCase : Optional[int] = ['This is a simple input 1', 'This is a simple input 2']
_lowerCAmelCase : Any = tokenizer.bos_token_id
_lowerCAmelCase : str = tokenizer(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer(snake_case__ )
self.assertEqual(out_s.input_ids[0] , snake_case__ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
_lowerCAmelCase : int = tokenizer.decode(out_s.input_ids )
_lowerCAmelCase : List[str] = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , snake_case__ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' )
_lowerCAmelCase : Any = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#'
_lowerCAmelCase : int = '\nif len_a > len_b: result = a\nelse: result = b'
_lowerCAmelCase : Optional[int] = tokenizer.encode(snake_case__ )
_lowerCAmelCase : Any = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n']
_lowerCAmelCase : Tuple = tokenizer.decode(snake_case__ , truncate_before_pattern=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
pass
| 25 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
__magic_name__ = 3.0
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , snake_case__ )
@require_multi_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : List[str] = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : List[Any] = """"""
lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 | 1 |
'''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def lowercase (_A ):
"""simple docstring"""
def is_in_circle(_A , _A ) -> bool:
_lowerCAmelCase : Any = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
_lowerCAmelCase : Any = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(_A ) )
# The ratio of the area for circle to square is pi/4.
_lowerCAmelCase : List[Any] = proportion * 4
print(f'The estimated value of pi is {pi_estimate}' )
print(f'The numpy value of pi is {pi}' )
print(f'The total error is {abs(pi - pi_estimate )}' )
def lowercase (_A , _A , _A = 0.0 , _A = 1.0 , ):
"""simple docstring"""
return mean(
function_to_integrate(uniform(_A , _A ) ) for _ in range(_A ) ) * (max_value - min_value)
def lowercase (_A , _A = 0.0 , _A = 1.0 ):
"""simple docstring"""
def identity_function(_A ) -> float:
return x
_lowerCAmelCase : List[str] = area_under_curve_estimator(
_A , _A , _A , _A )
_lowerCAmelCase : Optional[int] = (max_value * max_value - min_value * min_value) / 2
print('******************' )
print(f'Estimating area under y=x where x varies from {min_value} to {max_value}' )
print(f'Estimated value is {estimated_value}' )
print(f'Expected value is {expected_value}' )
print(f'Total error is {abs(estimated_value - expected_value )}' )
print('******************' )
def lowercase (_A ):
"""simple docstring"""
def function_to_integrate(_A ) -> float:
return sqrt(4.0 - x * x )
_lowerCAmelCase : Dict = area_under_curve_estimator(
_A , _A , 0.0 , 2.0 )
print('******************' )
print('Estimating pi using area_under_curve_estimator' )
print(f'Estimated value is {estimated_value}' )
print(f'Expected value is {pi}' )
print(f'Total error is {abs(estimated_value - pi )}' )
print('******************' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "trajectory_transformer"
__magic_name__ = ["past_key_values"]
__magic_name__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = action_weight
_lowerCAmelCase : Optional[int] = reward_weight
_lowerCAmelCase : Union[str, Any] = value_weight
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Tuple = block_size
_lowerCAmelCase : List[Any] = action_dim
_lowerCAmelCase : List[Any] = observation_dim
_lowerCAmelCase : Union[str, Any] = transition_dim
_lowerCAmelCase : Tuple = learning_rate
_lowerCAmelCase : int = n_layer
_lowerCAmelCase : Any = n_head
_lowerCAmelCase : Tuple = n_embd
_lowerCAmelCase : Optional[Any] = embd_pdrop
_lowerCAmelCase : Union[str, Any] = attn_pdrop
_lowerCAmelCase : Any = resid_pdrop
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : List[Any] = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = kaiming_initializer_range
_lowerCAmelCase : List[Any] = use_cache
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : Dict = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 25_00_04
lowerCAmelCase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = '<s>'
_lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(snake_case__ ) , 1054 )
def a ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
_lowerCAmelCase : Any = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def a ( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "facebook/mbart-large-50-one-to-many-mmt"
__magic_name__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__magic_name__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
_lowerCAmelCase : Dict = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , snake_case__ )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[0] , snake_case__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : List[Any] = targets['input_ids']
_lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_0004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_0001,
} , )
| 25 | 1 |
'''simple docstring'''
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "linear"
__magic_name__ = "cosine"
__magic_name__ = "cosine_with_restarts"
__magic_name__ = "polynomial"
__magic_name__ = "constant"
__magic_name__ = "constant_with_warmup"
__magic_name__ = "piecewise_constant"
def lowercase (_A , _A = -1 ):
"""simple docstring"""
return LambdaLR(_A , lambda _A : 1 , last_epoch=_A )
def lowercase (_A , _A , _A = -1 ):
"""simple docstring"""
def lr_lambda(_A ):
if current_step < num_warmup_steps:
return float(_A ) / float(max(1.0 , _A ) )
return 1.0
return LambdaLR(_A , _A , last_epoch=_A )
def lowercase (_A , _A , _A = -1 ):
"""simple docstring"""
_lowerCAmelCase : Tuple = {}
_lowerCAmelCase : List[Any] = step_rules.split(',' )
for rule_str in rule_list[:-1]:
_lowerCAmelCase , _lowerCAmelCase : int = rule_str.split(':' )
_lowerCAmelCase : int = int(_A )
_lowerCAmelCase : str = float(_A )
_lowerCAmelCase : Optional[Any] = value
_lowerCAmelCase : List[Any] = float(rule_list[-1] )
def create_rules_function(_A , _A ):
def rule_func(_A ) -> float:
_lowerCAmelCase : List[Any] = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(_A ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
_lowerCAmelCase : Dict = create_rules_function(_A , _A )
return LambdaLR(_A , _A , last_epoch=_A )
def lowercase (_A , _A , _A , _A=-1 ):
"""simple docstring"""
def lr_lambda(_A ):
if current_step < num_warmup_steps:
return float(_A ) / float(max(1 , _A ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(_A , _A , _A )
def lowercase (_A , _A , _A , _A = 0.5 , _A = -1 ):
"""simple docstring"""
def lr_lambda(_A ):
if current_step < num_warmup_steps:
return float(_A ) / float(max(1 , _A ) )
_lowerCAmelCase : Optional[int] = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(_A ) * 2.0 * progress )) )
return LambdaLR(_A , _A , _A )
def lowercase (_A , _A , _A , _A = 1 , _A = -1 ):
"""simple docstring"""
def lr_lambda(_A ):
if current_step < num_warmup_steps:
return float(_A ) / float(max(1 , _A ) )
_lowerCAmelCase : int = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(_A ) * progress) % 1.0) )) )
return LambdaLR(_A , _A , _A )
def lowercase (_A , _A , _A , _A=1E-7 , _A=1.0 , _A=-1 ):
"""simple docstring"""
_lowerCAmelCase : Optional[int] = optimizer.defaults['lr']
if not (lr_init > lr_end):
raise ValueError(f'lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})' )
def lr_lambda(_A ):
if current_step < num_warmup_steps:
return float(_A ) / float(max(1 , _A ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
_lowerCAmelCase : List[str] = lr_init - lr_end
_lowerCAmelCase : Optional[int] = num_training_steps - num_warmup_steps
_lowerCAmelCase : Optional[Any] = 1 - (current_step - num_warmup_steps) / decay_steps
_lowerCAmelCase : Optional[int] = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(_A , _A , _A )
lowerCAmelCase : List[str] = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def lowercase (_A , _A , _A = None , _A = None , _A = None , _A = 1 , _A = 1.0 , _A = -1 , ):
"""simple docstring"""
_lowerCAmelCase : str = SchedulerType(_A )
_lowerCAmelCase : Optional[Any] = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(_A , last_epoch=_A )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(_A , step_rules=_A , last_epoch=_A )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'{name} requires `num_warmup_steps`, please provide that argument.' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(_A , num_warmup_steps=_A , last_epoch=_A )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'{name} requires `num_training_steps`, please provide that argument.' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
_A , num_warmup_steps=_A , num_training_steps=_A , num_cycles=_A , last_epoch=_A , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
_A , num_warmup_steps=_A , num_training_steps=_A , power=_A , last_epoch=_A , )
return schedule_func(
_A , num_warmup_steps=_A , num_training_steps=_A , last_epoch=_A )
| 25 |
'''simple docstring'''
from math import isqrt
def lowercase (_A ):
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) )
def lowercase (_A = 1_0**6 ):
"""simple docstring"""
_lowerCAmelCase : str = 0
_lowerCAmelCase : str = 1
_lowerCAmelCase : List[str] = 7
while prime_candidate < max_prime:
primes_count += is_prime(_A )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = tempfile.mkdtemp()
_lowerCAmelCase : Dict = BlipImageProcessor()
_lowerCAmelCase : Any = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' )
_lowerCAmelCase : str = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' )
_lowerCAmelCase : Tuple = InstructBlipProcessor(snake_case__ , snake_case__ , snake_case__ )
processor.save_pretrained(self.tmpdirname )
def a ( self , **snake_case__ ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer
def a ( self , **snake_case__ ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor
def a ( self , **snake_case__ ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).qformer_tokenizer
def a ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_lowerCAmelCase : Optional[int] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase : List[str] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 )
_lowerCAmelCase : Optional[Any] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
self.assertIsInstance(processor.qformer_tokenizer , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.get_image_processor()
_lowerCAmelCase : int = self.get_tokenizer()
_lowerCAmelCase : List[str] = self.get_qformer_tokenizer()
_lowerCAmelCase : Tuple = InstructBlipProcessor(
tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ )
_lowerCAmelCase : Dict = self.prepare_image_inputs()
_lowerCAmelCase : List[str] = image_processor(snake_case__ , return_tensors='np' )
_lowerCAmelCase : Union[str, Any] = processor(images=snake_case__ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.get_image_processor()
_lowerCAmelCase : List[str] = self.get_tokenizer()
_lowerCAmelCase : Union[str, Any] = self.get_qformer_tokenizer()
_lowerCAmelCase : List[str] = InstructBlipProcessor(
tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ )
_lowerCAmelCase : List[str] = 'lower newer'
_lowerCAmelCase : Tuple = processor(text=snake_case__ )
_lowerCAmelCase : Union[str, Any] = tokenizer(snake_case__ , return_token_type_ids=snake_case__ )
_lowerCAmelCase : Dict = qformer_tokenizer(snake_case__ , return_token_type_ids=snake_case__ )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_image_processor()
_lowerCAmelCase : Dict = self.get_tokenizer()
_lowerCAmelCase : Tuple = self.get_qformer_tokenizer()
_lowerCAmelCase : Optional[Any] = InstructBlipProcessor(
tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ )
_lowerCAmelCase : List[Any] = 'lower newer'
_lowerCAmelCase : Union[str, Any] = self.prepare_image_inputs()
_lowerCAmelCase : List[Any] = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(
list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.get_image_processor()
_lowerCAmelCase : Optional[Any] = self.get_tokenizer()
_lowerCAmelCase : Tuple = self.get_qformer_tokenizer()
_lowerCAmelCase : str = InstructBlipProcessor(
tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ )
_lowerCAmelCase : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCAmelCase : Tuple = processor.batch_decode(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer.batch_decode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.get_image_processor()
_lowerCAmelCase : Any = self.get_tokenizer()
_lowerCAmelCase : Optional[Any] = self.get_qformer_tokenizer()
_lowerCAmelCase : List[str] = InstructBlipProcessor(
tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ )
_lowerCAmelCase : Optional[int] = 'lower newer'
_lowerCAmelCase : str = self.prepare_image_inputs()
_lowerCAmelCase : Optional[int] = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(
list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
| 25 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mvp"
__magic_name__ = ["past_key_values"]
__magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Optional[Any] = d_model
_lowerCAmelCase : Optional[int] = encoder_ffn_dim
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = encoder_attention_heads
_lowerCAmelCase : Any = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Union[str, Any] = dropout
_lowerCAmelCase : List[Any] = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : Any = init_std
_lowerCAmelCase : Any = encoder_layerdrop
_lowerCAmelCase : Union[str, Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = classifier_dropout
_lowerCAmelCase : List[Any] = use_cache
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase : Optional[Any] = use_prompt
_lowerCAmelCase : Optional[Any] = prompt_length
_lowerCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ):
_lowerCAmelCase : Any = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=2 , snake_case__=3 , snake_case__=4 , snake_case__=2 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=36 , snake_case__=2 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=6 , snake_case__=6 , snake_case__=3 , snake_case__=4 , snake_case__=None , snake_case__=1000 , ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = parent
_lowerCAmelCase : Optional[Any] = batch_size
_lowerCAmelCase : Tuple = num_channels
_lowerCAmelCase : str = image_size
_lowerCAmelCase : List[Any] = patch_size
_lowerCAmelCase : int = is_training
_lowerCAmelCase : Optional[Any] = use_input_mask
_lowerCAmelCase : Dict = use_token_type_ids
_lowerCAmelCase : int = use_labels
_lowerCAmelCase : Union[str, Any] = vocab_size
_lowerCAmelCase : Any = hidden_size
_lowerCAmelCase : Any = num_hidden_layers
_lowerCAmelCase : List[str] = num_attention_heads
_lowerCAmelCase : int = intermediate_size
_lowerCAmelCase : Dict = hidden_act
_lowerCAmelCase : List[Any] = hidden_dropout_prob
_lowerCAmelCase : int = attention_probs_dropout_prob
_lowerCAmelCase : List[Any] = max_position_embeddings
_lowerCAmelCase : Tuple = type_vocab_size
_lowerCAmelCase : int = type_sequence_label_size
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Dict = coordinate_size
_lowerCAmelCase : Tuple = shape_size
_lowerCAmelCase : List[str] = num_labels
_lowerCAmelCase : Optional[int] = num_choices
_lowerCAmelCase : Optional[int] = scope
_lowerCAmelCase : List[Any] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
_lowerCAmelCase : List[Any] = text_seq_length
_lowerCAmelCase : Union[str, Any] = (image_size // patch_size) ** 2 + 1
_lowerCAmelCase : Tuple = self.text_seq_length + self.image_seq_length
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
_lowerCAmelCase : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
_lowerCAmelCase : int = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
_lowerCAmelCase : int = bbox[i, j, 3]
_lowerCAmelCase : List[str] = bbox[i, j, 1]
_lowerCAmelCase : Tuple = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
_lowerCAmelCase : Union[str, Any] = bbox[i, j, 2]
_lowerCAmelCase : Any = bbox[i, j, 0]
_lowerCAmelCase : str = tmp_coordinate
_lowerCAmelCase : Tuple = tf.constant(snake_case__ )
_lowerCAmelCase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowerCAmelCase : Dict = None
if self.use_input_mask:
_lowerCAmelCase : Dict = random_attention_mask([self.batch_size, self.text_seq_length] )
_lowerCAmelCase : Any = None
if self.use_token_type_ids:
_lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
_lowerCAmelCase : Tuple = None
_lowerCAmelCase : List[Any] = None
if self.use_labels:
_lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
_lowerCAmelCase : Dict = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = TFLayoutLMvaModel(config=snake_case__ )
# text + image
_lowerCAmelCase : Tuple = model(snake_case__ , pixel_values=snake_case__ , training=snake_case__ )
_lowerCAmelCase : Union[str, Any] = model(
snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , training=snake_case__ , )
_lowerCAmelCase : Optional[int] = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , training=snake_case__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
_lowerCAmelCase : Any = model(snake_case__ , training=snake_case__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
_lowerCAmelCase : Optional[Any] = model({'pixel_values': pixel_values} , training=snake_case__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.num_labels
_lowerCAmelCase : Any = TFLayoutLMvaForSequenceClassification(config=snake_case__ )
_lowerCAmelCase : Optional[int] = model(
snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , training=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = self.num_labels
_lowerCAmelCase : Dict = TFLayoutLMvaForTokenClassification(config=snake_case__ )
_lowerCAmelCase : Optional[int] = model(
snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , training=snake_case__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = 2
_lowerCAmelCase : Tuple = TFLayoutLMvaForQuestionAnswering(config=snake_case__ )
_lowerCAmelCase : Optional[int] = model(
snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , training=snake_case__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.prepare_config_and_inputs()
((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Optional[Any] = config_and_inputs
_lowerCAmelCase : Optional[Any] = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
return True
def a ( self , snake_case__ , snake_case__ , snake_case__=False ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = copy.deepcopy(snake_case__ )
if model_class in get_values(snake_case__ ):
_lowerCAmelCase : Dict = {
k: tf.tile(tf.expand_dims(snake_case__ , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(snake_case__ , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(snake_case__ ):
_lowerCAmelCase : List[str] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(snake_case__ ):
_lowerCAmelCase : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
_lowerCAmelCase : str = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(snake_case__ ):
_lowerCAmelCase : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(snake_case__ ):
_lowerCAmelCase : List[Any] = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = TFLayoutLMvaModelTester(self )
_lowerCAmelCase : List[str] = ConfigTester(self , config_class=snake_case__ , hidden_size=37 )
def a ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowerCAmelCase : Dict = model_class(snake_case__ )
if getattr(snake_case__ , 'hf_compute_loss' , snake_case__ ):
# The number of elements in the loss should be the same as the number of elements in the label
_lowerCAmelCase : Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ )
_lowerCAmelCase : Tuple = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=snake_case__ )[0]
]
_lowerCAmelCase : str = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
_lowerCAmelCase : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ )
_lowerCAmelCase : Optional[int] = prepared_for_class.pop('input_ids' )
_lowerCAmelCase : Any = model(snake_case__ , **snake_case__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
_lowerCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ )
_lowerCAmelCase : Optional[int] = prepared_for_class.pop('input_ids' )
if "labels" in prepared_for_class:
_lowerCAmelCase : Optional[Any] = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
_lowerCAmelCase : int = -100
_lowerCAmelCase : List[str] = tf.convert_to_tensor(snake_case__ )
_lowerCAmelCase : Union[str, Any] = model(snake_case__ , **snake_case__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
_lowerCAmelCase : List[Any] = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ )
_lowerCAmelCase : Dict = model(snake_case__ )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
_lowerCAmelCase : Optional[Any] = self._prepare_for_class(inputs_dict.copy() , snake_case__ , return_labels=snake_case__ )
# Get keys that were added with the _prepare_for_class function
_lowerCAmelCase : Optional[int] = prepared_for_class.keys() - inputs_dict.keys()
_lowerCAmelCase : List[str] = inspect.signature(model.call ).parameters
_lowerCAmelCase : Dict = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
_lowerCAmelCase : Union[str, Any] = {0: 'input_ids'}
for label_key in label_keys:
_lowerCAmelCase : Any = signature_names.index(snake_case__ )
_lowerCAmelCase : Any = label_key
_lowerCAmelCase : List[str] = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
_lowerCAmelCase : Any = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
_lowerCAmelCase : Union[str, Any] = prepared_for_class[value]
_lowerCAmelCase : int = tuple(snake_case__ )
# Send to model
_lowerCAmelCase : Tuple = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def a ( self ):
'''simple docstring'''
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowerCAmelCase : List[str] = type
self.model_tester.create_and_check_model(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
(
(
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) , (
_lowerCAmelCase
) ,
) : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
@slow
def a ( self ):
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowerCAmelCase : Optional[int] = TFLayoutLMvaModel.from_pretrained(snake_case__ )
self.assertIsNotNone(snake_case__ )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def a ( self ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' )
_lowerCAmelCase : List[Any] = self.default_image_processor
_lowerCAmelCase : Optional[Any] = prepare_img()
_lowerCAmelCase : Union[str, Any] = image_processor(images=snake_case__ , return_tensors='tf' ).pixel_values
_lowerCAmelCase : Optional[Any] = tf.constant([[1, 2]] )
_lowerCAmelCase : Optional[Any] = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
_lowerCAmelCase : Any = model(input_ids=snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , training=snake_case__ )
# verify the logits
_lowerCAmelCase : Dict = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , snake_case__ )
_lowerCAmelCase : Optional[int] = tf.constant(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1E-4 ) )
| 25 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
lowerCAmelCase : str = None
lowerCAmelCase : Optional[int] = {
"""7B""": 1_10_08,
"""13B""": 1_38_24,
"""30B""": 1_79_20,
"""65B""": 2_20_16,
"""70B""": 2_86_72,
}
lowerCAmelCase : Optional[int] = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowercase (_A , _A=1 , _A=2_5_6 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase (_A ):
"""simple docstring"""
with open(_A , 'r' ) as f:
return json.load(_A )
def lowercase (_A , _A ):
"""simple docstring"""
with open(_A , 'w' ) as f:
json.dump(_A , _A )
def lowercase (_A , _A , _A , _A=True ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' )
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) )
_lowerCAmelCase : List[str] = NUM_SHARDS[model_size]
_lowerCAmelCase : str = params['n_layers']
_lowerCAmelCase : Optional[int] = params['n_heads']
_lowerCAmelCase : int = n_heads // num_shards
_lowerCAmelCase : Optional[int] = params['dim']
_lowerCAmelCase : Union[str, Any] = dim // n_heads
_lowerCAmelCase : Union[str, Any] = 10_000.0
_lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA
_lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase : Optional[int] = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase : Union[str, Any] = n_heads
_lowerCAmelCase : Any = n_heads_per_shard
_lowerCAmelCase : Optional[Any] = dim
# permute for sliced rotary
def permute(_A , _A=n_heads , _A=dim , _A=dim ):
return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
_lowerCAmelCase : List[Any] = [
torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' )
for i in range(_A )
]
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Union[str, Any] = {'weight_map': {}}
for layer_i in range(_A ):
_lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase : List[str] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) )
_lowerCAmelCase : Optional[int] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , )
_lowerCAmelCase : Dict = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A )
_lowerCAmelCase : Dict = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : Tuple = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : int = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase : Optional[Any] = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
_lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : List[str] = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
_lowerCAmelCase : List[str] = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase : int = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
# Write configs
_lowerCAmelCase : Tuple = {'total_size': param_count * 2}
write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) )
_lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
_lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6
_lowerCAmelCase : List[Any] = LlamaConfig(
hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , )
config.save_pretrained(_A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
_lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(_A , safe_serialization=_A )
shutil.rmtree(_A )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase : List[Any] = tokenizer_class(_A )
tokenizer.save_pretrained(_A )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' )
_lowerCAmelCase : Any = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , _A )
if __name__ == "__main__":
main()
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
def lowercase (_A , _A , _A ):
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError('days_between_payments must be > 0' )
if daily_interest_rate < 0:
raise ValueError('daily_interest_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * daily_interest_rate * days_between_payments
def lowercase (_A , _A , _A , ):
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError('number_of_compounding_periods must be > 0' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase (_A , _A , _A , ):
"""simple docstring"""
if number_of_years <= 0:
raise ValueError('number_of_years must be > 0' )
if nominal_annual_percentage_rate < 0:
raise ValueError('nominal_annual_percentage_rate must be >= 0' )
if principal <= 0:
raise ValueError('principal must be > 0' )
return compound_interest(
_A , nominal_annual_percentage_rate / 3_6_5 , number_of_years * 3_6_5 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = 1
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
def a ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 25 | 1 |
'''simple docstring'''
import numpy as np
import skfuzzy as fuzz
if __name__ == "__main__":
# Create universe of discourse in Python using linspace ()
lowerCAmelCase : Dict = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False)
