code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float , ) ->float: """simple docstring""" __snake_case : Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError('''All input parameters must be positive''' ) if any(p > 1 for p in parameters[1:4] ): raise ValueError('''Relative densities cannot be greater than one''' ) else: __snake_case : Optional[Any] = 1 - (matter_density + radiation_density + dark_energy) __snake_case : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) __snake_case : List[Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation SCREAMING_SNAKE_CASE : Any = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
361
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
0
"""simple docstring""" import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """encoder.layer_norm_for_extract""": """layer_norm_for_extract""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """label_embs_concat""": """label_embeddings_concat""", """mask_emb""": """masked_spec_embed""", """spk_proj""": """speaker_proj""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """label_embeddings_concat""", """speaker_proj""", """layer_norm_for_extract""", ] def lowercase ( _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : Any , _snake_case : Optional[Any] ) ->Any: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Optional[int] = getattr(_snake_case , _snake_case ) if weight_type is not None: __snake_case : List[str] = getattr(_snake_case , _snake_case ).shape else: __snake_case : Dict = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : Optional[int] = value elif weight_type == "weight_g": __snake_case : Union[str, Any] = value elif weight_type == "weight_v": __snake_case : Tuple = value elif weight_type == "bias": __snake_case : Optional[Any] = value else: __snake_case : Dict = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : Optional[Any] ) ->int: """simple docstring""" __snake_case : str = [] __snake_case : int = fairseq_model.state_dict() __snake_case : str = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): __snake_case : List[Any] = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): __snake_case : List[Any] = '''unispeech_sat.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('''.''' )[:-1] ) != key): # special case since naming is very similar continue __snake_case : List[str] = True if "*" in mapped_key: __snake_case : Optional[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Dict = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : List[Any] = '''weight_g''' elif "weight_v" in name: __snake_case : Optional[Any] = '''weight_v''' elif "bias" in name: __snake_case : Union[str, Any] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[str] = '''weight''' else: __snake_case : Dict = None set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) continue if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : List[Any] , _snake_case : Tuple , _snake_case : Tuple , _snake_case : List[str] , _snake_case : str ) ->str: """simple docstring""" __snake_case : Optional[Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : Any = name.split('''.''' ) __snake_case : Tuple = int(items[0] ) __snake_case : Union[str, Any] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : List[Any] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Optional[int] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : Optional[Any] , _snake_case : Optional[int] , _snake_case : List[Any]=None , _snake_case : int=None , _snake_case : Union[str, Any]=True ) ->str: """simple docstring""" if config_path is not None: __snake_case : int = UniSpeechSatConfig.from_pretrained(_snake_case ) else: __snake_case : str = UniSpeechSatConfig() __snake_case : Optional[Any] = '''''' if is_finetuned: __snake_case : Optional[Any] = UniSpeechSatForCTC(_snake_case ) else: __snake_case : Tuple = UniSpeechSatForPreTraining(_snake_case ) __snake_case : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __snake_case : Any = model[0].eval() recursively_load_weights(_snake_case , _snake_case ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowercase ( _snake_case : Optional[Any] ) ->str: """simple docstring""" __snake_case : Optional[int] = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] __snake_case : List[Any] = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : str = True if '''large''' in model_name or '''huge''' in model_name else False __snake_case : int = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __snake_case : Optional[Any] = [3, 3, 3, 3] __snake_case : Optional[Any] = [5, 5, 5, 5] elif "fl4" in model_name: __snake_case : Optional[Any] = [4, 4, 4, 4] __snake_case : Any = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __snake_case : List[Any] = [3, 3, 3, 3] if "lrf" in model_name: __snake_case : Dict = [3, 3, 3, 3] else: __snake_case : int = [2, 2, 2, 2] if "tiny" in model_name: __snake_case : Dict = 96 elif "small" in model_name: __snake_case : Dict = 96 elif "base" in model_name: __snake_case : Dict = 128 elif "large" in model_name: __snake_case : int = 192 elif "xlarge" in model_name: __snake_case : int = 256 elif "huge" in model_name: __snake_case : Tuple = 352 # set label information __snake_case : Optional[int] = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: __snake_case : List[Any] = '''imagenet-22k-id2label.json''' else: __snake_case : str = '''imagenet-1k-id2label.json''' __snake_case : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) __snake_case : Tuple = {int(_snake_case ): v for k, v in idalabel.items()} __snake_case : Union[str, Any] = {v: k for k, v in idalabel.items()} __snake_case : Union[str, Any] = FocalNetConfig( embed_dim=_snake_case , depths=_snake_case , focal_levels=_snake_case , focal_windows=_snake_case , use_conv_embed=_snake_case , idalabel=_snake_case , labelaid=_snake_case , use_post_layernorm=_snake_case , use_layerscale=_snake_case , ) return config def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" if "patch_embed.proj" in name: __snake_case : Optional[int] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __snake_case : List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __snake_case : List[str] = '''encoder.''' + name if "encoder.layers" in name: __snake_case : str = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: __snake_case : Tuple = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: __snake_case : Dict = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __snake_case : Optional[int] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __snake_case : Tuple = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __snake_case : int = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": __snake_case : str = '''layernorm.weight''' if name == "norm.bias": __snake_case : int = '''layernorm.bias''' if "head" in name: __snake_case : Optional[Any] = name.replace('''head''' , '''classifier''' ) else: __snake_case : Any = '''focalnet.''' + name return name def lowercase ( _snake_case : Any , _snake_case : Optional[Any] , _snake_case : str=False ) ->Dict: """simple docstring""" __snake_case : Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on __snake_case : Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , _snake_case ) __snake_case : Any = torch.hub.load_state_dict_from_url(_snake_case , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): __snake_case : Dict = state_dict.pop(_snake_case ) __snake_case : Dict = val __snake_case : int = get_focalnet_config(_snake_case ) __snake_case : List[Any] = FocalNetForImageClassification(_snake_case ) model.eval() # load state dict model.load_state_dict(_snake_case ) # verify conversion __snake_case : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __snake_case : Dict = BitImageProcessor( do_resize=_snake_case , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=_snake_case , crop_size=224 , do_normalize=_snake_case , image_mean=_snake_case , image_std=_snake_case , ) __snake_case : Optional[int] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) __snake_case : Tuple = processor(images=_snake_case , return_tensors='''pt''' ) __snake_case : List[str] = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) __snake_case : str = image_transforms(_snake_case ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , _snake_case , atol=1e-4 ) __snake_case : Any = model(**_snake_case ) __snake_case : Dict = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __snake_case : Any = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": __snake_case : Any = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": __snake_case : Dict = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": __snake_case : Union[str, Any] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": __snake_case : Optional[int] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": __snake_case : Dict = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , _snake_case , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) processor.save_pretrained(_snake_case ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""focalnet-tiny""", type=str, help="""Name of the FocalNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub.""", ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
"""simple docstring""" import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class _UpperCAmelCase ( TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): '''simple docstring''' def __init__(self , a_=None , **a_ ): '''simple docstring''' super().__init__(features=a_ ) __snake_case : Dict = torch_tensor_kwargs import torch # noqa import torch at initialization def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch if isinstance(a_ , a_ ) and column: if all( isinstance(a_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(a_ ) return column def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch if isinstance(a_ , (str, bytes, type(a_ )) ): return value elif isinstance(a_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __snake_case : str = {} if isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __snake_case : Dict = {'''dtype''': torch.intaa} elif isinstance(a_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __snake_case : Tuple = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(a_ , PIL.Image.Image ): __snake_case : Any = np.asarray(a_ ) return torch.tensor(a_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(a_ , '''__array__''' ) and not isinstance(a_ , torch.Tensor ): __snake_case : List[str] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(a_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) elif isinstance(a_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(a_ ) for substruct in data_struct] ) return self._tensorize(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return map_nested(self._recursive_tensorize , a_ , map_list=a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_row(a_ ) __snake_case : Dict = self.python_features_decoder.decode_row(a_ ) return self.recursive_tensorize(a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.numpy_arrow_extractor().extract_column(a_ ) __snake_case : Dict = self.python_features_decoder.decode_column(a_ , pa_table.column_names[0] ) __snake_case : List[Any] = self.recursive_tensorize(a_ ) __snake_case : Dict = self._consolidate(a_ ) return column def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[str] = self.numpy_arrow_extractor().extract_batch(a_ ) __snake_case : Tuple = self.python_features_decoder.decode_batch(a_ ) __snake_case : str = self.recursive_tensorize(a_ ) for column_name in batch: __snake_case : Union[str, Any] = self._consolidate(batch[column_name] ) return batch
364
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """yjernite/retribert-base-uncased""": ( """https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE : Optional[Any] = { """yjernite/retribert-base-uncased""": 512, } SCREAMING_SNAKE_CASE : Union[str, Any] = { """yjernite/retribert-base-uncased""": {"""do_lower_case""": True}, } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ =RetriBertTokenizer lowerCamelCase__ =['input_ids', 'attention_mask'] def __init__(self , a_=None , a_=None , a_=True , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_=True , a_=None , **a_ , ): '''simple docstring''' super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) __snake_case : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , a_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , a_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , a_ ) != tokenize_chinese_chars ): __snake_case : Optional[int] = getattr(a_ , normalizer_state.pop('''type''' ) ) __snake_case : Tuple = do_lower_case __snake_case : Optional[Any] = strip_accents __snake_case : Union[str, Any] = tokenize_chinese_chars __snake_case : int = normalizer_class(**a_ ) __snake_case : Union[str, Any] = do_lower_case def SCREAMING_SNAKE_CASE (self , a_ , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : int = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : List[str] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : int = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Optional[Any] = { """google/rembert""": 256, } SCREAMING_SNAKE_CASE : Any = """▁""" class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =RemBertTokenizer def __init__(self , a_=None , a_=None , a_=True , a_=True , a_=False , a_="[CLS]" , a_="[SEP]" , a_="<unk>" , a_="[SEP]" , a_="<pad>" , a_="[CLS]" , a_="[MASK]" , **a_ , ): '''simple docstring''' __snake_case : Dict = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , ) __snake_case : List[Any] = do_lower_case __snake_case : List[str] = remove_space __snake_case : int = keep_accents __snake_case : str = vocab_file __snake_case : Dict = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Any = [self.sep_token_id] __snake_case : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : str = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not os.path.isdir(a_ ): logger.error('''Vocabulary path ({}) should be a directory'''.format(a_ ) ) return __snake_case : Tuple = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
0
"""simple docstring""" SCREAMING_SNAKE_CASE : Dict = [ (1000, """M"""), (900, """CM"""), (500, """D"""), (400, """CD"""), (100, """C"""), (90, """XC"""), (50, """L"""), (40, """XL"""), (10, """X"""), (9, """IX"""), (5, """V"""), (4, """IV"""), (1, """I"""), ] def lowercase ( _snake_case : str ) ->int: """simple docstring""" __snake_case : Optional[int] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} __snake_case : Optional[Any] = 0 __snake_case : List[Any] = 0 while place < len(_snake_case ): if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def lowercase ( _snake_case : int ) ->str: """simple docstring""" __snake_case : Union[str, Any] = [] for arabic, roman in ROMAN: (__snake_case) : List[str] = divmod(_snake_case , _snake_case ) result.append(roman * factor ) if number == 0: break return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class _UpperCAmelCase ( __snake_case, __snake_case ): '''simple docstring''' lowerCamelCase__ ='nat' lowerCamelCase__ ={ 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=4 , a_=3 , a_=64 , a_=[3, 4, 6, 5] , a_=[2, 4, 8, 16] , a_=7 , a_=3.0 , a_=True , a_=0.0 , a_=0.0 , a_=0.1 , a_="gelu" , a_=0.02 , a_=1E-5 , a_=0.0 , a_=None , a_=None , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : List[str] = patch_size __snake_case : str = num_channels __snake_case : Tuple = embed_dim __snake_case : Union[str, Any] = depths __snake_case : Optional[Any] = len(a_ ) __snake_case : Tuple = num_heads __snake_case : str = kernel_size __snake_case : Optional[int] = mlp_ratio __snake_case : int = qkv_bias __snake_case : Any = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : Dict = drop_path_rate __snake_case : List[str] = hidden_act __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Optional[Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case : Optional[int] = int(embed_dim * 2 ** (len(a_ ) - 1) ) __snake_case : Any = layer_scale_init_value __snake_case : Tuple = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(a_ ) + 1 )] __snake_case : int = get_aligned_output_features_output_indices( out_features=a_ , out_indices=a_ , stage_names=self.stage_names )