# Create two fuzzy sets by defining any membership function
# (trapmf(), gbellmf(), gaussmf(), etc).
lowerCAmelCase : List[str] = [0, 25, 50]
lowerCAmelCase : List[Any] = [25, 50, 75]
lowerCAmelCase : Dict = fuzz.membership.trimf(X, abca)
lowerCAmelCase : Optional[Any] = fuzz.membership.trimf(X, abca)
# Compute the different operations using inbuilt functions.
lowerCAmelCase : Optional[Any] = np.ones(75)
lowerCAmelCase : Any = np.zeros((75,))
# 1. Union = max(µA(x), µB(x))
lowerCAmelCase : Optional[Any] = fuzz.fuzzy_or(X, young, X, middle_aged)[1]
# 2. Intersection = min(µA(x), µB(x))
lowerCAmelCase : Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1]
# 3. Complement (A) = (1- min(µA(x))
lowerCAmelCase : Optional[int] = fuzz.fuzzy_not(young)
# 4. Difference (A/B) = min(µA(x),(1- µB(x)))
lowerCAmelCase : List[Any] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1]
# 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))]
lowerCAmelCase : Tuple = young + middle_aged - (young * middle_aged)
# 6. Algebraic Product = (µA(x) * µB(x))
lowerCAmelCase : List[Any] = young * middle_aged
# 7. Bounded Sum = min[1,(µA(x), µB(x))]
lowerCAmelCase : int = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1]
# 8. Bounded difference = min[0,(µA(x), µB(x))]
lowerCAmelCase : Dict = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1]
# max-min composition
# max-product composition
# Plot each set A, set B and each operation result using plot() and subplot().
from matplotlib import pyplot as plt
plt.figure()
plt.subplot(4, 3, 1)
plt.plot(X, young)
plt.title("""Young""")
plt.grid(True)
plt.subplot(4, 3, 2)
plt.plot(X, middle_aged)
plt.title("""Middle aged""")
plt.grid(True)
plt.subplot(4, 3, 3)
plt.plot(X, union)
plt.title("""union""")
plt.grid(True)
plt.subplot(4, 3, 4)
plt.plot(X, intersection)
plt.title("""intersection""")
plt.grid(True)
plt.subplot(4, 3, 5)
plt.plot(X, complement_a)
plt.title("""complement_a""")
plt.grid(True)
plt.subplot(4, 3, 6)
plt.plot(X, difference)
plt.title("""difference a/b""")
plt.grid(True)
plt.subplot(4, 3, 7)
plt.plot(X, alg_sum)
plt.title("""alg_sum""")
plt.grid(True)
plt.subplot(4, 3, 8)
plt.plot(X, alg_product)
plt.title("""alg_product""")
plt.grid(True)
plt.subplot(4, 3, 9)
plt.plot(X, bdd_sum)
plt.title("""bdd_sum""")
plt.grid(True)
plt.subplot(4, 3, 10)
plt.plot(X, bdd_difference)
plt.title("""bdd_difference""")
plt.grid(True)
plt.subplots_adjust(hspace=0.5)
plt.show()
| 25 |
'''simple docstring'''
lowerCAmelCase : List[str] = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase : List[str] = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 25 | 1 |
'''simple docstring'''
import random
def lowercase (_A , _A , _A = False ):
"""simple docstring"""
_lowerCAmelCase : dict = {i: [] for i in range(_A )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(_A )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(_A ):
for j in range(i + 1 , _A ):
if random.random() < probability:
graph[i].append(_A )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(_A )
return graph
def lowercase (_A ):
"""simple docstring"""
return {
i: [j for j in range(_A ) if i != j] for i in range(_A )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = [
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 | 1 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = torch.nn.Linear(10 , 10 )
_lowerCAmelCase : Any = torch.optim.SGD(model.parameters() , 0.1 )
_lowerCAmelCase : List[str] = Accelerator()
_lowerCAmelCase : int = accelerator.prepare(snake_case__ )
try:
pickle.loads(pickle.dumps(snake_case__ ) )
except Exception as e:
self.fail(F'Accelerated optimizer pickling failed with {e}' )
AcceleratorState._reset_state()
| 25 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "nat"
__magic_name__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = patch_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Tuple = embed_dim
_lowerCAmelCase : Any = depths
_lowerCAmelCase : Dict = len(snake_case__ )
_lowerCAmelCase : str = num_heads
_lowerCAmelCase : Dict = kernel_size
_lowerCAmelCase : Union[str, Any] = mlp_ratio
_lowerCAmelCase : int = qkv_bias
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = drop_path_rate
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
_lowerCAmelCase : Any = layer_scale_init_value
_lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 25 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
lowerCAmelCase : Optional[Any] = None
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : List[Any] = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
},
"""tokenizer_file""": {
"""google/bigbird-roberta-base""": (
"""https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"""
),
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : Optional[Any] = {
"""google/bigbird-roberta-base""": 40_96,
"""google/bigbird-roberta-large""": 40_96,
"""google/bigbird-base-trivia-itc""": 40_96,
}
lowerCAmelCase : str = """▁"""
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = BigBirdTokenizer
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<unk>" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="<pad>" , snake_case__="[SEP]" , snake_case__="[MASK]" , snake_case__="[CLS]" , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Dict = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token
_lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token
_lowerCAmelCase : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token
_lowerCAmelCase : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token
_lowerCAmelCase : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
_lowerCAmelCase : Tuple = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , )
_lowerCAmelCase : Optional[Any] = vocab_file
_lowerCAmelCase : Union[str, Any] = False if not self.vocab_file else True
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : List[str] = [self.sep_token_id]
_lowerCAmelCase : Any = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def a ( self , snake_case__ , snake_case__ = None , snake_case__ = False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(snake_case__ )) + [1]
return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_lowerCAmelCase : List[Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : str = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""roberta-base""": 5_12,
"""roberta-large""": 5_12,
"""roberta-large-mnli""": 5_12,
"""distilroberta-base""": 5_12,
"""roberta-base-openai-detector""": 5_12,
"""roberta-large-openai-detector""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = RobertaTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : List[Any] = add_prefix_space
_lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
_lowerCAmelCase : Union[str, Any] = 'post_processor'
_lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ )
if tokenizer_component_instance:
_lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase : Any = tuple(state['sep'] )
if "cls" in state:
_lowerCAmelCase : str = tuple(state['cls'] )
_lowerCAmelCase : List[str] = False
if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : int = add_prefix_space
_lowerCAmelCase : Tuple = True
if state.get('trim_offsets' , snake_case__ ) != trim_offsets:
_lowerCAmelCase : Union[str, Any] = trim_offsets
_lowerCAmelCase : Optional[int] = True
if changes_to_apply:
_lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) )
_lowerCAmelCase : Optional[int] = component_class(**snake_case__ )
setattr(self.backend_tokenizer , snake_case__ , snake_case__ )
@property
def a ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value
_lowerCAmelCase : Tuple = value
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase : List[str] = {
"""configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[int] = [
"""PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""PegasusXForConditionalGeneration""",
"""PegasusXModel""",
"""PegasusXPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pegasus_x import (
PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST,
PegasusXForConditionalGeneration,
PegasusXModel,
PegasusXPreTrainedModel,
)
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag.
lowerCAmelCase : Optional[int] = 1 # The second color of the flag.
lowerCAmelCase : int = 2 # The third color of the flag.
lowerCAmelCase : Any = (red, white, blue)
def lowercase (_A ):
"""simple docstring"""
if not sequence:
return []
if len(_A ) == 1:
return list(_A )
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = len(_A ) - 1
_lowerCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values'
raise ValueError(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip()
lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 25 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, ClassLabel, Features
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = field(default="audio-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
__magic_name__ = Features({"audio": Audio()} )
__magic_name__ = Features({"labels": ClassLabel} )
__magic_name__ = "audio"
__magic_name__ = "labels"
def a ( self , snake_case__ ):
'''simple docstring'''
if self.label_column not in features:
raise ValueError(F'Column {self.label_column} is not present in features.' )
if not isinstance(features[self.label_column] , snake_case__ ):
raise ValueError(F'Column {self.label_column} is not a ClassLabel.' )
_lowerCAmelCase : List[str] = copy.deepcopy(self )
_lowerCAmelCase : Tuple = self.label_schema.copy()
_lowerCAmelCase : Any = features[self.label_column]
_lowerCAmelCase : Union[str, Any] = label_schema
return task_template
@property
def a ( self ):
'''simple docstring'''
return {
self.audio_column: "audio",
self.label_column: "labels",
}
| 25 |
'''simple docstring'''
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1]
_lowerCAmelCase : int = 6
_lowerCAmelCase : Dict = 1
_lowerCAmelCase : Optional[int] = 1_9_0_1
_lowerCAmelCase : Optional[Any] = 0
while year < 2_0_0_1:
day += 7
if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
elif day > 2_9 and month == 2:
month += 1
_lowerCAmelCase : List[str] = day - 2_9
else:
if day > days_per_month[month - 1]:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
if month > 1_2:
year += 1
_lowerCAmelCase : Optional[int] = 1
if year < 2_0_0_1 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 25 | 1 |
'''simple docstring'''
import math
import sys
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = ''
try:
with open(_A , 'rb' ) as binary_file:
_lowerCAmelCase : Dict = binary_file.read()
for dat in data:
_lowerCAmelCase : Any = f'{dat:08b}'
result += curr_byte
return result
except OSError:
print('File not accessible' )
sys.exit()
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : List[str] = {'0': '0', '1': '1'}
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = '', ''
_lowerCAmelCase : Optional[Any] = len(_A )
for i in range(len(_A ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
_lowerCAmelCase : Any = lexicon[curr_string]
result += last_match_id
_lowerCAmelCase : Dict = last_match_id + '0'
if math.loga(_A ).is_integer():
_lowerCAmelCase : str = {}
for curr_key in list(_A ):
_lowerCAmelCase : Any = lexicon.pop(_A )
_lowerCAmelCase : Tuple = new_lex
_lowerCAmelCase : List[str] = last_match_id + '1'
index += 1
_lowerCAmelCase : Dict = ''
return result
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 8
try:
with open(_A , 'wb' ) as opened_file:
_lowerCAmelCase : Tuple = [
to_write[i : i + byte_length]
for i in range(0 , len(_A ) , _A )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append('10000000' )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_A , 2 ).to_bytes(1 , byteorder='big' ) )
except OSError:
print('File not accessible' )
sys.exit()
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
_lowerCAmelCase : Optional[Any] = data_bits[counter:]
_lowerCAmelCase : str = data_bits[counter + 1 :]
return data_bits
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : List[str] = read_file_binary(_A )
_lowerCAmelCase : List[str] = remove_prefix(_A )
_lowerCAmelCase : str = decompress_data(_A )
write_file_binary(_A , _A )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 25 |
'''simple docstring'''
def lowercase (_A = 1_0_0_0_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = set(range(3 , _A , 2 ) )
primes.add(2 )
for p in range(3 , _A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _A , _A ) ) )
_lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )]
for p in primes:
for n in range(_A , limit + 1 , _A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : Optional[Any] = BlipImageProcessor()
_lowerCAmelCase : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel' )
_lowerCAmelCase : str = BlipProcessor(snake_case__ , snake_case__ )
processor.save_pretrained(self.tmpdirname )
def a ( self , **snake_case__ ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer
def a ( self , **snake_case__ ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor
def a ( self ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_lowerCAmelCase : Union[str, Any] = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowerCAmelCase : Optional[Any] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowerCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 )
_lowerCAmelCase : Optional[Any] = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.get_image_processor()
_lowerCAmelCase : Tuple = self.get_tokenizer()
_lowerCAmelCase : Any = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : Dict = self.prepare_image_inputs()
_lowerCAmelCase : Tuple = image_processor(snake_case__ , return_tensors='np' )
_lowerCAmelCase : Union[str, Any] = processor(images=snake_case__ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.get_image_processor()
_lowerCAmelCase : Optional[int] = self.get_tokenizer()
_lowerCAmelCase : Optional[int] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : Any = 'lower newer'
_lowerCAmelCase : str = processor(text=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer(snake_case__ , return_token_type_ids=snake_case__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.get_image_processor()
_lowerCAmelCase : Optional[Any] = self.get_tokenizer()
_lowerCAmelCase : Union[str, Any] = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : Optional[Any] = 'lower newer'
_lowerCAmelCase : Dict = self.prepare_image_inputs()
_lowerCAmelCase : Dict = processor(text=snake_case__ , images=snake_case__ )
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
# test if it raises when no input is passed
with pytest.raises(snake_case__ ):
processor()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.get_image_processor()
_lowerCAmelCase : str = self.get_tokenizer()
_lowerCAmelCase : int = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowerCAmelCase : Tuple = processor.batch_decode(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer.batch_decode(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.get_image_processor()
_lowerCAmelCase : List[str] = self.get_tokenizer()
_lowerCAmelCase : Any = BlipProcessor(tokenizer=snake_case__ , image_processor=snake_case__ )
_lowerCAmelCase : Any = 'lower newer'
_lowerCAmelCase : str = self.prepare_image_inputs()
_lowerCAmelCase : Any = processor(text=snake_case__ , images=snake_case__ )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
| 25 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase : Tuple = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCAmelCase : str = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""")
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : int = _re_indent.search(_A )
return "" if search is None else search.groups()[0]
def lowercase (_A , _A="" , _A=None , _A=None ):
"""simple docstring"""
_lowerCAmelCase : int = 0
_lowerCAmelCase : Dict = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_A ):
index += 1
_lowerCAmelCase : Dict = ['\n'.join(lines[:index] )]
else:
_lowerCAmelCase : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : List[Any] = [lines[index]]
index += 1
while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_A ) )
if index < len(_A ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Union[str, Any] = []
else:
blocks.append('\n'.join(_A ) )
_lowerCAmelCase : List[str] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_A ) > 0:
blocks.append('\n'.join(_A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_A ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowercase (_A ):
"""simple docstring"""
def _inner(_A ):
return key(_A ).lower().replace('_' , '' )
return _inner
def lowercase (_A , _A=None ):
"""simple docstring"""
def noop(_A ):
return x
if key is None:
_lowerCAmelCase : List[Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()]
_lowerCAmelCase : Dict = ignore_underscore(_A )
return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A )
def lowercase (_A ):
"""simple docstring"""
def _replace(_A ):
_lowerCAmelCase : Dict = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]"
_lowerCAmelCase : Tuple = import_statement.split('\n' )
if len(_A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1
_lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] )
_lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : List[str] = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] )
return "\n".join(_A )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A )
return import_statement
def lowercase (_A , _A=True ):
"""simple docstring"""
with open(_A , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Tuple = split_code_in_indented_blocks(
_A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : Tuple = main_blocks[block_idx]
_lowerCAmelCase : int = block.split('\n' )
# Get to the start of the imports.
_lowerCAmelCase : Tuple = 0
while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Dict = len(_A )
else:
line_idx += 1
if line_idx >= len(_A ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None]
_lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[Any] = []
for i in range(len(_A ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(_A )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(_A ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_A , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_A ) )
def lowercase (_A=True ):
"""simple docstring"""
_lowerCAmelCase : int = []
for root, _, files in os.walk(_A ):
if "__init__.py" in files:
_lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A )
if result:
_lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )]
if len(_A ) > 0:
raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCAmelCase : List[str] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 25 | 1 |
'''simple docstring'''
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
lowerCAmelCase : str = random.Random()
if is_torch_available():
import torch
def lowercase (_A , _A=1.0 , _A=None , _A=None ):
"""simple docstring"""
if rng is None:
_lowerCAmelCase : List[Any] = global_rng
_lowerCAmelCase : int = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__=7 , snake_case__=400 , snake_case__=2000 , snake_case__=1 , snake_case__=0.0 , snake_case__=1_6000 , snake_case__=True , snake_case__=True , ):
'''simple docstring'''
_lowerCAmelCase : Tuple = parent
_lowerCAmelCase : Tuple = batch_size
_lowerCAmelCase : str = min_seq_length
_lowerCAmelCase : Any = max_seq_length
_lowerCAmelCase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
_lowerCAmelCase : Tuple = feature_size
_lowerCAmelCase : Union[str, Any] = padding_value
_lowerCAmelCase : Dict = sampling_rate
_lowerCAmelCase : Dict = return_attention_mask
_lowerCAmelCase : str = do_normalize
def a ( self ):
'''simple docstring'''
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def a ( self , snake_case__=False , snake_case__=False ):
'''simple docstring'''
def _flatten(snake_case__ ):
return list(itertools.chain(*snake_case__ ) )
if equal_length:
_lowerCAmelCase : Any = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
_lowerCAmelCase : Any = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
_lowerCAmelCase : str = [np.asarray(snake_case__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = ASTFeatureExtractor
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ASTFeatureExtractionTester(self )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
_lowerCAmelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
_lowerCAmelCase : Optional[int] = [np.asarray(snake_case__ ) for speech_input in speech_inputs]
# Test not batched input
_lowerCAmelCase : str = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values
_lowerCAmelCase : List[str] = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values
self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
# Test batched
_lowerCAmelCase : str = feat_extract(snake_case__ , padding=snake_case__ , return_tensors='np' ).input_values
_lowerCAmelCase : List[Any] = feat_extract(snake_case__ , padding=snake_case__ , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ):
self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
_lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)]
_lowerCAmelCase : Any = np.asarray(snake_case__ )
_lowerCAmelCase : Optional[Any] = feat_extract(snake_case__ , return_tensors='np' ).input_values
_lowerCAmelCase : str = feat_extract(snake_case__ , return_tensors='np' ).input_values
for enc_seq_a, enc_seq_a in zip(snake_case__ , snake_case__ ):
self.assertTrue(np.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
@require_torch
def a ( self ):
'''simple docstring'''
import torch
_lowerCAmelCase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
_lowerCAmelCase : str = np.random.rand(100 ).astype(np.floataa )
_lowerCAmelCase : Optional[int] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
_lowerCAmelCase : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
_lowerCAmelCase : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def a ( self , snake_case__ ):
'''simple docstring'''
from datasets import load_dataset
_lowerCAmelCase : Any = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
_lowerCAmelCase : Union[str, Any] = ds.sort('id' ).select(range(snake_case__ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = torch.tensor(
[-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776,
-1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133,
-1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936,
-0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] )
# fmt: on
_lowerCAmelCase : List[Any] = self._load_datasamples(1 )
_lowerCAmelCase : Dict = ASTFeatureExtractor()
_lowerCAmelCase : str = feature_extractor(snake_case__ , return_tensors='pt' ).input_values
self.assertEquals(input_values.shape , (1, 1024, 128) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , snake_case__ , atol=1E-4 ) )
| 25 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25 | 1 |
'''simple docstring'''
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase : Optional[int] = 'pt'
_lowerCAmelCase : Tuple = 'tf'
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'mock_framework'
# Framework provided - return whatever the user provides
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase : Any = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase : int = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase : str = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
| 25 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def lowercase (_A ):
"""simple docstring"""
if not postfix_notation:
return 0
_lowerCAmelCase : int = {'+', '-', '*', '/'}
_lowerCAmelCase : list[Any] = []
for token in postfix_notation:
if token in operations:
_lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_A ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
lowerCAmelCase : Optional[int] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Optional[Any] = {
"""vocab_file""": {
"""google/electra-small-generator""": (
"""https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt"""
),
"""google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""",
"""google/electra-large-generator""": (
"""https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt"""
),
"""google/electra-small-discriminator""": (
"""https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt"""
),
"""google/electra-base-discriminator""": (
"""https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt"""
),
"""google/electra-large-discriminator""": (
"""https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt"""
),
},
"""tokenizer_file""": {
"""google/electra-small-generator""": (
"""https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json"""
),
"""google/electra-base-generator""": (
"""https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json"""
),
"""google/electra-large-generator""": (
"""https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json"""
),
"""google/electra-small-discriminator""": (
"""https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json"""
),
"""google/electra-base-discriminator""": (
"""https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json"""
),
"""google/electra-large-discriminator""": (
"""https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[Any] = {
"""google/electra-small-generator""": 5_12,
"""google/electra-base-generator""": 5_12,
"""google/electra-large-generator""": 5_12,
"""google/electra-small-discriminator""": 5_12,
"""google/electra-base-discriminator""": 5_12,
"""google/electra-large-discriminator""": 5_12,
}
lowerCAmelCase : Dict = {
"""google/electra-small-generator""": {"""do_lower_case""": True},
"""google/electra-base-generator""": {"""do_lower_case""": True},
"""google/electra-large-generator""": {"""do_lower_case""": True},
"""google/electra-small-discriminator""": {"""do_lower_case""": True},
"""google/electra-base-discriminator""": {"""do_lower_case""": True},
"""google/electra-large-discriminator""": {"""do_lower_case""": True},
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_INIT_CONFIGURATION
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ElectraTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=True , snake_case__="[UNK]" , snake_case__="[SEP]" , snake_case__="[PAD]" , snake_case__="[CLS]" , snake_case__="[MASK]" , snake_case__=True , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , tokenize_chinese_chars=snake_case__ , strip_accents=snake_case__ , **snake_case__ , )
_lowerCAmelCase : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , snake_case__ ) != do_lower_case
or normalizer_state.get('strip_accents' , snake_case__ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , snake_case__ ) != tokenize_chinese_chars
):
_lowerCAmelCase : Tuple = getattr(snake_case__ , normalizer_state.pop('type' ) )
_lowerCAmelCase : List[Any] = do_lower_case
_lowerCAmelCase : List[Any] = strip_accents
_lowerCAmelCase : Union[str, Any] = tokenize_chinese_chars
_lowerCAmelCase : Optional[int] = normalizer_class(**snake_case__ )
_lowerCAmelCase : List[Any] = do_lower_case
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = [self.sep_token_id]
_lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : Any = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
| 25 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] = {
"""google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""",
"""google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""",
"""google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mobilenet_v2"
def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.' )
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Union[str, Any] = image_size
_lowerCAmelCase : List[Any] = depth_multiplier
_lowerCAmelCase : List[Any] = depth_divisible_by
_lowerCAmelCase : Optional[Any] = min_depth
_lowerCAmelCase : str = expand_ratio
_lowerCAmelCase : str = output_stride
_lowerCAmelCase : Any = first_layer_is_expansion
_lowerCAmelCase : int = finegrained_output
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : List[str] = tf_padding
_lowerCAmelCase : Optional[int] = classifier_dropout_prob
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Optional[int] = layer_norm_eps
_lowerCAmelCase : str = semantic_loss_ignore_index
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = version.parse("1.11" )
@property
def a ( self ):
'''simple docstring'''
return OrderedDict([('pixel_values', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})] )
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
return 1E-4
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def lowercase (_A , _A , _A , _A , _A ):
"""simple docstring"""
if depth < 0:
raise ValueError('Depth cannot be less than 0' )
if len(_A ) == 0:
raise ValueError('Scores cannot be empty' )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , )
return min(
minimax(depth + 1 , node_index * 2 , _A , _A , _A ) , minimax(depth + 1 , node_index * 2 + 1 , _A , _A , _A ) , )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[Any] = [9_0, 2_3, 6, 3_3, 2_1, 6_5, 1_2_3, 3_4_4_2_3]
_lowerCAmelCase : Optional[int] = math.log(len(_A ) , 2 )
print('Optimal value : ' , end='' )
print(minimax(0 , 0 , _A , _A , _A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 25 |
'''simple docstring'''
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase : Optional[int] = 'pt'
_lowerCAmelCase : Tuple = 'tf'
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'mock_framework'
# Framework provided - return whatever the user provides
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase : Any = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase : int = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase : str = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
lowerCAmelCase : int = {
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Any = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""facebook/nllb-large-en-ro""": 10_24,
"""facebook/nllb-200-distilled-600M""": 10_24,
}
# fmt: off
lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = NllbTokenizer
__magic_name__ = []
__magic_name__ = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
_lowerCAmelCase : Dict = legacy_behaviour
super().__init__(
vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : int = False if not self.vocab_file else True
_lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_lowerCAmelCase : Any = {
lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn'
_lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang )
_lowerCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def a ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_lowerCAmelCase : Optional[Any] = src_lang
_lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ )
_lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ )
_lowerCAmelCase : Optional[Any] = tgt_lang_id
return inputs
def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[str] = src_lang
_lowerCAmelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ )
def a ( self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def a ( self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : Dict = []
_lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : int = [self.eos_token_id]
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : int = []
_lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : List[str] = [self.eos_token_id]
_lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : str = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory.' )
return
_lowerCAmelCase : Union[str, Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = ["image_processor", "tokenizer"]
__magic_name__ = "LayoutLMv2ImageProcessor"
__magic_name__ = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast")
def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ):
'''simple docstring'''
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , snake_case__ , )
_lowerCAmelCase : Union[str, Any] = kwargs.pop('feature_extractor' )
_lowerCAmelCase : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(snake_case__ , snake_case__ )
def __call__( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = True , snake_case__ = False , snake_case__ = None , snake_case__ = None , snake_case__ = 0 , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = False , snake_case__ = True , snake_case__ = None , **snake_case__ , ):
'''simple docstring'''
if self.image_processor.apply_ocr and (boxes is not None):
raise ValueError(
'You cannot provide bounding boxes '
'if you initialized the image processor with apply_ocr set to True.' )
if self.image_processor.apply_ocr and (word_labels is not None):
raise ValueError(
'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.' )
if return_overflowing_tokens is True and return_offsets_mapping is False:
raise ValueError('You cannot return overflowing tokens without returning the offsets mapping.' )
# first, apply the image processor
_lowerCAmelCase : Union[str, Any] = self.image_processor(images=snake_case__ , return_tensors=snake_case__ )
# second, apply the tokenizer
if text is not None and self.image_processor.apply_ocr and text_pair is None:
if isinstance(snake_case__ , snake_case__ ):
_lowerCAmelCase : Any = [text] # add batch dimension (as the image processor always adds a batch dimension)
_lowerCAmelCase : Dict = features['words']
_lowerCAmelCase : str = self.tokenizer(
text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_token_type_ids=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , )
# add pixel values
_lowerCAmelCase : Optional[Any] = features.pop('pixel_values' )
if return_overflowing_tokens is True:
_lowerCAmelCase : Union[str, Any] = self.get_overflowing_images(snake_case__ , encoded_inputs['overflow_to_sample_mapping'] )
_lowerCAmelCase : int = images
return encoded_inputs
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = []
for sample_idx in overflow_to_sample_mapping:
images_with_overflow.append(images[sample_idx] )
if len(snake_case__ ) != len(snake_case__ ):
raise ValueError(
'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got'
F' {len(snake_case__ )} and {len(snake_case__ )}' )
return images_with_overflow
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
return self.tokenizer.decode(*snake_case__ , **snake_case__ )
@property
def a ( self ):
'''simple docstring'''
return ["input_ids", "bbox", "attention_mask", "image"]
@property
def a ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , snake_case__ , )
return self.image_processor_class
@property
def a ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , snake_case__ , )
return self.image_processor
| 25 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCAmelCase : List[str] = [
"""kernels/rwkv/wkv_cuda.cu""",
"""kernels/rwkv/wkv_op.cpp""",
"""kernels/deformable_detr/ms_deform_attn.h""",
"""kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""",
"""models/graphormer/algos_graphormer.pyx""",
]
def lowercase (_A ):
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""")
lowerCAmelCase : Dict = parser.parse_args()
if args.check_lib:
lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""")
lowerCAmelCase : int = Path(transformers_module.__file__).parent
else:
lowerCAmelCase : int = Path.cwd() / """build/lib/transformers"""
if not test_custom_files_are_present(transformers_path):
raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
| 25 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.plbart.modeling_plbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 5_00_03
lowerCAmelCase : Optional[Any] = 5_00_02
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = PLBartTokenizer
__magic_name__ = None
__magic_name__ = False
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : Optional[int] = PLBartTokenizer(snake_case__ , language_codes='base' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = PLBartTokenizer(snake_case__ , language_codes='base' , keep_accents=snake_case__ )
_lowerCAmelCase : Dict = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
_lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
_lowerCAmelCase : str = tokenizer.vocab_size
_lowerCAmelCase : Tuple = [tokenizer.convert_ids_to_tokens(snake_case__ ) for x in range(end - 4 , snake_case__ )]
self.assertListEqual(snake_case__ , ['__java__', '__python__', '__en_XX__', '<mask>'] )
_lowerCAmelCase : Optional[int] = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'
_lowerCAmelCase : List[Any] = tokenizer(snake_case__ ).input_ids
self.assertEqual(
tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) , snake_case__ , )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = PLBartTokenizer(snake_case__ , language_codes='multi' , keep_accents=snake_case__ )
_lowerCAmelCase : List[Any] = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : List[Any] = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
_lowerCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Any = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'<unk>',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'<unk>',
'.',
] , )
_lowerCAmelCase : Any = tokenizer.vocab_size
_lowerCAmelCase : int = [tokenizer.convert_ids_to_tokens(snake_case__ ) for x in range(end - 7 , snake_case__ )]
self.assertListEqual(
snake_case__ , ['__java__', '__python__', '__en_XX__', '__javascript__', '__php__', '__ruby__', '__go__'] )
_lowerCAmelCase : List[str] = 'java.lang.Exception, python.lang.Exception, javascript, php, ruby, go'
_lowerCAmelCase : str = tokenizer(snake_case__ ).input_ids
self.assertEqual(
tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) , snake_case__ , )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "uclanlp/plbart-python-en_XX"
__magic_name__ = [
"def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])",
"def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])",
]
__magic_name__ = [
"Returns the maximum value of a b c.",
"Sums the values of a b c.",
]
__magic_name__ = [
1_3_4,
5_4_5_2,
3_3_4_6_0,
3_3_4_4_1,
3_3_4_6_3,
3_3_4_6_5,
3_3_4_6_3,
3_3_4_4_9,
9_8_8,
2_0,
3_3_4_5_6,
1_9,
3_3_4_5_6,
7_7_1,
3_9,
4_2_5_8,
8_8_9,
3_3_1_8,
3_3_4_4_1,
3_3_4_6_3,
3_3_4_6_5,
3_3_4_6_3,
3_3_4_4_9,
2_4_7_1,
2,
PYTHON_CODE,
]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : PLBartTokenizer = PLBartTokenizer.from_pretrained(
cls.checkpoint_name , language_codes='base' , src_lang='python' , tgt_lang='en_XX' )
_lowerCAmelCase : Optional[int] = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__java__'] , 5_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__python__'] , 5_0002 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['__en_XX__'] , 5_0003 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [EN_CODE, 9037, 3_3442, 57, 752, 153, 14, 56, 18, 9, 2]
_lowerCAmelCase : Optional[Any] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])' * 20]
self.assertIsInstance(src_text[0] , snake_case__ )
_lowerCAmelCase : int = 10
_lowerCAmelCase : str = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , snake_case__ )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', '__java__'] ) , [5_0004, 5_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : str = PLBartTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Union[str, Any] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] )
self.assertEqual(batch.decoder_input_ids[1][0] , snake_case__ )
self.assertEqual(batch.decoder_input_ids[1][-1] , 2 )
self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : List[str] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 26) , batch.input_ids.shape )
self.assertEqual((2, 26) , batch.attention_mask.shape )
_lowerCAmelCase : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : int = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : Optional[Any] = targets['input_ids']
_lowerCAmelCase : Optional[int] = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='java' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# A, test, EOS, en_XX
'input_ids': [[150, 242, 2, 5_0003]],
'attention_mask': [[1, 1, 1, 1]],
# java
'forced_bos_token_id': 5_0001,
} , )
| 25 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_lowerCAmelCase : List[str] = ''
_lowerCAmelCase : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_A ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
_lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )]
# for each character in new_string find corresponding palindromic string
_lowerCAmelCase : Any = 0
for j in range(len(_A ) ):
_lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_A )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_lowerCAmelCase : List[str] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741
_lowerCAmelCase : int = j + k - 1
# update max_length and start position
if max_length < length[j]:
_lowerCAmelCase : Dict = length[j]
_lowerCAmelCase : Optional[int] = j
# create that string
_lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_lowerCAmelCase : List[str] = ''
_lowerCAmelCase : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_A ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
_lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )]
# for each character in new_string find corresponding palindromic string
_lowerCAmelCase : Any = 0
for j in range(len(_A ) ):
_lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_A )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_lowerCAmelCase : List[str] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741
_lowerCAmelCase : int = j + k - 1
# update max_length and start position
if max_length < length[j]:
_lowerCAmelCase : Dict = length[j]
_lowerCAmelCase : Optional[int] = j
# create that string
_lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
__magic_name__ = 3.0
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , snake_case__ )
@require_multi_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : List[str] = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : List[Any] = """"""
lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 | 1 |
'''simple docstring'''
def lowercase (_A = 1_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = 2**power
_lowerCAmelCase : str = str(_A )
_lowerCAmelCase : str = list(_A )
_lowerCAmelCase : Tuple = 0
for i in list_num:
sum_of_num += int(_A )
return sum_of_num
if __name__ == "__main__":
lowerCAmelCase : List[str] = int(input("""Enter the power of 2: """).strip())
print("""2 ^ """, power, """ = """, 2**power)
lowerCAmelCase : Optional[int] = solution(power)
print("""Sum of the digits is: """, result)
| 25 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "trajectory_transformer"
__magic_name__ = ["past_key_values"]
__magic_name__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = action_weight
_lowerCAmelCase : Optional[int] = reward_weight
_lowerCAmelCase : Union[str, Any] = value_weight
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Tuple = block_size
_lowerCAmelCase : List[Any] = action_dim
_lowerCAmelCase : List[Any] = observation_dim
_lowerCAmelCase : Union[str, Any] = transition_dim
_lowerCAmelCase : Tuple = learning_rate
_lowerCAmelCase : int = n_layer
_lowerCAmelCase : Any = n_head
_lowerCAmelCase : Tuple = n_embd
_lowerCAmelCase : Optional[Any] = embd_pdrop
_lowerCAmelCase : Union[str, Any] = attn_pdrop
_lowerCAmelCase : Any = resid_pdrop
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : List[Any] = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = kaiming_initializer_range
_lowerCAmelCase : List[Any] = use_cache
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
| 25 | 1 |
'''simple docstring'''
from string import ascii_lowercase, ascii_uppercase
def lowercase (_A ):
"""simple docstring"""
if not sentence:
return ""
_lowerCAmelCase : str = dict(zip(_A , _A ) )
return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 25 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 25_00_04
lowerCAmelCase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = '<s>'
_lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(snake_case__ ) , 1054 )
def a ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
_lowerCAmelCase : Any = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def a ( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "facebook/mbart-large-50-one-to-many-mmt"