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
"""simple docstring""" import datasets SCREAMING_SNAKE_CASE : Optional[Any] = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ SCREAMING_SNAKE_CASE : List[str] = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ SCREAMING_SNAKE_CASE : str = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def lowercase ( _snake_case : str , _snake_case : str ) ->Any: """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' return {"accuracy": simple_accuracy(a_ , a_ )}
369
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """sail/poolformer_s12""": """https://huggingface.co/sail/poolformer_s12/resolve/main/config.json""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='poolformer' def __init__(self , a_=3 , a_=16 , a_=16 , a_=3 , a_=4.0 , a_=[2, 2, 6, 2] , a_=[64, 1_28, 3_20, 5_12] , a_=[7, 3, 3, 3] , a_=[4, 2, 2, 2] , a_=[2, 1, 1, 1] , a_=4 , a_=0.0 , a_="gelu" , a_=True , a_=1E-5 , a_=0.02 , **a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = num_channels __snake_case : str = patch_size __snake_case : int = stride __snake_case : Optional[int] = padding __snake_case : Any = pool_size __snake_case : int = hidden_sizes __snake_case : Optional[Any] = mlp_ratio __snake_case : Any = depths __snake_case : Optional[int] = patch_sizes __snake_case : Optional[Any] = strides __snake_case : Optional[int] = num_encoder_blocks __snake_case : List[str] = drop_path_rate __snake_case : Dict = hidden_act __snake_case : Optional[Any] = use_layer_scale __snake_case : int = layer_scale_init_value __snake_case : int = initializer_range super().__init__(**a_ ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =version.parse('1.11' ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 2E-3
370
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
0
"""simple docstring""" def lowercase ( _snake_case : int = 600_851_475_143 ) ->int: """simple docstring""" try: __snake_case : int = int(_snake_case ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) __snake_case : Tuple = 1 __snake_case : str = 2 while i * i <= n: while n % i == 0: __snake_case : List[Any] = i n //= i i += 1 if n > 1: __snake_case : Optional[int] = n return int(_snake_case ) if __name__ == "__main__": print(F'{solution() = }')
371
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml SCREAMING_SNAKE_CASE : Union[str, Any] = NewType("""DataClass""", Any) SCREAMING_SNAKE_CASE : str = NewType("""DataClassType""", Any) def lowercase ( _snake_case : Optional[int] ) ->List[str]: """simple docstring""" if isinstance(_snake_case , _snake_case ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def lowercase ( _snake_case : list ) ->Callable[[str], Any]: """simple docstring""" __snake_case : int = {str(_snake_case ): choice for choice in choices} return lambda _snake_case : str_to_choice.get(_snake_case , _snake_case ) def lowercase ( *, _snake_case : Union[str, List[str]] = None , _snake_case : str = None , _snake_case : Any = dataclasses.MISSING , _snake_case : Callable[[], Any] = dataclasses.MISSING , _snake_case : dict = None , **_snake_case : str , ) ->dataclasses.Field: """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls __snake_case : str = {} if aliases is not None: __snake_case : Any = aliases if help is not None: __snake_case : Dict = help return dataclasses.field(metadata=_snake_case , default=_snake_case , default_factory=_snake_case , **_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , **a_ ): '''simple docstring''' if "formatter_class" not in kwargs: __snake_case : Dict = ArgumentDefaultsHelpFormatter super().__init__(**a_ ) if dataclasses.is_dataclass(a_ ): __snake_case : Optional[int] = [dataclass_types] __snake_case : Any = list(a_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(a_ ) @staticmethod def SCREAMING_SNAKE_CASE (a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = f"""--{field.name}""" __snake_case : Optional[Any] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , a_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) __snake_case : Optional[Any] = kwargs.pop('''aliases''' , [] ) if isinstance(a_ , a_ ): __snake_case : Tuple = [aliases] __snake_case : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(a_ , '''UnionType''' ) and isinstance(a_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(a_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' f""" Problem encountered in field '{field.name}'.""" ) if type(a_ ) not in field.type.__args__: # filter `str` in Union __snake_case : Optional[int] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] __snake_case : List[Any] = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) __snake_case : List[str] = ( field.type.