__magic_name__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__magic_name__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
_lowerCAmelCase : Dict = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , snake_case__ )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[0] , snake_case__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : List[Any] = targets['input_ids']
_lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_0004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_0001,
} , )
| 25 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : List[str] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
"""kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""",
"""kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""",
"""kssteven/ibert-roberta-large-mnli""": (
"""https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"""
),
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "ibert"
def __init__( self , snake_case__=3_0522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=False , snake_case__="none" , **snake_case__ , ):
'''simple docstring'''
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[int] = vocab_size
_lowerCAmelCase : Union[str, Any] = hidden_size
_lowerCAmelCase : Optional[Any] = num_hidden_layers
_lowerCAmelCase : int = num_attention_heads
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : List[Any] = intermediate_size
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : int = attention_probs_dropout_prob
_lowerCAmelCase : str = max_position_embeddings
_lowerCAmelCase : List[str] = type_vocab_size
_lowerCAmelCase : Optional[int] = initializer_range
_lowerCAmelCase : str = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = position_embedding_type
_lowerCAmelCase : Tuple = quant_mode
_lowerCAmelCase : int = force_dequant
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@property
def a ( self ):
'''simple docstring'''
if self.task == "multiple-choice":
_lowerCAmelCase : str = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
_lowerCAmelCase : Optional[int] = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 25 |
'''simple docstring'''
from math import isqrt
def lowercase (_A ):
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) )
def lowercase (_A = 1_0**6 ):
"""simple docstring"""
_lowerCAmelCase : str = 0
_lowerCAmelCase : str = 1
_lowerCAmelCase : List[str] = 7
while prime_candidate < max_prime:
primes_count += is_prime(_A )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
lowerCAmelCase : Tuple = logging.get_logger(__name__)
@add_end_docstrings(SCREAMING_SNAKE_CASE_ )
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __init__( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
super().__init__(*snake_case__ , **snake_case__ )
requires_backends(self , 'vision' )
self.check_model_type(snake_case__ )
def __call__( self , snake_case__ , **snake_case__ ):
'''simple docstring'''
return super().__call__(snake_case__ , **snake_case__ )
def a ( self , **snake_case__ ):
'''simple docstring'''
return {}, {}, {}
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = load_image(snake_case__ )
_lowerCAmelCase : Optional[int] = image.size
_lowerCAmelCase : Union[str, Any] = self.image_processor(images=snake_case__ , return_tensors=self.framework )
return model_inputs
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.model(**snake_case__ )
return model_outputs
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = model_outputs.predicted_depth
_lowerCAmelCase : Union[str, Any] = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=snake_case__ )
_lowerCAmelCase : Dict = prediction.squeeze().cpu().numpy()
_lowerCAmelCase : Union[str, Any] = (output * 255 / np.max(snake_case__ )).astype('uint8' )
_lowerCAmelCase : Union[str, Any] = Image.fromarray(snake_case__ )
_lowerCAmelCase : List[str] = {}
_lowerCAmelCase : Tuple = predicted_depth
_lowerCAmelCase : Union[str, Any] = depth
return output_dict
| 25 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mvp"
__magic_name__ = ["past_key_values"]
__magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Optional[Any] = d_model
_lowerCAmelCase : Optional[int] = encoder_ffn_dim
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = encoder_attention_heads
_lowerCAmelCase : Any = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Union[str, Any] = dropout
_lowerCAmelCase : List[Any] = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : Any = init_std
_lowerCAmelCase : Any = encoder_layerdrop
_lowerCAmelCase : Union[str, Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = classifier_dropout
_lowerCAmelCase : List[Any] = use_cache
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase : Optional[Any] = use_prompt
_lowerCAmelCase : Optional[Any] = prompt_length
_lowerCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ):
_lowerCAmelCase : Any = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 25 | 1 |
'''simple docstring'''
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : List[str] = []
if isinstance(_A , _A ):
for v in tree.values():
shapes.extend(_fetch_dims(_A ) )
elif isinstance(_A , (list, tuple) ):
for t in tree:
shapes.extend(_fetch_dims(_A ) )
elif isinstance(_A , torch.Tensor ):
shapes.append(tree.shape )
else:
raise ValueError('Not supported' )
return shapes
@torch.jit.ignore
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = []
for d in reversed(_A ):
idx.append(flat_idx % d )
_lowerCAmelCase : Optional[Any] = flat_idx // d
return tuple(reversed(_A ) )
@torch.jit.ignore
def lowercase (_A , _A , _A , _A = None , _A = None , ):
"""simple docstring"""
def reduce_edge_list(_A ) -> None:
_lowerCAmelCase : Optional[Any] = True
for i in range(len(_A ) ):
_lowerCAmelCase : Union[str, Any] = -1 * (i + 1)
l[reversed_idx] &= tally
_lowerCAmelCase : Union[str, Any] = l[reversed_idx]
if start_edges is None:
_lowerCAmelCase : int = [s == 0 for s in start]
reduce_edge_list(_A )
if end_edges is None:
_lowerCAmelCase : Union[str, Any] = [e == (d - 1) for e, d in zip(_A , _A )]
reduce_edge_list(_A )
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(_A ) == 0:
return [()]
elif len(_A ) == 1:
return [(slice(start[0] , end[0] + 1 ),)]
_lowerCAmelCase : List[Tuple[slice, ...]] = []
_lowerCAmelCase : List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(_A , _A ):
if s == e:
path_list.append(slice(_A , s + 1 ) )
else:
break
_lowerCAmelCase : Tuple[slice, ...] = tuple(_A )
_lowerCAmelCase : List[Any] = len(_A )
# start == end, and we're done
if divergence_idx == len(_A ):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
_lowerCAmelCase : Tuple = start[divergence_idx]
return tuple(
path + (slice(_A , sdi + 1 ),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) )
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
_lowerCAmelCase : Tuple = end[divergence_idx]
return tuple(
path + (slice(_A , edi + 1 ),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) )
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) )
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) )
slices.extend(lower() )
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper() )
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) )
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper() )
_lowerCAmelCase : Tuple = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) )
slices.extend(lower() )
return slices
@torch.jit.ignore
def lowercase (_A , _A , _A , _A ):
"""simple docstring"""
_lowerCAmelCase : Any = t.shape[:no_batch_dims]
_lowerCAmelCase : Dict = list(_flat_idx_to_idx(_A , _A ) )
# _get_minimal_slice_set is inclusive
_lowerCAmelCase : Any = list(_flat_idx_to_idx(flat_end - 1 , _A ) )
# Get an ordered list of slices to perform
_lowerCAmelCase : str = _get_minimal_slice_set(
_A , _A , _A , )
_lowerCAmelCase : str = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] )
def lowercase (_A , _A , _A , _A , _A = False , _A = None , _A = False , ):
"""simple docstring"""
if not (len(_A ) > 0):
raise ValueError('Must provide at least one input' )
_lowerCAmelCase : Dict = [shape[:no_batch_dims] for shape in _fetch_dims(_A )]
_lowerCAmelCase : List[Any] = tuple([max(_A ) for s in zip(*_A )] )
def _prep_inputs(_A ) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims] ) == no_batch_dims:
_lowerCAmelCase : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
_lowerCAmelCase : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:] )
else:
_lowerCAmelCase : List[str] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
return t
_lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_prep_inputs , _A )
_lowerCAmelCase : Any = None
if _out is not None:
_lowerCAmelCase : Union[str, Any] = tensor_tree_map(lambda _A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out )
_lowerCAmelCase : Any = 1
for d in orig_batch_dims:
flat_batch_dim *= d
_lowerCAmelCase : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(_A ) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Optional[int] = prepped_outputs
for _ in range(_A ):
# Chunk the input
if not low_mem:
_lowerCAmelCase : Union[str, Any] = _select_chunk
else:
_lowerCAmelCase : str = partial(
_chunk_slice , flat_start=_A , flat_end=min(_A , i + chunk_size ) , no_batch_dims=len(_A ) , )
_lowerCAmelCase : Dict[str, Any] = tensor_tree_map(_A , _A )
# Run the layer on the chunk
_lowerCAmelCase : Optional[int] = layer(**_A )
# Allocate space for the output
if out is None:
_lowerCAmelCase : List[Any] = tensor_tree_map(lambda _A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _A )
# Put the chunk in its pre-allocated space
if isinstance(_A , _A ):
def assign(_A , _A ) -> None:
for k, v in da.items():
if isinstance(_A , _A ):
assign(_A , da[k] )
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
_lowerCAmelCase : Any = da[k]
assign(_A , _A )
elif isinstance(_A , _A ):
for xa, xa in zip(_A , _A ):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
_lowerCAmelCase : Optional[int] = xa
elif isinstance(_A , torch.Tensor ):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
_lowerCAmelCase : int = output_chunk
else:
raise ValueError('Not supported' )
i += chunk_size
_lowerCAmelCase : List[Any] = tensor_tree_map(lambda _A : t.view(orig_batch_dims + t.shape[1:] ) , _A )
return out
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ = 512 , ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = max_chunk_size
_lowerCAmelCase : Optional[int] = None
_lowerCAmelCase : Optional[tuple] = None
def a ( self , snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
logging.info('Tuning chunk size...' )
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
_lowerCAmelCase : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )]
_lowerCAmelCase : str = [c for c in candidates if c > min_chunk_size]
_lowerCAmelCase : Optional[Any] = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(snake_case__ ) -> bool:
try:
with torch.no_grad():
fn(*snake_case__ , chunk_size=snake_case__ )
return True
except RuntimeError:
return False
_lowerCAmelCase : int = 0
_lowerCAmelCase : int = len(snake_case__ ) - 1
while i > min_viable_chunk_size_index:
_lowerCAmelCase : Optional[Any] = test_chunk_size(candidates[i] )
if not viable:
_lowerCAmelCase : Optional[int] = (min_viable_chunk_size_index + i) // 2
else:
_lowerCAmelCase : List[str] = i
_lowerCAmelCase : Optional[Any] = (i + len(snake_case__ ) - 1) // 2
return candidates[min_viable_chunk_size_index]
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = True
for aa, aa in zip(snake_case__ , snake_case__ ):
assert type(snake_case__ ) == type(snake_case__ )
if isinstance(snake_case__ , (list, tuple) ):
consistent &= self._compare_arg_caches(snake_case__ , snake_case__ )
elif isinstance(snake_case__ , snake_case__ ):
_lowerCAmelCase : List[Any] = [v for _, v in sorted(aa.items() , key=lambda snake_case__ : x[0] )]
_lowerCAmelCase : Optional[int] = [v for _, v in sorted(aa.items() , key=lambda snake_case__ : x[0] )]
consistent &= self._compare_arg_caches(snake_case__ , snake_case__ )
else:
consistent &= aa == aa
return consistent
def a ( self , snake_case__ , snake_case__ , snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Dict = True
_lowerCAmelCase : tuple = tree_map(lambda snake_case__ : a.shape if isinstance(snake_case__ , torch.Tensor ) else a , snake_case__ , snake_case__ )
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data ) == len(snake_case__ )
_lowerCAmelCase : Any = self._compare_arg_caches(self.cached_arg_data , snake_case__ )
else:
# Otherwise, we can reuse the precomputed value
_lowerCAmelCase : str = False
if not consistent:
_lowerCAmelCase : int = self._determine_favorable_chunk_size(
snake_case__ , snake_case__ , snake_case__ , )
_lowerCAmelCase : List[str] = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 25 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
lowerCAmelCase : str = None
lowerCAmelCase : Optional[int] = {
"""7B""": 1_10_08,
"""13B""": 1_38_24,
"""30B""": 1_79_20,
"""65B""": 2_20_16,
"""70B""": 2_86_72,
}
lowerCAmelCase : Optional[int] = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowercase (_A , _A=1 , _A=2_5_6 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase (_A ):
"""simple docstring"""
with open(_A , 'r' ) as f:
return json.load(_A )
def lowercase (_A , _A ):
"""simple docstring"""
with open(_A , 'w' ) as f:
json.dump(_A , _A )
def lowercase (_A , _A , _A , _A=True ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' )
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) )
_lowerCAmelCase : List[str] = NUM_SHARDS[model_size]
_lowerCAmelCase : str = params['n_layers']
_lowerCAmelCase : Optional[int] = params['n_heads']
_lowerCAmelCase : int = n_heads // num_shards
_lowerCAmelCase : Optional[int] = params['dim']
_lowerCAmelCase : Union[str, Any] = dim // n_heads
_lowerCAmelCase : Union[str, Any] = 10_000.0
_lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA
_lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase : Optional[int] = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase : Union[str, Any] = n_heads
_lowerCAmelCase : Any = n_heads_per_shard
_lowerCAmelCase : Optional[Any] = dim
# permute for sliced rotary
def permute(_A , _A=n_heads , _A=dim , _A=dim ):
return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
_lowerCAmelCase : List[Any] = [
torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' )
for i in range(_A )
]
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Union[str, Any] = {'weight_map': {}}
for layer_i in range(_A ):
_lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase : List[str] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) )
_lowerCAmelCase : Optional[int] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , )
_lowerCAmelCase : Dict = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A )
_lowerCAmelCase : Dict = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : Tuple = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : int = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase : Optional[Any] = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
_lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : List[str] = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
_lowerCAmelCase : List[str] = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase : int = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
# Write configs
_lowerCAmelCase : Tuple = {'total_size': param_count * 2}
write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) )
_lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
_lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6
_lowerCAmelCase : List[Any] = LlamaConfig(
hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , )
config.save_pretrained(_A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
_lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(_A , safe_serialization=_A )
shutil.rmtree(_A )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase : List[Any] = tokenizer_class(_A )
tokenizer.save_pretrained(_A )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' )
_lowerCAmelCase : Any = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , _A )
if __name__ == "__main__":
main()
| 25 | 1 |
'''simple docstring'''
from typing import Dict
from .base import GenericTensor, Pipeline
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ):
'''simple docstring'''
if tokenize_kwargs is None:
_lowerCAmelCase : Tuple = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' )
_lowerCAmelCase : Tuple = truncation
_lowerCAmelCase : int = tokenize_kwargs
_lowerCAmelCase : Any = {}
if return_tensors is not None:
_lowerCAmelCase : Any = return_tensors
return preprocess_params, {}, postprocess_params
def a ( self , snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = self.framework
_lowerCAmelCase : List[str] = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ )
return model_inputs
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.model(**snake_case__ )
return model_outputs
def a ( self , snake_case__ , snake_case__=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
return super().__call__(*snake_case__ , **snake_case__ )
| 25 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = 1
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
def a ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 25 | 1 |
'''simple docstring'''
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Tuple = {
"""vocab_file""": {
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""",
},
"""merges_file""": {
"""Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""Salesforce/codegen-350M-mono""": (
"""https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : int = {
"""Salesforce/codegen-350M-mono""": 20_48,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = CodeGenTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__="<|endoftext|>" , snake_case__=False , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , unk_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , add_prefix_space=snake_case__ , **snake_case__ , )
if kwargs.pop('add_bos_token' , snake_case__ ):
_lowerCAmelCase : int = kwargs.pop('name_or_path' , '' )
raise ValueError(
'Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.'
'Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n'
F'`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n'
F'`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n'
'This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.'
' so that the fast tokenizer works correctly.' )
_lowerCAmelCase : int = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Union[str, Any] = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : Any = add_prefix_space
_lowerCAmelCase : List[Any] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : int = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : Any = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__ = False , snake_case__ = None , snake_case__ = None , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = super().decode(
token_ids=snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ , **snake_case__ , )
if truncate_before_pattern is not None and len(snake_case__ ) > 0:
_lowerCAmelCase : Tuple = self.truncate(snake_case__ , snake_case__ )
return decoded_text
def a ( self , snake_case__ , snake_case__ ):
'''simple docstring'''
def find_re(snake_case__ , snake_case__ , snake_case__ ):
_lowerCAmelCase : Any = pattern.search(snake_case__ , snake_case__ )
return m.start() if m else -1
_lowerCAmelCase : Any = [re.compile(snake_case__ , re.MULTILINE ) for pattern in truncate_before_pattern]
_lowerCAmelCase : Union[str, Any] = list(re.finditer('^print' , snake_case__ , re.MULTILINE ) )
if len(snake_case__ ) > 1:
_lowerCAmelCase : Optional[int] = completion[: prints[1].start()]
_lowerCAmelCase : int = list(re.finditer('^def' , snake_case__ , re.MULTILINE ) )
if len(snake_case__ ) > 1:
_lowerCAmelCase : Dict = completion[: defs[1].start()]
_lowerCAmelCase : Any = 0
_lowerCAmelCase : int = [
pos for pos in [find_re(snake_case__ , snake_case__ , snake_case__ ) for terminal in terminals] if pos != -1
]
if len(snake_case__ ) > 0:
return completion[: min(snake_case__ )]
else:
return completion
| 25 |
'''simple docstring'''
lowerCAmelCase : List[str] = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase : List[str] = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 25 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : List[Any] = ArgumentParser(
description=(
'PyTorch TPU distributed training launch '
'helper utility that will spawn up '
'multiple distributed processes'
) )
# Optional arguments for the launch helper
parser.add_argument('--num_cores' , type=_A , default=1 , help='Number of TPU cores to use (1 or 8).' )
# positional
parser.add_argument(
'training_script' , type=_A , help=(
'The full path to the single TPU training '
'program/script to be launched in parallel, '
'followed by all the arguments for the '
'training script'
) , )
# rest from the training program
parser.add_argument('training_script_args' , nargs=_A )
return parser.parse_args()
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Tuple = parse_args()
# Import training_script as a module.
_lowerCAmelCase : List[str] = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowerCAmelCase : int = script_fpath.stem
_lowerCAmelCase : List[Any] = importlib.import_module(_A )
# Patch sys.argv
_lowerCAmelCase : Optional[int] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )]
xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 25 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = [
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
lowerCAmelCase : Tuple = None
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Optional[int] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Union[str, Any] = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
},
"""tokenizer_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""",
},
}
lowerCAmelCase : Optional[int] = {
"""camembert-base""": 5_12,
}
lowerCAmelCase : Tuple = """▁"""
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = CamembertTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=["<s>NOTUSED", "</s>NOTUSED"] , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
super().__init__(
snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , )
_lowerCAmelCase : Tuple = vocab_file
_lowerCAmelCase : Tuple = False if not self.vocab_file else True
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowerCAmelCase : Dict = [self.cls_token_id]
_lowerCAmelCase : Optional[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : Dict = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_lowerCAmelCase : Union[str, Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "nat"
__magic_name__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = patch_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Tuple = embed_dim
_lowerCAmelCase : Any = depths
_lowerCAmelCase : Dict = len(snake_case__ )
_lowerCAmelCase : str = num_heads
_lowerCAmelCase : Dict = kernel_size
_lowerCAmelCase : Union[str, Any] = mlp_ratio
_lowerCAmelCase : int = qkv_bias
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = drop_path_rate
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
_lowerCAmelCase : Any = layer_scale_init_value
_lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 25 | 1 |
'''simple docstring'''
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING, Dict, Optional
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.logging import get_logger
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import jax
import jaxlib
lowerCAmelCase : int = get_logger()
lowerCAmelCase : Optional[dict] = None
class UpperCamelCase__ ( TensorFormatter[Mapping, "jax.Array", Mapping] ):
"""simple docstring"""
def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ):
'''simple docstring'''
super().__init__(features=snake_case__ )
import jax
from jaxlib.xla_client import Device
if isinstance(snake_case__ , snake_case__ ):
raise ValueError(
F'Expected {device} to be a `str` not {type(snake_case__ )}, as `jaxlib.xla_extension.Device` '
'is not serializable neither with `pickle` nor with `dill`. Instead you can surround '
'the device with `str()` to get its string identifier that will be internally mapped '
'to the actual `jaxlib.xla_extension.Device`.' )
_lowerCAmelCase : Tuple = device if isinstance(snake_case__ , snake_case__ ) else str(jax.devices()[0] )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : List[str] = self._map_devices_to_str()
if self.device not in list(DEVICE_MAPPING.keys() ):
logger.warning(
F'Device with string identifier {self.device} not listed among the available '
F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default '
F'device: {str(jax.devices()[0] )}.' )
_lowerCAmelCase : Tuple = str(jax.devices()[0] )
_lowerCAmelCase : Optional[int] = jnp_array_kwargs
@staticmethod
def a ( ):
'''simple docstring'''
import jax
return {str(snake_case__ ): device for device in jax.devices()}
def a ( self , snake_case__ ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(snake_case__ , snake_case__ ) and column:
if all(
isinstance(snake_case__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ):
return jnp.stack(snake_case__ , axis=0 )
return column
def a ( self , snake_case__ ):
'''simple docstring'''
import jax
import jax.numpy as jnp
if isinstance(snake_case__ , (str, bytes, type(snake_case__ )) ):
return value
elif isinstance(snake_case__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
_lowerCAmelCase : Tuple = {}
if isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
# the default int precision depends on the jax config
# see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision
if jax.config.jax_enable_xaa:
_lowerCAmelCase : Union[str, Any] = {'dtype': jnp.intaa}
else:
_lowerCAmelCase : Optional[Any] = {'dtype': jnp.intaa}
elif isinstance(snake_case__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
_lowerCAmelCase : Optional[Any] = {'dtype': jnp.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(snake_case__ , PIL.Image.Image ):
_lowerCAmelCase : List[Any] = np.asarray(snake_case__ )
# using global variable since `jaxlib.xla_extension.Device` is not serializable neither
# with `pickle` nor with `dill`, so we need to use a global variable instead
global DEVICE_MAPPING
if DEVICE_MAPPING is None:
_lowerCAmelCase : Union[str, Any] = self._map_devices_to_str()
with jax.default_device(DEVICE_MAPPING[self.device] ):
# calling jnp.array on a np.ndarray does copy the data
# see https://github.com/google/jax/issues/4486
return jnp.array(snake_case__ , **{**default_dtype, **self.jnp_array_kwargs} )
def a ( self , snake_case__ ):
'''simple docstring'''
import jax
# support for torch, tf, jax etc.
if config.TORCH_AVAILABLE and "torch" in sys.modules:
import torch
if isinstance(snake_case__ , torch.Tensor ):
return self._tensorize(data_struct.detach().cpu().numpy()[()] )
if hasattr(snake_case__ , '__array__' ) and not isinstance(snake_case__ , jax.Array ):
_lowerCAmelCase : Dict = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(snake_case__ , np.ndarray ):
if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] )
elif isinstance(snake_case__ , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(snake_case__ ) for substruct in data_struct] )
return self._tensorize(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
return map_nested(self._recursive_tensorize , snake_case__ , map_list=snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_row(snake_case__ )
_lowerCAmelCase : List[str] = self.python_features_decoder.decode_row(snake_case__ )
return self.recursive_tensorize(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = self.numpy_arrow_extractor().extract_column(snake_case__ )
_lowerCAmelCase : List[Any] = self.python_features_decoder.decode_column(snake_case__ , pa_table.column_names[0] )
_lowerCAmelCase : int = self.recursive_tensorize(snake_case__ )
_lowerCAmelCase : Dict = self._consolidate(snake_case__ )
return column
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.numpy_arrow_extractor().extract_batch(snake_case__ )
_lowerCAmelCase : Union[str, Any] = self.python_features_decoder.decode_batch(snake_case__ )
_lowerCAmelCase : int = self.recursive_tensorize(snake_case__ )
for column_name in batch:
_lowerCAmelCase : List[Any] = self._consolidate(batch[column_name] )
return batch
| 25 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : str = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""roberta-base""": 5_12,
"""roberta-large""": 5_12,
"""roberta-large-mnli""": 5_12,
"""distilroberta-base""": 5_12,
"""roberta-base-openai-detector""": 5_12,
"""roberta-large-openai-detector""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = RobertaTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : List[Any] = add_prefix_space
_lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
_lowerCAmelCase : Union[str, Any] = 'post_processor'
_lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ )
if tokenizer_component_instance:
_lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase : Any = tuple(state['sep'] )
if "cls" in state:
_lowerCAmelCase : str = tuple(state['cls'] )
_lowerCAmelCase : List[str] = False
if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : int = add_prefix_space
_lowerCAmelCase : Tuple = True
if state.get('trim_offsets' , snake_case__ ) != trim_offsets:
_lowerCAmelCase : Union[str, Any] = trim_offsets
_lowerCAmelCase : Optional[int] = True
if changes_to_apply:
_lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) )
_lowerCAmelCase : Optional[int] = component_class(**snake_case__ )
setattr(self.backend_tokenizer , snake_case__ , snake_case__ )
@property
def a ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value
_lowerCAmelCase : Tuple = value
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 | 1 |
'''simple docstring'''
import torch
from diffusers import StableDiffusionPipeline
lowerCAmelCase : Any = """path-to-your-trained-model"""
lowerCAmelCase : List[Any] = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("""cuda""")
lowerCAmelCase : str = """A photo of sks dog in a bucket"""
lowerCAmelCase : List[str] = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
image.save("""dog-bucket.png""")
| 25 |
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag.
lowerCAmelCase : Optional[int] = 1 # The second color of the flag.
lowerCAmelCase : int = 2 # The third color of the flag.
lowerCAmelCase : Any = (red, white, blue)
def lowercase (_A ):
"""simple docstring"""
if not sequence:
return []
if len(_A ) == 1:
return list(_A )
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = len(_A ) - 1
_lowerCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values'
raise ValueError(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip()
lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 25 | 1 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = 1
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
def a ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 25 |
'''simple docstring'''
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Optional[int] = [3_1, 2_8, 3_1, 3_0, 3_1, 3_0, 3_1, 3_1, 3_0, 3_1, 3_0, 3_1]
_lowerCAmelCase : int = 6
_lowerCAmelCase : Dict = 1
_lowerCAmelCase : Optional[int] = 1_9_0_1
_lowerCAmelCase : Optional[Any] = 0
while year < 2_0_0_1:
day += 7
if (year % 4 == 0 and year % 1_0_0 != 0) or (year % 4_0_0 == 0):
if day > days_per_month[month - 1] and month != 2:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
elif day > 2_9 and month == 2:
month += 1
_lowerCAmelCase : List[str] = day - 2_9
else:
if day > days_per_month[month - 1]:
month += 1
_lowerCAmelCase : List[str] = day - days_per_month[month - 2]
if month > 1_2:
year += 1
_lowerCAmelCase : Optional[int] = 1
if year < 2_0_0_1 and day == 1:
sundays += 1
return sundays
if __name__ == "__main__":
print(solution())
| 25 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
lowerCAmelCase : Dict = {
"""configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""],
"""configuration_data2vec_text""": [
"""DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecTextConfig""",
"""Data2VecTextOnnxConfig""",
],
"""configuration_data2vec_vision""": [
"""DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Data2VecVisionConfig""",
"""Data2VecVisionOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : List[Any] = [
"""DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecAudioForAudioFrameClassification""",
"""Data2VecAudioForCTC""",
"""Data2VecAudioForSequenceClassification""",
"""Data2VecAudioForXVector""",
"""Data2VecAudioModel""",
"""Data2VecAudioPreTrainedModel""",
]
lowerCAmelCase : List[str] = [
"""DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecTextForCausalLM""",
"""Data2VecTextForMaskedLM""",
"""Data2VecTextForMultipleChoice""",
"""Data2VecTextForQuestionAnswering""",
"""Data2VecTextForSequenceClassification""",
"""Data2VecTextForTokenClassification""",
"""Data2VecTextModel""",
"""Data2VecTextPreTrainedModel""",
]
lowerCAmelCase : Optional[int] = [
"""DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Data2VecVisionForImageClassification""",
"""Data2VecVisionForMaskedImageModeling""",
"""Data2VecVisionForSemanticSegmentation""",
"""Data2VecVisionModel""",
"""Data2VecVisionPreTrainedModel""",
]
if is_tf_available():
lowerCAmelCase : int = [
"""TFData2VecVisionForImageClassification""",
"""TFData2VecVisionForSemanticSegmentation""",
"""TFData2VecVisionModel""",
"""TFData2VecVisionPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
lowerCAmelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 25 |
'''simple docstring'''
def lowercase (_A = 1_0_0_0_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = set(range(3 , _A , 2 ) )
primes.add(2 )
for p in range(3 , _A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _A , _A ) ) )
_lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )]
for p in primes:
for n in range(_A , limit + 1 , _A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
from cva import destroyAllWindows, imread, imshow, waitKey
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase : List[Any] = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(_A ):
for j in range(_A ):
_lowerCAmelCase : Tuple = [2_5_5, 2_5_5, 2_5_5] - img[i][j]
return img
if __name__ == "__main__":
# read original image
lowerCAmelCase : Optional[int] = imread("""image_data/lena.jpg""", 1)
# convert to its negative
lowerCAmelCase : int = convert_to_negative(img)
# show result image
imshow("""negative of original image""", img)
waitKey(0)
destroyAllWindows()
| 25 |
'''simple docstring'''
import argparse
import os
import re
lowerCAmelCase : Tuple = """src/transformers"""
# Pattern that looks at the indentation in a line.
lowerCAmelCase : str = re.compile(r"""^(\s*)\S""")
# Pattern that matches `"key":" and puts `key` in group 0.
lowerCAmelCase : str = re.compile(r"""^\s*\"([^\"]+)\":""")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""")
# Pattern that matches `"key",` and puts `key` in group 0.
lowerCAmelCase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowerCAmelCase : Optional[int] = re.compile(r"""\[([^\]]+)\]""")
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : int = _re_indent.search(_A )
return "" if search is None else search.groups()[0]
def lowercase (_A , _A="" , _A=None , _A=None ):
"""simple docstring"""
_lowerCAmelCase : int = 0
_lowerCAmelCase : Dict = code.split('\n' )
if start_prompt is not None:
while not lines[index].startswith(_A ):
index += 1
_lowerCAmelCase : Dict = ['\n'.join(lines[:index] )]
else:
_lowerCAmelCase : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
_lowerCAmelCase : List[Any] = [lines[index]]
index += 1
while index < len(_A ) and (end_prompt is None or not lines[index].startswith(_A )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(_A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ):
current_block.append(lines[index] )
blocks.append('\n'.join(_A ) )
if index < len(_A ) - 1:
_lowerCAmelCase : Union[str, Any] = [lines[index + 1]]
index += 1
else:
_lowerCAmelCase : Union[str, Any] = []
else:
blocks.append('\n'.join(_A ) )
_lowerCAmelCase : List[str] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(_A ) > 0:
blocks.append('\n'.join(_A ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(_A ):
blocks.append('\n'.join(lines[index:] ) )
return blocks
def lowercase (_A ):
"""simple docstring"""
def _inner(_A ):
return key(_A ).lower().replace('_' , '' )
return _inner
def lowercase (_A , _A=None ):
"""simple docstring"""
def noop(_A ):
return x
if key is None:
_lowerCAmelCase : List[Any] = noop
# Constants are all uppercase, they go first.
_lowerCAmelCase : List[Any] = [obj for obj in objects if key(_A ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
_lowerCAmelCase : Tuple = [obj for obj in objects if key(_A )[0].isupper() and not key(_A ).isupper()]
# Functions begin with a lowercase, they go last.
_lowerCAmelCase : List[str] = [obj for obj in objects if not key(_A )[0].isupper()]
_lowerCAmelCase : Dict = ignore_underscore(_A )
return sorted(_A , key=_A ) + sorted(_A , key=_A ) + sorted(_A , key=_A )
def lowercase (_A ):
"""simple docstring"""
def _replace(_A ):
_lowerCAmelCase : Dict = match.groups()[0]
if "," not in imports:
return f'[{imports}]'
_lowerCAmelCase : Union[str, Any] = [part.strip().replace('"' , '' ) for part in imports.split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : int = keys[:-1]
return "[" + ", ".join([f'"{k}"' for k in sort_objects(_A )] ) + "]"
_lowerCAmelCase : Tuple = import_statement.split('\n' )
if len(_A ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
_lowerCAmelCase : Optional[Any] = 2 if lines[1].strip() == '[' else 1
_lowerCAmelCase : List[str] = [(i, _re_strip_line.search(_A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
_lowerCAmelCase : Dict = sort_objects(_A , key=lambda _A : x[1] )
_lowerCAmelCase : Tuple = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(_A ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
_lowerCAmelCase : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
_lowerCAmelCase : Optional[Any] = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
_lowerCAmelCase : List[str] = keys[:-1]
_lowerCAmelCase : Optional[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(_A )] )
return "\n".join(_A )
else:
# Finally we have to deal with imports fitting on one line
_lowerCAmelCase : Union[str, Any] = _re_bracket_content.sub(_replace , _A )
return import_statement
def lowercase (_A , _A=True ):
"""simple docstring"""
with open(_A , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
_lowerCAmelCase : Tuple = split_code_in_indented_blocks(
_A , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' )
# We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(_A ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
_lowerCAmelCase : Tuple = main_blocks[block_idx]
_lowerCAmelCase : int = block.split('\n' )
# Get to the start of the imports.
_lowerCAmelCase : Tuple = 0
while line_idx < len(_A ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
_lowerCAmelCase : Dict = len(_A )
else:
line_idx += 1
if line_idx >= len(_A ):
continue
# Ignore beginning and last line: they don't contain anything.
_lowerCAmelCase : str = '\n'.join(block_lines[line_idx:-1] )
_lowerCAmelCase : Tuple = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
_lowerCAmelCase : List[Any] = split_code_in_indented_blocks(_A , indent_level=_A )
# We have two categories of import key: list or _import_structure[key].append/extend
_lowerCAmelCase : Optional[int] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
_lowerCAmelCase : int = [(pattern.search(_A ).groups()[0] if pattern.search(_A ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
_lowerCAmelCase : Dict = [(i, key) for i, key in enumerate(_A ) if key is not None]
_lowerCAmelCase : Optional[int] = [x[0] for x in sorted(_A , key=lambda _A : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
_lowerCAmelCase : int = 0
_lowerCAmelCase : Optional[Any] = []
for i in range(len(_A ) ):
if keys[i] is None:
reorderded_blocks.append(internal_blocks[i] )
else:
_lowerCAmelCase : Optional[Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reorderded_blocks.append(_A )
count += 1
# And we put our main block back together with its first and last line.
_lowerCAmelCase : Optional[int] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] )
if code != "\n".join(_A ):
if check_only:
return True
else:
print(f'Overwriting {file}.' )
with open(_A , 'w' , encoding='utf-8' ) as f:
f.write('\n'.join(_A ) )
def lowercase (_A=True ):
"""simple docstring"""
_lowerCAmelCase : int = []
for root, _, files in os.walk(_A ):
if "__init__.py" in files:
_lowerCAmelCase : Optional[Any] = sort_imports(os.path.join(_A , '__init__.py' ) , check_only=_A )
if result:
_lowerCAmelCase : Optional[int] = [os.path.join(_A , '__init__.py' )]
if len(_A ) > 0:
raise ValueError(f'Would overwrite {len(_A )} files, run `make style`.' )
if __name__ == "__main__":
lowerCAmelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
lowerCAmelCase : List[str] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 25 | 1 |
'''simple docstring'''
from math import sqrt
def lowercase (_A ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(_A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase (_A = 1_0_0_0_1 ):
"""simple docstring"""
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Optional[Any] = 1
while count != nth and number < 3:
number += 1
if is_prime(_A ):
count += 1
while count != nth:
number += 2
if is_prime(_A ):
count += 1
return number
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = KandinskyVaaInpaintPipeline
__magic_name__ = ["image_embeds", "negative_image_embeds", "image", "mask_image"]
__magic_name__ = [
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__magic_name__ = [
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__magic_name__ = False
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return 32
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def a ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def a ( self ):
'''simple docstring'''
return 100
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Optional[int] = {
'in_channels': 9,
# Out channels is double in channels because predicts mean and variance
'out_channels': 8,
'addition_embed_type': 'image',
'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'),
'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'),
'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn',
'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2),
'layers_per_block': 1,
'encoder_hid_dim': self.text_embedder_hidden_size,
'encoder_hid_dim_type': 'image_proj',
'cross_attention_dim': self.cross_attention_dim,
'attention_head_dim': 4,
'resnet_time_scale_shift': 'scale_shift',
'class_embed_type': None,
}
_lowerCAmelCase : Union[str, Any] = UNetaDConditionModel(**snake_case__ )
return model
@property
def a ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Dict = VQModel(**self.dummy_movq_kwargs )
return model
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.dummy_unet
_lowerCAmelCase : List[Any] = self.dummy_movq
_lowerCAmelCase : Union[str, Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='epsilon' , thresholding=snake_case__ , )
_lowerCAmelCase : Any = {
'unet': unet,
'scheduler': scheduler,
'movq': movq,
}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
snake_case__ )
# create init_image
_lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ )
_lowerCAmelCase : int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowerCAmelCase : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) )
# create mask
_lowerCAmelCase : List[str] = np.ones((64, 64) , dtype=np.floataa )
_lowerCAmelCase : Dict = 0
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Optional[Any] = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : List[Any] = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Optional[int] = {
'image': init_image,
'mask_image': mask,
'image_embeds': image_embeds,
'negative_image_embeds': negative_image_embeds,
'generator': generator,
'height': 64,
'width': 64,
'num_inference_steps': 2,
'guidance_scale': 4.0,
'output_type': 'np',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = 'cpu'
_lowerCAmelCase : int = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
_lowerCAmelCase : Optional[int] = pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(**self.get_dummy_inputs(snake_case__ ) )
_lowerCAmelCase : int = output.images
_lowerCAmelCase : int = pipe(
**self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0]
_lowerCAmelCase : Optional[int] = image[0, -3:, -3:, -1]
_lowerCAmelCase : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_lowerCAmelCase : List[str] = np.array(
[0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def a ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' )
_lowerCAmelCase : List[str] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' )
_lowerCAmelCase : Dict = np.ones((768, 768) , dtype=np.floataa )
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : List[str] = 'a hat'
_lowerCAmelCase : Any = KandinskyVaaPriorPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa )
pipe_prior.to(snake_case__ )
_lowerCAmelCase : Union[str, Any] = KandinskyVaaInpaintPipeline.from_pretrained(
'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa )
_lowerCAmelCase : Optional[Any] = pipeline.to(snake_case__ )
pipeline.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowerCAmelCase , _lowerCAmelCase : Dict = pipe_prior(
snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple()
_lowerCAmelCase : Optional[Any] = pipeline(
image=snake_case__ , mask_image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=768 , width=768 , output_type='np' , )
_lowerCAmelCase : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(snake_case__ , snake_case__ )
| 25 | 1 |
'''simple docstring'''
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase : Dict = logging.get_logger()
def lowercase (_A , _A , _A , _A , _A = True ):
"""simple docstring"""
print(f'Converting {name}...' )
with torch.no_grad():
if hidden_sizes == 1_2_8:
if name[-1] == "S":
_lowerCAmelCase : Optional[int] = timm.create_model('levit_128s' , pretrained=_A )
else:
_lowerCAmelCase : Tuple = timm.create_model('levit_128' , pretrained=_A )
if hidden_sizes == 1_9_2:
_lowerCAmelCase : Dict = timm.create_model('levit_192' , pretrained=_A )
if hidden_sizes == 2_5_6:
_lowerCAmelCase : Union[str, Any] = timm.create_model('levit_256' , pretrained=_A )
if hidden_sizes == 3_8_4:
_lowerCAmelCase : Dict = timm.create_model('levit_384' , pretrained=_A )
from_model.eval()
_lowerCAmelCase : Optional[Any] = LevitForImageClassificationWithTeacher(_A ).eval()
_lowerCAmelCase : Optional[int] = OrderedDict()
_lowerCAmelCase : int = from_model.state_dict()
_lowerCAmelCase : List[Any] = list(from_model.state_dict().keys() )
_lowerCAmelCase : Tuple = list(our_model.state_dict().keys() )
print(len(_A ) , len(_A ) )
for i in range(len(_A ) ):
_lowerCAmelCase : List[Any] = weights[og_keys[i]]
our_model.load_state_dict(_A )
_lowerCAmelCase : Optional[int] = torch.randn((2, 3, 2_2_4, 2_2_4) )
_lowerCAmelCase : Optional[int] = from_model(_A )
_lowerCAmelCase : Optional[int] = our_model(_A ).logits
assert torch.allclose(_A , _A ), "The model logits don't match the original one."