__args__[0] if isinstance(a_ , field.type.__args__[1] ) else field.type.__args__[1] ) __snake_case : Union[str, Any] = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) __snake_case : Optional[int] = {} if origin_type is Literal or (isinstance(field.type , a_ ) and issubclass(field.type , a_ )): if origin_type is Literal: __snake_case : int = field.type.__args__ else: __snake_case : Tuple = [x.value for x in field.type] __snake_case : Tuple = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: __snake_case : List[Any] = field.default else: __snake_case : Union[str, Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument __snake_case : List[str] = copy(a_ ) # Hack because type=bool in argparse does not behave as we want. __snake_case : Tuple = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. __snake_case : str = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way __snake_case : Optional[int] = default # This tells argparse we accept 0 or 1 value after --field_name __snake_case : Optional[Any] = '''?''' # This is the value that will get picked if we do --field_name (without value) __snake_case : Any = True elif isclass(a_ ) and issubclass(a_ , a_ ): __snake_case : List[Any] = field.type.__args__[0] __snake_case : List[Any] = '''+''' if field.default_factory is not dataclasses.MISSING: __snake_case : Any = field.default_factory() elif field.default is dataclasses.MISSING: __snake_case : List[Any] = True else: __snake_case : Any = field.type if field.default is not dataclasses.MISSING: __snake_case : Optional[int] = field.default elif field.default_factory is not dataclasses.MISSING: __snake_case : Tuple = field.default_factory() else: __snake_case : Tuple = True parser.add_argument(a_ , *a_ , **a_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): __snake_case : List[str] = False parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if hasattr(a_ , '''_argument_group_name''' ): __snake_case : Optional[Any] = self.add_argument_group(dtype._argument_group_name ) else: __snake_case : List[str] = self try: __snake_case : Dict[str, type] = get_type_hints(a_ ) except NameError: raise RuntimeError( f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(a_ ): __snake_case : int = '''.'''.join(map(a_ , sys.version_info[:3] ) ) raise RuntimeError( f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(a_ ): if not field.init: continue __snake_case : List[Any] = type_hints[field.name] self._parse_dataclass_field(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_=None , a_=False , a_=True , a_=None , a_=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): __snake_case : Union[str, Any] = [] if args_filename: args_files.append(Path(a_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values __snake_case : Union[str, Any] = ArgumentParser() args_file_parser.add_argument(a_ , type=a_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) __snake_case : Optional[Any] = args_file_parser.parse_known_args(args=a_ ) __snake_case : Union[str, Any] = vars(a_ ).get(args_file_flag.lstrip('''-''' ) , a_ ) if cmd_args_file_paths: args_files.extend([Path(a_ ) for p in cmd_args_file_paths] ) __snake_case : Dict = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last __snake_case : List[str] = file_args + args if args is not None else file_args + sys.argv[1:] __snake_case : List[str] = self.parse_known_args(args=a_ ) __snake_case : str = [] for dtype in self.dataclass_types: __snake_case : Any = {f.name for f in dataclasses.fields(a_ ) if f.init} __snake_case : Optional[Any] = {k: v for k, v in vars(a_ ).items() if k in keys} for k in keys: delattr(a_ , a_ ) __snake_case : str = dtype(**a_ ) outputs.append(a_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(a_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' __snake_case : Tuple = set(args.keys() ) __snake_case : Optional[int] = [] for dtype in self.dataclass_types: __snake_case : List[str] = {f.name for f in dataclasses.fields(a_ ) if f.init} __snake_case : List[Any] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) __snake_case : List[Any] = dtype(**a_ ) outputs.append(a_ ) if not allow_extra_keys and unused_keys: raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(a_ )}""" ) return tuple(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' with open(Path(a_ ) , encoding='''utf-8''' ) as open_json_file: __snake_case : List[Any] = json.loads(open_json_file.read() ) __snake_case : Optional[Any] = self.parse_dict(a_ , allow_extra_keys=a_ ) return tuple(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ): '''simple docstring''' __snake_case : List[str] = self.parse_dict(yaml.safe_load(Path(a_ ).read_text() ) , allow_extra_keys=a_ ) return tuple(a_ )
350
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowercase ( _snake_case : SplitDict ) ->Optional[int]: """simple docstring""" __snake_case : str = split_dict._to_yaml_list() assert len(_snake_case ) == len(_snake_case ) __snake_case : Optional[Any] = SplitDict._from_yaml_list(_snake_case ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump __snake_case : Any = None # the split name of split_dict takes over the name of the split info object __snake_case : int = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=_snake_case ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowercase ( _snake_case : Optional[Any] ) ->int: """simple docstring""" __snake_case : Tuple = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