_lowerCAmelCase : Union[str, Any] = name
print(_A )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
_lowerCAmelCase : int = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(f'Pushed {checkpoint_name}' )
def lowercase (_A , _A = None , _A = True ):
"""simple docstring"""
_lowerCAmelCase : Optional[Any] = 'imagenet-1k-id2label.json'
_lowerCAmelCase : List[Any] = 1_0_0_0
_lowerCAmelCase : List[Any] = (1, num_labels)
_lowerCAmelCase : str = 'huggingface/label-files'
_lowerCAmelCase : Optional[Any] = num_labels
_lowerCAmelCase : List[str] = json.load(open(hf_hub_download(_A , _A , repo_type='dataset' ) , 'r' ) )
_lowerCAmelCase : Tuple = {int(_A ): v for k, v in idalabel.items()}
_lowerCAmelCase : List[str] = idalabel
_lowerCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()}
_lowerCAmelCase : Any = partial(_A , num_labels=_A , idalabel=_A , labelaid=_A )
_lowerCAmelCase : List[Any] = {
'levit-128S': 1_2_8,
'levit-128': 1_2_8,
'levit-192': 1_9_2,
'levit-256': 2_5_6,
'levit-384': 3_8_4,
}
_lowerCAmelCase : Any = {
'levit-128S': ImageNetPreTrainedConfig(
hidden_sizes=[1_2_8, 2_5_6, 3_8_4] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[1_6, 1_6, 1_6] , drop_path_rate=0 , ),
'levit-128': ImageNetPreTrainedConfig(
hidden_sizes=[1_2_8, 2_5_6, 3_8_4] , num_attention_heads=[4, 8, 1_2] , depths=[4, 4, 4] , key_dim=[1_6, 1_6, 1_6] , drop_path_rate=0 , ),
'levit-192': ImageNetPreTrainedConfig(
hidden_sizes=[1_9_2, 2_8_8, 3_8_4] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0 , ),
'levit-256': ImageNetPreTrainedConfig(
hidden_sizes=[2_5_6, 3_8_4, 5_1_2] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0 , ),
'levit-384': ImageNetPreTrainedConfig(
hidden_sizes=[3_8_4, 5_1_2, 7_6_8] , num_attention_heads=[6, 9, 1_2] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0.1 , ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name] , _A , names_to_config[model_name] , _A , _A )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name] , _A , _A , _A , _A )
return config, expected_shape
if __name__ == "__main__":
lowerCAmelCase : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help="""The name of the model you wish to convert, it must be one of the supported Levit* architecture,""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default="""levit-dump-folder/""",
type=Path,
required=False,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""")
parser.add_argument(
"""--no-push_to_hub""",
dest="""push_to_hub""",
action="""store_false""",
help="""Do not push model and image processor to the hub""",
)
lowerCAmelCase : Optional[int] = parser.parse_args()
lowerCAmelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 25 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def lowercase (_A ):
"""simple docstring"""
if not postfix_notation:
return 0
_lowerCAmelCase : int = {'+', '-', '*', '/'}
_lowerCAmelCase : list[Any] = []
for token in postfix_notation:
if token in operations:
_lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_A ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
import requests
lowerCAmelCase : List[str] = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey="""
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Dict = requests.get(_NEWS_API + bbc_news_api_key ).json()
# each article in the list is a dict
for i, article in enumerate(bbc_news_page['articles'] , 1 ):
print(f'{i}.) {article["title"]}' )
if __name__ == "__main__":
fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
| 25 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCAmelCase : int = logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] = {
"""google/mobilenet_v2_1.4_224""": """https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json""",
"""google/mobilenet_v2_1.0_224""": """https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json""",
"""google/mobilenet_v2_0.75_160""": """https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json""",
"""google/mobilenet_v2_0.35_96""": """https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json""",
# See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mobilenet_v2"
def __init__( self , snake_case__=3 , snake_case__=224 , snake_case__=1.0 , snake_case__=8 , snake_case__=8 , snake_case__=6 , snake_case__=32 , snake_case__=True , snake_case__=True , snake_case__="relu6" , snake_case__=True , snake_case__=0.8 , snake_case__=0.02 , snake_case__=0.001 , snake_case__=255 , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
if depth_multiplier <= 0:
raise ValueError('depth_multiplier must be greater than zero.' )
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Union[str, Any] = image_size
_lowerCAmelCase : List[Any] = depth_multiplier
_lowerCAmelCase : List[Any] = depth_divisible_by
_lowerCAmelCase : Optional[Any] = min_depth
_lowerCAmelCase : str = expand_ratio
_lowerCAmelCase : str = output_stride
_lowerCAmelCase : Any = first_layer_is_expansion
_lowerCAmelCase : int = finegrained_output
_lowerCAmelCase : str = hidden_act
_lowerCAmelCase : List[str] = tf_padding
_lowerCAmelCase : Optional[int] = classifier_dropout_prob
_lowerCAmelCase : int = initializer_range
_lowerCAmelCase : Optional[int] = layer_norm_eps
_lowerCAmelCase : str = semantic_loss_ignore_index
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = version.parse("1.11" )
@property
def a ( self ):
'''simple docstring'''
return OrderedDict([('pixel_values', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
if self.task == "image-classification":
return OrderedDict([('logits', {0: 'batch'})] )
else:
return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] )
@property
def a ( self ):
'''simple docstring'''
return 1E-4
| 25 | 1 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
if a < 0:
raise ValueError('Input value must be a positive integer' )
elif isinstance(_A , _A ):
raise TypeError('Input value must be a \'int\' type' )
return bin(_A ).count('1' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = SMALL_MODEL_IDENTIFIER
_lowerCAmelCase : Optional[int] = 'pt'
_lowerCAmelCase : Tuple = 'tf'
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=snake_case__ )
model_tf.save_pretrained(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = 'mock_framework'
# Framework provided - return whatever the user provides
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : int = FeaturesManager.determine_framework(snake_case__ , snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(snake_case__ )
_lowerCAmelCase : Tuple = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(snake_case__ )
_lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(snake_case__ )
self.assertEqual(snake_case__ , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : str = FeaturesManager.determine_framework(snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
_lowerCAmelCase : Any = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Union[str, Any] = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_tf )
# Both in environment -> use PyTorch
_lowerCAmelCase : int = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[int] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
_lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(snake_case__ , self.framework_pt )
# Both not in environment -> raise error
_lowerCAmelCase : str = MagicMock(return_value=snake_case__ )
_lowerCAmelCase : Optional[Any] = MagicMock(return_value=snake_case__ )
with patch('transformers.onnx.features.is_tf_available' , snake_case__ ), patch(
'transformers.onnx.features.is_torch_available' , snake_case__ ):
with self.assertRaises(snake_case__ ):
_lowerCAmelCase : Any = FeaturesManager.determine_framework(self.test_model )
| 25 | 1 |
'''simple docstring'''
from typing import Dict, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends
if is_vision_available():
import PIL
# soft dependency
if is_pytesseract_available():
import pytesseract
lowerCAmelCase : Optional[int] = logging.get_logger(__name__)
def lowercase (_A , _A , _A ):
"""simple docstring"""
return [
int(1_0_0_0 * (box[0] / width) ),
int(1_0_0_0 * (box[1] / height) ),
int(1_0_0_0 * (box[2] / width) ),
int(1_0_0_0 * (box[3] / height) ),
]
def lowercase (_A , _A , _A = None ):
"""simple docstring"""
_lowerCAmelCase : Any = tesseract_config if tesseract_config is not None else ''
# apply OCR
_lowerCAmelCase : Union[str, Any] = to_pil_image(_A )
_lowerCAmelCase , _lowerCAmelCase : Tuple = pil_image.size
_lowerCAmelCase : int = pytesseract.image_to_data(_A , lang=_A , output_type='dict' , config=_A )
_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = data['text'], data['left'], data['top'], data['width'], data['height']
# filter empty words and corresponding coordinates
_lowerCAmelCase : List[Any] = [idx for idx, word in enumerate(_A ) if not word.strip()]
_lowerCAmelCase : int = [word for idx, word in enumerate(_A ) if idx not in irrelevant_indices]
_lowerCAmelCase : Any = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices]
_lowerCAmelCase : Dict = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices]
_lowerCAmelCase : str = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices]
_lowerCAmelCase : Union[str, Any] = [coord for idx, coord in enumerate(_A ) if idx not in irrelevant_indices]
# turn coordinates into (left, top, left+width, top+height) format
_lowerCAmelCase : Optional[Any] = []
for x, y, w, h in zip(_A , _A , _A , _A ):
_lowerCAmelCase : int = [x, y, x + w, y + h]
actual_boxes.append(_A )
# finally, normalize the bounding boxes
_lowerCAmelCase : Union[str, Any] = []
for box in actual_boxes:
normalized_boxes.append(normalize_box(_A , _A , _A ) )
assert len(_A ) == len(_A ), "Not as many words as there are bounding boxes"
return words, normalized_boxes
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = ["pixel_values"]
def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = "" , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Dict = size if size is not None else {'height': 224, 'width': 224}
_lowerCAmelCase : List[str] = get_size_dict(snake_case__ )
_lowerCAmelCase : Any = do_resize
_lowerCAmelCase : Optional[Any] = size
_lowerCAmelCase : Optional[int] = resample
_lowerCAmelCase : int = apply_ocr
_lowerCAmelCase : Optional[int] = ocr_lang
_lowerCAmelCase : Any = tesseract_config
def a ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = None , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = get_size_dict(snake_case__ )
if "height" not in size or "width" not in size:
raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' )
_lowerCAmelCase : str = (size['height'], size['width'])
return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
_lowerCAmelCase : Optional[Any] = size if size is not None else self.size
_lowerCAmelCase : int = get_size_dict(snake_case__ )
_lowerCAmelCase : Dict = resample if resample is not None else self.resample
_lowerCAmelCase : Tuple = apply_ocr if apply_ocr is not None else self.apply_ocr
_lowerCAmelCase : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang
_lowerCAmelCase : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config
_lowerCAmelCase : Dict = make_list_of_images(snake_case__ )
if not valid_images(snake_case__ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
# All transformations expect numpy arrays.
_lowerCAmelCase : int = [to_numpy_array(snake_case__ ) for image in images]
if apply_ocr:
requires_backends(self , 'pytesseract' )
_lowerCAmelCase : int = []
_lowerCAmelCase : Dict = []
for image in images:
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = apply_tesseract(snake_case__ , snake_case__ , snake_case__ )
words_batch.append(snake_case__ )
boxes_batch.append(snake_case__ )
if do_resize:
_lowerCAmelCase : Union[str, Any] = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images]
# flip color channels from RGB to BGR (as Detectron2 requires this)
_lowerCAmelCase : Dict = [flip_channel_order(snake_case__ ) for image in images]
_lowerCAmelCase : str = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images]
_lowerCAmelCase : Optional[Any] = BatchFeature(data={'pixel_values': images} , tensor_type=snake_case__ )
if apply_ocr:
_lowerCAmelCase : List[str] = words_batch
_lowerCAmelCase : Optional[int] = boxes_batch
return data
| 25 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
lowerCAmelCase : Optional[int] = None
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Any = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""facebook/nllb-large-en-ro""": 10_24,
"""facebook/nllb-200-distilled-600M""": 10_24,
}
# fmt: off
lowerCAmelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = NllbTokenizer
__magic_name__ = []
__magic_name__ = []
def __init__( self , snake_case__=None , snake_case__=None , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__=False , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token
_lowerCAmelCase : Dict = legacy_behaviour
super().__init__(
vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[str] = vocab_file
_lowerCAmelCase : int = False if not self.vocab_file else True
_lowerCAmelCase : str = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} )
_lowerCAmelCase : Any = {
lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_lowerCAmelCase : List[Any] = src_lang if src_lang is not None else 'eng_Latn'
_lowerCAmelCase : str = self.convert_tokens_to_ids(self._src_lang )
_lowerCAmelCase : Tuple = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def a ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Dict = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , **snake_case__ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
_lowerCAmelCase : Optional[Any] = src_lang
_lowerCAmelCase : Union[str, Any] = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ )
_lowerCAmelCase : int = self.convert_tokens_to_ids(snake_case__ )
_lowerCAmelCase : Optional[Any] = tgt_lang_id
return inputs
def a ( self , snake_case__ , snake_case__ = "eng_Latn" , snake_case__ = None , snake_case__ = "fra_Latn" , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[str] = src_lang
_lowerCAmelCase : Optional[int] = tgt_lang
return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ )
def a ( self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def a ( self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : Dict = []
_lowerCAmelCase : List[str] = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : int = [self.eos_token_id]
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.convert_tokens_to_ids(snake_case__ )
if self.legacy_behaviour:
_lowerCAmelCase : int = []
_lowerCAmelCase : Dict = [self.eos_token_id, self.cur_lang_code]
else:
_lowerCAmelCase : int = [self.cur_lang_code]
_lowerCAmelCase : List[str] = [self.eos_token_id]
_lowerCAmelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens )
_lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.suffix_tokens )
_lowerCAmelCase : str = processors.TemplateProcessing(
single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '
'tokenizer.' )
if not os.path.isdir(snake_case__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory.' )
return
_lowerCAmelCase : Union[str, Any] = os.path.join(
snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ):
copyfile(self.vocab_file , snake_case__ )
return (out_vocab_file,)
| 25 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
def lowercase (_A ):
"""simple docstring"""
if not postfix_notation:
return 0
_lowerCAmelCase : int = {'+', '-', '*', '/'}
_lowerCAmelCase : list[Any] = []
for token in postfix_notation:
if token in operations:
_lowerCAmelCase , _lowerCAmelCase : Tuple = stack.pop(), stack.pop()
if token == "+":
stack.append(a + b )
elif token == "-":
stack.append(a - b )
elif token == "*":
stack.append(a * b )
else:
if a * b < 0 and a % b != 0:
stack.append(a // b + 1 )
else:
stack.append(a // b )
else:
stack.append(int(_A ) )
return stack.pop()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 |
'''simple docstring'''
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
lowerCAmelCase : List[str] = [
"""kernels/rwkv/wkv_cuda.cu""",
"""kernels/rwkv/wkv_op.cpp""",
"""kernels/deformable_detr/ms_deform_attn.h""",
"""kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""",
"""models/graphormer/algos_graphormer.pyx""",
]
def lowercase (_A ):
"""simple docstring"""
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
lowerCAmelCase : Dict = argparse.ArgumentParser()
parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""")
lowerCAmelCase : Dict = parser.parse_args()
if args.check_lib:
lowerCAmelCase : Union[str, Any] = importlib.import_module("""transformers""")
lowerCAmelCase : int = Path(transformers_module.__file__).parent
else:
lowerCAmelCase : int = Path.cwd() / """build/lib/transformers"""
if not test_custom_files_are_present(transformers_path):
raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
| 25 | 1 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mvp"
__magic_name__ = ["past_key_values"]
__magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Optional[Any] = d_model
_lowerCAmelCase : Optional[int] = encoder_ffn_dim
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = encoder_attention_heads
_lowerCAmelCase : Any = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Union[str, Any] = dropout
_lowerCAmelCase : List[Any] = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : Any = init_std
_lowerCAmelCase : Any = encoder_layerdrop
_lowerCAmelCase : Union[str, Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = classifier_dropout
_lowerCAmelCase : List[Any] = use_cache
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase : Optional[Any] = use_prompt
_lowerCAmelCase : Optional[Any] = prompt_length
_lowerCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ):
_lowerCAmelCase : Any = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 25 |
'''simple docstring'''
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = 0
# if input_string is "aba" than new_input_string become "a|b|a"
_lowerCAmelCase : List[str] = ''
_lowerCAmelCase : Any = ''
# append each character + "|" in new_string for range(0, length-1)
for i in input_string[: len(_A ) - 1]:
new_input_string += i + "|"
# append last character
new_input_string += input_string[-1]
# we will store the starting and ending of previous furthest ending palindromic
# substring
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0
# length[i] shows the length of palindromic substring with center i
_lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )]
# for each character in new_string find corresponding palindromic string
_lowerCAmelCase : Any = 0
for j in range(len(_A ) ):
_lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 )
while (
j - k >= 0
and j + k < len(_A )
and new_input_string[k + j] == new_input_string[j - k]
):
k += 1
_lowerCAmelCase : List[str] = 2 * k - 1
# does this string is ending after the previously explored end (that is r) ?
# if yes the update the new r to the last index of this
if j + k - 1 > r:
_lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741
_lowerCAmelCase : int = j + k - 1
# update max_length and start position
if max_length < length[j]:
_lowerCAmelCase : Dict = length[j]
_lowerCAmelCase : Optional[int] = j
# create that string
_lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
for i in s:
if i != "|":
output_string += i
return output_string
if __name__ == "__main__":
import doctest
doctest.testmod()
| 25 | 1 |
'''simple docstring'''
from typing import Any
import numpy as np
def lowercase (_A ):
"""simple docstring"""
return np.array_equal(_A , matrix.conjugate().T )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = v.conjugate().T
_lowerCAmelCase : Dict = v_star.dot(_A )
assert isinstance(_A , np.ndarray )
return (v_star_dot.dot(_A )) / (v_star.dot(_A ))
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Dict = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] )
_lowerCAmelCase : Tuple = np.array([[1], [2], [3]] )
assert is_hermitian(_A ), f'{a} is not hermitian.'
print(rayleigh_quotient(_A , _A ) )
_lowerCAmelCase : Tuple = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] )
assert is_hermitian(_A ), f'{a} is not hermitian.'
assert rayleigh_quotient(_A , _A ) == float(3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
tests()
| 25 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
__magic_name__ = 3.0
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , snake_case__ )
@require_multi_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : List[str] = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : List[Any] = """"""
lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 | 1 |
'''simple docstring'''
def lowercase (_A = 1_0_0_0_0_0_0 ):
"""simple docstring"""
_lowerCAmelCase : Any = set(range(3 , _A , 2 ) )
primes.add(2 )
for p in range(3 , _A , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , _A , _A ) ) )
_lowerCAmelCase : Union[str, Any] = [float(_A ) for n in range(limit + 1 )]
for p in primes:
for n in range(_A , limit + 1 , _A ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "trajectory_transformer"
__magic_name__ = ["past_key_values"]
__magic_name__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = action_weight
_lowerCAmelCase : Optional[int] = reward_weight
_lowerCAmelCase : Union[str, Any] = value_weight
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Tuple = block_size
_lowerCAmelCase : List[Any] = action_dim
_lowerCAmelCase : List[Any] = observation_dim
_lowerCAmelCase : Union[str, Any] = transition_dim
_lowerCAmelCase : Tuple = learning_rate
_lowerCAmelCase : int = n_layer
_lowerCAmelCase : Any = n_head
_lowerCAmelCase : Tuple = n_embd
_lowerCAmelCase : Optional[Any] = embd_pdrop
_lowerCAmelCase : Union[str, Any] = attn_pdrop
_lowerCAmelCase : Any = resid_pdrop
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : List[Any] = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = kaiming_initializer_range
_lowerCAmelCase : List[Any] = use_cache
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
| 25 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Optional[Any] = {
"""CarlCochet/trajectory-transformer-halfcheetah-medium-v2""": (
"""https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"""
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "trajectory_transformer"
__magic_name__ = ["past_key_values"]
__magic_name__ = {
"hidden_size": "n_embd",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=100 , snake_case__=5 , snake_case__=1 , snake_case__=1 , snake_case__=249 , snake_case__=6 , snake_case__=17 , snake_case__=25 , snake_case__=4 , snake_case__=4 , snake_case__=128 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0006 , snake_case__=512 , snake_case__=0.02 , snake_case__=1E-12 , snake_case__=1 , snake_case__=True , snake_case__=1 , snake_case__=5_0256 , snake_case__=5_0256 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = action_weight
_lowerCAmelCase : Optional[int] = reward_weight
_lowerCAmelCase : Union[str, Any] = value_weight
_lowerCAmelCase : List[str] = max_position_embeddings
_lowerCAmelCase : Tuple = block_size
_lowerCAmelCase : List[Any] = action_dim
_lowerCAmelCase : List[Any] = observation_dim
_lowerCAmelCase : Union[str, Any] = transition_dim
_lowerCAmelCase : Tuple = learning_rate
_lowerCAmelCase : int = n_layer
_lowerCAmelCase : Any = n_head
_lowerCAmelCase : Tuple = n_embd
_lowerCAmelCase : Optional[Any] = embd_pdrop
_lowerCAmelCase : Union[str, Any] = attn_pdrop
_lowerCAmelCase : Any = resid_pdrop
_lowerCAmelCase : Optional[Any] = initializer_range
_lowerCAmelCase : List[Any] = layer_norm_eps
_lowerCAmelCase : Union[str, Any] = kaiming_initializer_range
_lowerCAmelCase : List[Any] = use_cache
super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ )
| 25 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase : Tuple = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
lowerCAmelCase : Union[str, Any] = 25_00_04
lowerCAmelCase : int = 25_00_20
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = MBartaaTokenizer
__magic_name__ = MBartaaTokenizerFast
__magic_name__ = True
__magic_name__ = True
def a ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
_lowerCAmelCase : List[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
tokenizer.save_pretrained(self.tmpdirname )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = '<s>'
_lowerCAmelCase : str = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<s>' )
self.assertEqual(vocab_keys[1] , '<pad>' )
self.assertEqual(vocab_keys[-1] , '<mask>' )
self.assertEqual(len(snake_case__ ) , 1054 )
def a ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = MBartaaTokenizer(snake_case__ , src_lang='en_XX' , tgt_lang='ro_RO' , keep_accents=snake_case__ )
_lowerCAmelCase : Any = tokenizer.tokenize('This is a test' )
self.assertListEqual(snake_case__ , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
_lowerCAmelCase : Tuple = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , )
_lowerCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(snake_case__ )
self.assertListEqual(
snake_case__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
_lowerCAmelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ )
self.assertListEqual(
snake_case__ , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , )
@slow
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Dict = {'input_ids': [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=snake_case__ , model_name='facebook/mbart-large-50' , revision='d3913889c59cd5c9e456b269c376325eabad57e2' , )
def a ( self ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
_lowerCAmelCase : Optional[int] = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
_lowerCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Tuple = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ )
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Tuple = tokenizer_r.save_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
_lowerCAmelCase : Any = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f )
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : List[str] = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : Optional[int] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=True
_lowerCAmelCase : Union[str, Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Any = tokenizer_p.save_pretrained(snake_case__ )
# Checks it save with the same files
self.assertSequenceEqual(snake_case__ , snake_case__ )
# Checks everything loads correctly in the same way
_lowerCAmelCase : Dict = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : List[str] = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
# Save tokenizer rust, legacy_format=False
_lowerCAmelCase : Optional[int] = tempfile.mkdtemp()
_lowerCAmelCase : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ )
_lowerCAmelCase : Tuple = tokenizer_p.save_pretrained(snake_case__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
_lowerCAmelCase : int = tokenizer_r.from_pretrained(snake_case__ )
_lowerCAmelCase : str = tokenizer_p.from_pretrained(snake_case__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(snake_case__ , snake_case__ ) )
shutil.rmtree(snake_case__ )
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
__magic_name__ = "facebook/mbart-large-50-one-to-many-mmt"
__magic_name__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
__magic_name__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
__magic_name__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def a ( cls ):
'''simple docstring'''
_lowerCAmelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO' )
_lowerCAmelCase : Dict = 1
return cls
def a ( self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 25_0001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 25_0004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 25_0020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'] , 25_0038 )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertIn(snake_case__ , self.tokenizer.all_special_ids )
_lowerCAmelCase : Union[str, Any] = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2]
_lowerCAmelCase : List[str] = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ )
_lowerCAmelCase : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ )
self.assertEqual(snake_case__ , snake_case__ )
self.assertNotIn(self.tokenizer.eos_token , snake_case__ )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = ['this is gunna be a long sentence ' * 20]
assert isinstance(src_text[0] , snake_case__ )
_lowerCAmelCase : List[str] = 10
_lowerCAmelCase : Any = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0]
self.assertEqual(ids[0] , snake_case__ )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(snake_case__ ) , snake_case__ )
def a ( self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ) , [25_0053, 25_0001] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = tempfile.mkdtemp()
_lowerCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(snake_case__ )
_lowerCAmelCase : Tuple = MBartaaTokenizer.from_pretrained(snake_case__ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=snake_case__ , return_tensors='pt' )
_lowerCAmelCase : Optional[int] = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : str = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors='pt' , )
_lowerCAmelCase : int = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id )
self.assertIsInstance(snake_case__ , snake_case__ )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
_lowerCAmelCase : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , snake_case__ )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors='pt' )
_lowerCAmelCase : str = self.tokenizer(
text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors='pt' )
_lowerCAmelCase : List[Any] = targets['input_ids']
_lowerCAmelCase : Any = shift_tokens_right(snake_case__ , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = self.tokenizer._build_translation_inputs(
'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR' )
self.assertEqual(
nested_simplify(snake_case__ ) , {
# en_XX, A, test, EOS
'input_ids': [[25_0004, 62, 3034, 2]],
'attention_mask': [[1, 1, 1, 1]],
# ar_AR
'forced_bos_token_id': 25_0001,
} , )
| 25 | 1 |
'''simple docstring'''
def lowercase (_A , _A ):
"""simple docstring"""
while second != 0:
_lowerCAmelCase : List[Any] = first & second
first ^= second
_lowerCAmelCase : str = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : List[str] = int(input("""Enter the first number: """).strip())
lowerCAmelCase : List[str] = int(input("""Enter the second number: """).strip())
print(F'''{add(first, second) = }''')
| 25 |
'''simple docstring'''
from math import isqrt
def lowercase (_A ):
"""simple docstring"""
return all(number % divisor != 0 for divisor in range(2 , isqrt(_A ) + 1 ) )
def lowercase (_A = 1_0**6 ):
"""simple docstring"""
_lowerCAmelCase : str = 0
_lowerCAmelCase : str = 1
_lowerCAmelCase : List[str] = 7
while prime_candidate < max_prime:
primes_count += is_prime(_A )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 25 | 1 |
'''simple docstring'''
lowerCAmelCase : List[str] = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase : List[str] = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 25 |
'''simple docstring'''
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : List[Any] = {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""",
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "mvp"
__magic_name__ = ["past_key_values"]
__magic_name__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , snake_case__=5_0267 , snake_case__=1024 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=12 , snake_case__=4096 , snake_case__=16 , snake_case__=0.0 , snake_case__=0.0 , snake_case__="gelu" , snake_case__=1024 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=0.0 , snake_case__=False , snake_case__=True , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__=True , snake_case__=2 , snake_case__=2 , snake_case__=False , snake_case__=100 , snake_case__=800 , **snake_case__ , ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = vocab_size
_lowerCAmelCase : Any = max_position_embeddings
_lowerCAmelCase : Optional[Any] = d_model
_lowerCAmelCase : Optional[int] = encoder_ffn_dim
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = encoder_attention_heads
_lowerCAmelCase : Any = decoder_ffn_dim
_lowerCAmelCase : Optional[Any] = decoder_layers
_lowerCAmelCase : int = decoder_attention_heads
_lowerCAmelCase : Union[str, Any] = dropout
_lowerCAmelCase : List[Any] = attention_dropout
_lowerCAmelCase : List[str] = activation_dropout
_lowerCAmelCase : Optional[Any] = activation_function
_lowerCAmelCase : Any = init_std
_lowerCAmelCase : Any = encoder_layerdrop
_lowerCAmelCase : Union[str, Any] = decoder_layerdrop
_lowerCAmelCase : Optional[int] = classifier_dropout
_lowerCAmelCase : List[Any] = use_cache
_lowerCAmelCase : Optional[int] = encoder_layers
_lowerCAmelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True
_lowerCAmelCase : Optional[Any] = use_prompt
_lowerCAmelCase : Optional[Any] = prompt_length
_lowerCAmelCase : Any = prompt_mid_dim
super().__init__(
pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , snake_case__ ):
_lowerCAmelCase : Any = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 25 | 1 |
'''simple docstring'''
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = 0
__magic_name__ = False
__magic_name__ = 3.0
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} )
self.assertDictEqual(MockClass(a=2 , b=snake_case__ ).to_kwargs() , {'a': 2, 'b': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} )
@require_cuda
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
_lowerCAmelCase : Dict = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
_lowerCAmelCase : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , snake_case__ )
@require_multi_gpu
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = ['torchrun', F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )]
execute_subprocess_async(snake_case__ , env=os.environ.copy() )
if __name__ == "__main__":
lowerCAmelCase : int = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True)
lowerCAmelCase : Tuple = Accelerator(kwargs_handlers=[ddp_scaler])
lowerCAmelCase : Optional[Any] = torch.nn.Linear(1_00, 2_00)
lowerCAmelCase : List[str] = accelerator.prepare(model)
# Check the values changed in kwargs
lowerCAmelCase : List[Any] = """"""
lowerCAmelCase : Tuple = model.bucket_bytes_cap // (10_24 * 10_24)
if observed_bucket_cap_map != 15:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 |
'''simple docstring'''
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
lowerCAmelCase : str = None
lowerCAmelCase : Optional[int] = {
"""7B""": 1_10_08,
"""13B""": 1_38_24,
"""30B""": 1_79_20,
"""65B""": 2_20_16,
"""70B""": 2_86_72,
}
lowerCAmelCase : Optional[int] = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowercase (_A , _A=1 , _A=2_5_6 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase (_A ):
"""simple docstring"""
with open(_A , 'r' ) as f:
return json.load(_A )
def lowercase (_A , _A ):
"""simple docstring"""
with open(_A , 'w' ) as f:
json.dump(_A , _A )
def lowercase (_A , _A , _A , _A=True ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Optional[Any] = os.path.join(_A , 'tmp' )
os.makedirs(_A , exist_ok=_A )
_lowerCAmelCase : Any = read_json(os.path.join(_A , 'params.json' ) )
_lowerCAmelCase : List[str] = NUM_SHARDS[model_size]
_lowerCAmelCase : str = params['n_layers']
_lowerCAmelCase : Optional[int] = params['n_heads']
_lowerCAmelCase : int = n_heads // num_shards
_lowerCAmelCase : Optional[int] = params['dim']
_lowerCAmelCase : Union[str, Any] = dim // n_heads
_lowerCAmelCase : Union[str, Any] = 10_000.0
_lowerCAmelCase : str = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
_lowerCAmelCase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA
_lowerCAmelCase : str = n_heads_per_shard // num_key_value_heads
_lowerCAmelCase : Optional[int] = dim // num_key_value_heads
else: # compatibility with other checkpoints
_lowerCAmelCase : Union[str, Any] = n_heads
_lowerCAmelCase : Any = n_heads_per_shard
_lowerCAmelCase : Optional[Any] = dim
# permute for sliced rotary
def permute(_A , _A=n_heads , _A=dim , _A=dim ):
return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A )
print(f'Fetching all parameters from the checkpoint at {input_base_path}.' )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
_lowerCAmelCase : List[Any] = torch.load(os.path.join(_A , 'consolidated.00.pth' ) , map_location='cpu' )
else:
# Sharded
_lowerCAmelCase : List[Any] = [
torch.load(os.path.join(_A , f'consolidated.{i:02d}.pth' ) , map_location='cpu' )
for i in range(_A )
]
_lowerCAmelCase : Tuple = 0
_lowerCAmelCase : Union[str, Any] = {'weight_map': {}}
for layer_i in range(_A ):
_lowerCAmelCase : List[str] = f'pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.self_attn.q_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wq.weight'] ),
f'model.layers.{layer_i}.self_attn.k_proj.weight': permute(
loaded[f'layers.{layer_i}.attention.wk.weight'] ),
f'model.layers.{layer_i}.self_attn.v_proj.weight': loaded[f'layers.{layer_i}.attention.wv.weight'],
f'model.layers.{layer_i}.self_attn.o_proj.weight': loaded[f'layers.{layer_i}.attention.wo.weight'],
f'model.layers.{layer_i}.mlp.gate_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w1.weight'],
f'model.layers.{layer_i}.mlp.down_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w2.weight'],
f'model.layers.{layer_i}.mlp.up_proj.weight': loaded[f'layers.{layer_i}.feed_forward.w3.weight'],
f'model.layers.{layer_i}.input_layernorm.weight': loaded[f'layers.{layer_i}.attention_norm.weight'],
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[f'layers.{layer_i}.ffn_norm.weight'],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
_lowerCAmelCase : str = {
f'model.layers.{layer_i}.input_layernorm.weight': loaded[0][
f'layers.{layer_i}.attention_norm.weight'
].clone(),
f'model.layers.{layer_i}.post_attention_layernorm.weight': loaded[0][
f'layers.{layer_i}.ffn_norm.weight'
].clone(),
}
_lowerCAmelCase : List[str] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wq.weight'].view(_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) )
_lowerCAmelCase : Optional[int] = permute(
torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wk.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , )
_lowerCAmelCase : Dict = torch.cat(
[
loaded[i][f'layers.{layer_i}.attention.wv.weight'].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A )
_lowerCAmelCase : Dict = torch.cat(
[loaded[i][f'layers.{layer_i}.attention.wo.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w1.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : Tuple = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w2.weight'] for i in range(_A )] , dim=1 )
_lowerCAmelCase : List[Any] = torch.cat(
[loaded[i][f'layers.{layer_i}.feed_forward.w3.weight'] for i in range(_A )] , dim=0 )
_lowerCAmelCase : int = inv_freq
for k, v in state_dict.items():
_lowerCAmelCase : Optional[Any] = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
_lowerCAmelCase : Dict = f'pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin'
if model_size == "7B":
# Unsharded
_lowerCAmelCase : List[str] = {
'model.embed_tokens.weight': loaded['tok_embeddings.weight'],
'model.norm.weight': loaded['norm.weight'],
'lm_head.weight': loaded['output.weight'],
}
else:
_lowerCAmelCase : List[str] = {
'model.norm.weight': loaded[0]['norm.weight'],
'model.embed_tokens.weight': torch.cat(
[loaded[i]['tok_embeddings.weight'] for i in range(_A )] , dim=1 ),
'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(_A )] , dim=0 ),
}
for k, v in state_dict.items():
_lowerCAmelCase : int = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
# Write configs
_lowerCAmelCase : Tuple = {'total_size': param_count * 2}
write_json(_A , os.path.join(_A , 'pytorch_model.bin.index.json' ) )
_lowerCAmelCase : Optional[int] = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1
_lowerCAmelCase : int = params['multiple_of'] if 'multiple_of' in params else 2_5_6
_lowerCAmelCase : List[Any] = LlamaConfig(
hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=_A , )
config.save_pretrained(_A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('Loading the checkpoint in a Llama model.' )
_lowerCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('Saving in the Transformers format.' )
model.save_pretrained(_A , safe_serialization=_A )
shutil.rmtree(_A )
def lowercase (_A , _A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f'Saving a {tokenizer_class.__name__} to {tokenizer_path}.' )
_lowerCAmelCase : List[Any] = tokenizer_class(_A )
tokenizer.save_pretrained(_A )
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : int = argparse.ArgumentParser()
parser.add_argument(
'--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , )
parser.add_argument(
'--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , )
parser.add_argument(
'--output_dir' , help='Location to write HF model and tokenizer' , )
parser.add_argument('--safe_serialization' , type=_A , help='Whether or not to save using `safetensors`.' )
_lowerCAmelCase : Any = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
_lowerCAmelCase : Dict = os.path.join(args.input_dir , 'tokenizer.model' )
write_tokenizer(args.output_dir , _A )
if __name__ == "__main__":
main()
| 25 | 1 |
'''simple docstring'''
def lowercase (_A = 1_0_0 ):
"""simple docstring"""
_lowerCAmelCase : int = set()
_lowerCAmelCase : Any = 0
_lowerCAmelCase : Optional[Any] = n + 1 # maximum limit
for a in range(2 , _A ):
for b in range(2 , _A ):
_lowerCAmelCase : Optional[int] = a**b # calculates the current power
collect_powers.add(_A ) # adds the result to the set
return len(_A )
if __name__ == "__main__":
print("""Number of terms """, solution(int(str(input()).strip())))
| 25 |
'''simple docstring'''
import copy
from dataclasses import dataclass
from pathlib import Path
from typing import Dict, Optional, Union
@dataclass
class UpperCamelCase__ :
"""simple docstring"""
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
__magic_name__ = False
__magic_name__ = False
__magic_name__ = False
__magic_name__ = True
__magic_name__ = None
__magic_name__ = 1
__magic_name__ = None
__magic_name__ = False
__magic_name__ = None
__magic_name__ = None
def a ( self ):
'''simple docstring'''
return self.__class__(**{k: copy.deepcopy(snake_case__ ) for k, v in self.__dict__.items()} )
| 25 | 1 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = ["image_processor", "tokenizer"]
__magic_name__ = "CLIPImageProcessor"
__magic_name__ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self , snake_case__=None , snake_case__=None , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , snake_case__ , )
_lowerCAmelCase : Tuple = kwargs.pop('feature_extractor' )
_lowerCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(snake_case__ , snake_case__ )
def __call__( self , snake_case__=None , snake_case__=None , snake_case__=None , **snake_case__ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
_lowerCAmelCase : Dict = self.tokenizer(snake_case__ , return_tensors=snake_case__ , **snake_case__ )
if images is not None:
_lowerCAmelCase : Union[str, Any] = self.image_processor(snake_case__ , return_tensors=snake_case__ , **snake_case__ )
if text is not None and images is not None:
_lowerCAmelCase : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**snake_case__ ) , tensor_type=snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
return self.tokenizer.decode(*snake_case__ , **snake_case__ )
@property
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : List[str] = self.tokenizer.model_input_names
_lowerCAmelCase : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 25 |
'''simple docstring'''
lowerCAmelCase : List[str] = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase : int = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase : List[str] = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 25 | 1 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = CTRLTokenizer
__magic_name__ = False
__magic_name__ = False
def a ( self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
_lowerCAmelCase : Optional[Any] = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>']
_lowerCAmelCase : Tuple = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
_lowerCAmelCase : List[str] = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', '']
_lowerCAmelCase : Optional[int] = {'unk_token': '<unk>'}
_lowerCAmelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
_lowerCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(snake_case__ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(snake_case__ ) )
def a ( self , **snake_case__ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CTRLTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Any = 'adapt react readapt apt'
_lowerCAmelCase : Tuple = 'adapt react readapt apt'
return input_text, output_text
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_lowerCAmelCase : List[str] = 'adapt react readapt apt'
_lowerCAmelCase : Tuple = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split()
_lowerCAmelCase : Union[str, Any] = tokenizer.tokenize(snake_case__ )
self.assertListEqual(snake_case__ , snake_case__ )
_lowerCAmelCase : List[str] = tokens + [tokenizer.unk_token]
_lowerCAmelCase : Any = [0, 1, 2, 4, 5, 1, 0, 3, 6]
self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ )
| 25 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : Union[str, Any] = {
"""configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Dict = [
"""RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ResNetForImageClassification""",
"""ResNetModel""",
"""ResNetPreTrainedModel""",
"""ResNetBackbone""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : str = [
"""TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFResNetForImageClassification""",
"""TFResNetModel""",
"""TFResNetPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = [
"""FlaxResNetForImageClassification""",
"""FlaxResNetModel""",
"""FlaxResNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 25 | 1 |
'''simple docstring'''
import os
# Precomputes a list of the 100 first triangular numbers
lowerCAmelCase : Union[str, Any] = [int(0.5 * n * (n + 1)) for n in range(1, 1_01)]
def lowercase ():
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = os.path.dirname(os.path.realpath(_A ) )
_lowerCAmelCase : Union[str, Any] = os.path.join(_A , 'words.txt' )
_lowerCAmelCase : List[str] = ''
with open(_A ) as f:
_lowerCAmelCase : List[str] = f.readline()
_lowerCAmelCase : List[Any] = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )]
_lowerCAmelCase : Tuple = [
word
for word in [sum(ord(_A ) - 6_4 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(_A )
if __name__ == "__main__":
print(solution())
| 25 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCAmelCase : List[Any] = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "nat"
__magic_name__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , snake_case__=4 , snake_case__=3 , snake_case__=64 , snake_case__=[3, 4, 6, 5] , snake_case__=[2, 4, 8, 16] , snake_case__=7 , snake_case__=3.0 , snake_case__=True , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__="gelu" , snake_case__=0.02 , snake_case__=1E-5 , snake_case__=0.0 , snake_case__=None , snake_case__=None , **snake_case__ , ):
'''simple docstring'''
super().__init__(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = patch_size
_lowerCAmelCase : List[str] = num_channels
_lowerCAmelCase : Tuple = embed_dim
_lowerCAmelCase : Any = depths
_lowerCAmelCase : Dict = len(snake_case__ )
_lowerCAmelCase : str = num_heads
_lowerCAmelCase : Dict = kernel_size
_lowerCAmelCase : Union[str, Any] = mlp_ratio
_lowerCAmelCase : int = qkv_bias
_lowerCAmelCase : Optional[Any] = hidden_dropout_prob
_lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob
_lowerCAmelCase : List[str] = drop_path_rate
_lowerCAmelCase : Union[str, Any] = hidden_act
_lowerCAmelCase : Tuple = layer_norm_eps
_lowerCAmelCase : Dict = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_lowerCAmelCase : str = int(embed_dim * 2 ** (len(snake_case__ ) - 1) )
_lowerCAmelCase : Any = layer_scale_init_value
_lowerCAmelCase : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(snake_case__ ) + 1 )]
_lowerCAmelCase , _lowerCAmelCase : str = get_aligned_output_features_output_indices(
out_features=snake_case__ , out_indices=snake_case__ , stage_names=self.stage_names )
| 25 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
__magic_name__ = DiTPipeline
__magic_name__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__magic_name__ = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
__magic_name__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__magic_name__ = False
def a ( self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase : Tuple = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=snake_case__ , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=snake_case__ , )
_lowerCAmelCase : Tuple = AutoencoderKL()
_lowerCAmelCase : str = DDIMScheduler()
_lowerCAmelCase : Optional[Any] = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler}
return components
def a ( self , snake_case__ , snake_case__=0 ):
'''simple docstring'''
if str(snake_case__ ).startswith('mps' ):
_lowerCAmelCase : Tuple = torch.manual_seed(snake_case__ )
else:
_lowerCAmelCase : Dict = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ )
_lowerCAmelCase : Union[str, Any] = {
'class_labels': [1],
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = 'cpu'
_lowerCAmelCase : Tuple = self.get_dummy_components()
_lowerCAmelCase : Dict = self.pipeline_class(**snake_case__ )
pipe.to(snake_case__ )
pipe.set_progress_bar_config(disable=snake_case__ )
_lowerCAmelCase : Optional[Any] = self.get_dummy_inputs(snake_case__ )
_lowerCAmelCase : List[Any] = pipe(**snake_case__ ).images
_lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase : List[Any] = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
_lowerCAmelCase : List[str] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(snake_case__ , 1E-3 )
def a ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=snake_case__ , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def a ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Tuple = torch.manual_seed(0 )
_lowerCAmelCase : List[Any] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
_lowerCAmelCase : int = ['vase', 'umbrella', 'white shark', 'white wolf']
_lowerCAmelCase : Dict = pipe.get_label_ids(snake_case__ )
_lowerCAmelCase : Union[str, Any] = pipe(snake_case__ , generator=snake_case__ , num_inference_steps=40 , output_type='np' ).images
for word, image in zip(snake_case__ , snake_case__ ):
_lowerCAmelCase : Optional[int] = load_numpy(
F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' )
assert np.abs((expected_image - image).max() ) < 1E-2
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Any = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
_lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
_lowerCAmelCase : Optional[int] = ['vase', 'umbrella']
_lowerCAmelCase : List[Any] = pipe.get_label_ids(snake_case__ )
_lowerCAmelCase : Optional[Any] = torch.manual_seed(0 )
_lowerCAmelCase : Dict = pipe(snake_case__ , generator=snake_case__ , num_inference_steps=25 , output_type='np' ).images
for word, image in zip(snake_case__ , snake_case__ ):
_lowerCAmelCase : int = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F'/dit/{word}_512.npy' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 25 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
lowerCAmelCase : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : str = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
lowerCAmelCase : List[str] = {
"""roberta-base""": 5_12,
"""roberta-large""": 5_12,
"""roberta-large-mnli""": 5_12,
"""distilroberta-base""": 5_12,
"""roberta-base-openai-detector""": 5_12,
"""roberta-large-openai-detector""": 5_12,
}
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = ["input_ids", "attention_mask"]
__magic_name__ = RobertaTokenizer
def __init__( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="replace" , snake_case__="<s>" , snake_case__="</s>" , snake_case__="</s>" , snake_case__="<s>" , snake_case__="<unk>" , snake_case__="<pad>" , snake_case__="<mask>" , snake_case__=False , snake_case__=True , **snake_case__ , ):
'''simple docstring'''
super().__init__(
snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , )
_lowerCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : Tuple = getattr(snake_case__ , pre_tok_state.pop('type' ) )
_lowerCAmelCase : List[Any] = add_prefix_space
_lowerCAmelCase : List[str] = pre_tok_class(**snake_case__ )
_lowerCAmelCase : Union[str, Any] = add_prefix_space
_lowerCAmelCase : Union[str, Any] = 'post_processor'
_lowerCAmelCase : int = getattr(self.backend_tokenizer , snake_case__ , snake_case__ )
if tokenizer_component_instance:
_lowerCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_lowerCAmelCase : Any = tuple(state['sep'] )
if "cls" in state:
_lowerCAmelCase : str = tuple(state['cls'] )
_lowerCAmelCase : List[str] = False
if state.get('add_prefix_space' , snake_case__ ) != add_prefix_space:
_lowerCAmelCase : int = add_prefix_space
_lowerCAmelCase : Tuple = True
if state.get('trim_offsets' , snake_case__ ) != trim_offsets:
_lowerCAmelCase : Union[str, Any] = trim_offsets
_lowerCAmelCase : Optional[int] = True
if changes_to_apply:
_lowerCAmelCase : Any = getattr(snake_case__ , state.pop('type' ) )
_lowerCAmelCase : Optional[int] = component_class(**snake_case__ )
setattr(self.backend_tokenizer , snake_case__ , snake_case__ )
@property
def a ( self ):
'''simple docstring'''
if self._mask_token is None:
if self.verbose:
logger.error('Using mask_token, but it is not set yet.' )
return None
return str(self._mask_token )
@mask_token.setter
def a ( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value
_lowerCAmelCase : Tuple = value
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[int] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*snake_case__ , **snake_case__ )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : Optional[Any] = kwargs.get('is_split_into_words' , snake_case__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*snake_case__ , **snake_case__ )
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : int = self._tokenizer.model.save(snake_case__ , name=snake_case__ )
return tuple(snake_case__ )
def a ( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def a ( self , snake_case__ , snake_case__ = None ):
'''simple docstring'''
_lowerCAmelCase : str = [self.sep_token_id]
_lowerCAmelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 25 | 1 |
'''simple docstring'''
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def __get__( self , snake_case__ , snake_case__=None ):
'''simple docstring'''
if obj is None:
return self
if self.fget is None:
raise AttributeError('unreadable attribute' )
_lowerCAmelCase : Optional[int] = '__cached_' + self.fget.__name__
_lowerCAmelCase : List[Any] = getattr(snake_case__ , snake_case__ , snake_case__ )
if cached is None:
_lowerCAmelCase : Any = self.fget(snake_case__ )
setattr(snake_case__ , snake_case__ , snake_case__ )
return cached
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Tuple = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'invalid truth value {val!r}' )
def lowercase (_A ):
"""simple docstring"""
if is_torch_fx_proxy(_A ):
return True
if is_torch_available():
import torch
if isinstance(_A , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(_A , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(_A , (jnp.ndarray, Tracer) ):
return True
return isinstance(_A , np.ndarray )
def lowercase (_A ):
"""simple docstring"""
return isinstance(_A , np.ndarray )
def lowercase (_A ):
"""simple docstring"""
return _is_numpy(_A )
def lowercase (_A ):
"""simple docstring"""
import torch
return isinstance(_A , torch.Tensor )
def lowercase (_A ):
"""simple docstring"""
return False if not is_torch_available() else _is_torch(_A )
def lowercase (_A ):
"""simple docstring"""
import torch
return isinstance(_A , torch.device )
def lowercase (_A ):
"""simple docstring"""
return False if not is_torch_available() else _is_torch_device(_A )
def lowercase (_A ):
"""simple docstring"""
import torch
if isinstance(_A , _A ):
if hasattr(_A , _A ):
_lowerCAmelCase : Optional[Any] = getattr(_A , _A )
else:
return False
return isinstance(_A , torch.dtype )
def lowercase (_A ):
"""simple docstring"""
return False if not is_torch_available() else _is_torch_dtype(_A )
def lowercase (_A ):
"""simple docstring"""
import tensorflow as tf
return isinstance(_A , tf.Tensor )
def lowercase (_A ):
"""simple docstring"""
return False if not is_tf_available() else _is_tensorflow(_A )
def lowercase (_A ):
"""simple docstring"""
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(_A , 'is_symbolic_tensor' ):
return tf.is_symbolic_tensor(_A )
return type(_A ) == tf.Tensor
def lowercase (_A ):
"""simple docstring"""
return False if not is_tf_available() else _is_tf_symbolic_tensor(_A )
def lowercase (_A ):
"""simple docstring"""
import jax.numpy as jnp # noqa: F811
return isinstance(_A , jnp.ndarray )
def lowercase (_A ):
"""simple docstring"""
return False if not is_flax_available() else _is_jax(_A )
def lowercase (_A ):
"""simple docstring"""
if isinstance(_A , (dict, UserDict) ):
return {k: to_py_obj(_A ) for k, v in obj.items()}
elif isinstance(_A , (list, tuple) ):
return [to_py_obj(_A ) for o in obj]
elif is_tf_tensor(_A ):
return obj.numpy().tolist()
elif is_torch_tensor(_A ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(_A ):
return np.asarray(_A ).tolist()
elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def lowercase (_A ):
"""simple docstring"""
if isinstance(_A , (dict, UserDict) ):
return {k: to_numpy(_A ) for k, v in obj.items()}
elif isinstance(_A , (list, tuple) ):
return np.array(_A )
elif is_tf_tensor(_A ):
return obj.numpy()
elif is_torch_tensor(_A ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(_A ):
return np.asarray(_A )
else:
return obj
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
def a ( self ):
'''simple docstring'''
_lowerCAmelCase : Union[str, Any] = fields(self )
# Safety and consistency checks
if not len(snake_case__ ):
raise ValueError(F'{self.__class__.__name__} has no fields.' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' )
_lowerCAmelCase : List[str] = getattr(self , class_fields[0].name )
_lowerCAmelCase : str = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(snake_case__ ):
if isinstance(snake_case__ , snake_case__ ):
_lowerCAmelCase : Any = first_field.items()
_lowerCAmelCase : Any = True
else:
try:
_lowerCAmelCase : List[Any] = iter(snake_case__ )
_lowerCAmelCase : int = True
except TypeError:
_lowerCAmelCase : List[Any] = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(snake_case__ ):
if (
not isinstance(snake_case__ , (list, tuple) )
or not len(snake_case__ ) == 2
or not isinstance(element[0] , snake_case__ )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
_lowerCAmelCase : Optional[int] = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
_lowerCAmelCase : Dict = element[1]
elif first_field is not None:
_lowerCAmelCase : List[Any] = first_field
else:
for field in class_fields:
_lowerCAmelCase : str = getattr(self , field.name )
if v is not None:
_lowerCAmelCase : Any = v
def __delitem__( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' )
def a ( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' )
def __getitem__( self , snake_case__ ):
'''simple docstring'''
if isinstance(snake_case__ , snake_case__ ):
_lowerCAmelCase : Optional[Any] = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self , snake_case__ , snake_case__ ):
'''simple docstring'''
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(snake_case__ , snake_case__ )
super().__setattr__(snake_case__ , snake_case__ )
def __setitem__( self , snake_case__ , snake_case__ ):
'''simple docstring'''
super().__setitem__(snake_case__ , snake_case__ )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(snake_case__ , snake_case__ )
def a ( self ):
'''simple docstring'''
return tuple(self[k] for k in self.keys() )
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
@classmethod
def a ( cls , snake_case__ ):
'''simple docstring'''
raise ValueError(
F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' )
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "longest"
__magic_name__ = "max_length"
__magic_name__ = "do_not_pad"
class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ):
"""simple docstring"""
__magic_name__ = "pt"
__magic_name__ = "tf"
__magic_name__ = "np"
__magic_name__ = "jax"
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case__ ):
'''simple docstring'''
_lowerCAmelCase : List[Any] = context_managers
_lowerCAmelCase : str = ExitStack()
def __enter__( self ):
'''simple docstring'''
for context_manager in self.context_managers:
self.stack.enter_context(snake_case__ )
def __exit__( self , *snake_case__ , **snake_case__ ):
'''simple docstring'''
self.stack.__exit__(*snake_case__ , **snake_case__ )
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Optional[int] = infer_framework(_A )
if framework == "tf":
_lowerCAmelCase : Optional[int] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_lowerCAmelCase : List[str] = inspect.signature(model_class.forward ) # PyTorch models
else:
_lowerCAmelCase : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def lowercase (_A ):
"""simple docstring"""
_lowerCAmelCase : Optional[int] = model_class.__name__
_lowerCAmelCase : Dict = infer_framework(_A )
if framework == "tf":
_lowerCAmelCase : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
_lowerCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
_lowerCAmelCase : Any = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def lowercase (_A , _A = "" , _A = "." ):
"""simple docstring"""
def _flatten_dict(_A , _A="" , _A="." ):
for k, v in d.items():
_lowerCAmelCase : Dict = str(_A ) + delimiter + str(_A ) if parent_key else k
if v and isinstance(_A , _A ):
yield from flatten_dict(_A , _A , delimiter=_A ).items()
else:
yield key, v
return dict(_flatten_dict(_A , _A , _A ) )
@contextmanager
def lowercase (_A , _A = False ):
"""simple docstring"""
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def lowercase (_A , _A=None ):
"""simple docstring"""
if is_numpy_array(_A ):
return np.transpose(_A , axes=_A )
elif is_torch_tensor(_A ):
return array.T if axes is None else array.permute(*_A )
elif is_tf_tensor(_A ):
import tensorflow as tf
return tf.transpose(_A , perm=_A )
elif is_jax_tensor(_A ):
return jnp.transpose(_A , axes=_A )
else:
raise ValueError(f'Type not supported for transpose: {type(_A )}.' )
def lowercase (_A , _A ):
"""simple docstring"""
if is_numpy_array(_A ):
return np.reshape(_A , _A )
elif is_torch_tensor(_A ):
return array.reshape(*_A )
elif is_tf_tensor(_A ):
import tensorflow as tf
return tf.reshape(_A , _A )
elif is_jax_tensor(_A ):
return jnp.reshape(_A , _A )
else:
raise ValueError(f'Type not supported for reshape: {type(_A )}.' )
def lowercase (_A , _A=None ):
"""simple docstring"""
if is_numpy_array(_A ):
return np.squeeze(_A , axis=_A )
elif is_torch_tensor(_A ):
return array.squeeze() if axis is None else array.squeeze(dim=_A )
elif is_tf_tensor(_A ):
import tensorflow as tf
return tf.squeeze(_A , axis=_A )
elif is_jax_tensor(_A ):
return jnp.squeeze(_A , axis=_A )
else:
raise ValueError(f'Type not supported for squeeze: {type(_A )}.' )
def lowercase (_A , _A ):
"""simple docstring"""
if is_numpy_array(_A ):
return np.expand_dims(_A , _A )
elif is_torch_tensor(_A ):
return array.unsqueeze(dim=_A )
elif is_tf_tensor(_A ):
import tensorflow as tf
return tf.expand_dims(_A , axis=_A )
elif is_jax_tensor(_A ):
return jnp.expand_dims(_A , axis=_A )
else:
raise ValueError(f'Type not supported for expand_dims: {type(_A )}.' )
def lowercase (_A ):
"""simple docstring"""
if is_numpy_array(_A ):
return np.size(_A )
elif is_torch_tensor(_A ):
return array.numel()
elif is_tf_tensor(_A ):
import tensorflow as tf
return tf.size(_A )
elif is_jax_tensor(_A ):
return array.size
else:
raise ValueError(f'Type not supported for expand_dims: {type(_A )}.' )
def lowercase (_A , _A ):
"""simple docstring"""
for key, value in auto_map.items():
if isinstance(_A , (tuple, list) ):
_lowerCAmelCase : str = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value]
elif value is not None and "--" not in value:
_lowerCAmelCase : Dict = f'{repo_id}--{value}'
return auto_map
def lowercase (_A ):
"""simple docstring"""
for base_class in inspect.getmro(_A ):
_lowerCAmelCase : List[Any] = base_class.__module__
_lowerCAmelCase : str = base_class.__name__
if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith('torch' ) or name == "PreTrainedModel":
return "pt"
elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'Could not infer framework from class {model_class}.' )
| 25 |
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = 0 # The first color of the flag.
lowerCAmelCase : Optional[int] = 1 # The second color of the flag.
lowerCAmelCase : int = 2 # The third color of the flag.
lowerCAmelCase : Any = (red, white, blue)
def lowercase (_A ):
"""simple docstring"""
if not sequence:
return []
if len(_A ) == 1:
return list(_A )
_lowerCAmelCase : Optional[int] = 0
_lowerCAmelCase : List[str] = len(_A ) - 1
_lowerCAmelCase : Optional[Any] = 0
while mid <= high:
if sequence[mid] == colors[0]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[mid], sequence[low]
low += 1
mid += 1
elif sequence[mid] == colors[1]:
mid += 1
elif sequence[mid] == colors[2]:
_lowerCAmelCase , _lowerCAmelCase : Tuple = sequence[high], sequence[mid]
high -= 1
else:
_lowerCAmelCase : Optional[int] = f'The elements inside the sequence must contains only {colors} values'
raise ValueError(_A )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase : str = input("""Enter numbers separated by commas:\n""").strip()
lowerCAmelCase : Dict = [int(item.strip()) for item in user_input.split(""",""")]
print(F'''{dutch_national_flag_sort(unsorted)}''')
| 25 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.