351
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
352
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
0
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
353
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right SCREAMING_SNAKE_CASE : str = 25_6047 SCREAMING_SNAKE_CASE : Union[str, Any] = 25_6145 @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( __snake_case, unittest.TestCase ): lowerCamelCase__ =NllbTokenizer lowerCamelCase__ =NllbTokenizerFast lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ ={} def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __snake_case : Dict = NllbTokenizer(a_ , keep_accents=a_ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = NllbTokenizer(a_ , keep_accents=a_ ) __snake_case : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(a_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __snake_case : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __snake_case : List[str] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case : str = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : Any = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) __snake_case : str = self.tokenizer_class.from_pretrained(a_ , **a_ ) __snake_case : List[Any] = tempfile.mkdtemp() __snake_case : List[Any] = tokenizer_r.save_pretrained(a_ ) __snake_case : Any = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __snake_case : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(a_ , a_ ) # Checks everything loads correctly in the same way __snake_case : int = tokenizer_r.from_pretrained(a_ ) __snake_case : Dict = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=True __snake_case : str = tempfile.mkdtemp() __snake_case : Any = tokenizer_r.save_pretrained(a_ , legacy_format=a_ ) __snake_case : Dict = tokenizer_p.save_pretrained(a_ ) # Checks it save with the same files self.assertSequenceEqual(a_ , a_ ) # Checks everything loads correctly in the same way __snake_case : List[Any] = tokenizer_r.from_pretrained(a_ ) __snake_case : Any = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) # Save tokenizer rust, legacy_format=False __snake_case : Dict = tempfile.mkdtemp() __snake_case : Optional[Any] = tokenizer_r.save_pretrained(a_ , legacy_format=a_ ) __snake_case : str = tokenizer_p.save_pretrained(a_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case : Union[str, Any] = tokenizer_r.from_pretrained(a_ ) __snake_case : Union[str, Any] = tokenizer_p.from_pretrained(a_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(a_ , a_ ) ) shutil.rmtree(a_ ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.test_seqaseq: return __snake_case : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. __snake_case : List[str] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for''' ''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons''' ''' will only worsen the violence and misery for millions of people.''', ] __snake_case : Optional[Any] = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al''' ''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi''' ''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] try: __snake_case : Optional[int] = tokenizer.prepare_seqaseq_batch( src_texts=a_ , tgt_texts=a_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __snake_case : Tuple = tokenizer.prepare_seqaseq_batch( a_ , tgt_texts=a_ , max_length=3 , return_tensors='''pt''' ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __snake_case : Optional[Any] = tokenizer.prepare_seqaseq_batch( src_texts=a_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn('''decoder_input_ids''' , a_ ) @unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __snake_case : str = [AddedToken('''<special>''' , lstrip=a_ )] __snake_case : str = self.rust_tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , **a_ ) __snake_case : Dict = tokenizer_r.encode('''Hey this is a <special> token''' ) __snake_case : List[Any] = tokenizer_r.encode('''<special>''' , add_special_tokens=a_ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained( a_ , additional_special_tokens=a_ , **a_ ) __snake_case : Optional[int] = tokenizer_p.encode('''Hey this is a <special> token''' ) __snake_case : List[Any] = tokenizer_cr.encode('''Hey this is a <special> token''' ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , a_ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): lowerCamelCase__ ='facebook/nllb-200-distilled-600M' lowerCamelCase__ =[ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCamelCase__ =[ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCamelCase__ =[ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def SCREAMING_SNAKE_CASE (cls ): '''simple docstring''' __snake_case : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' ) __snake_case : Union[str, Any] = 1 return cls def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_60_57 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertIn(a_ , self.tokenizer.all_special_ids ) # fmt: off __snake_case : str = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on __snake_case : List[Any] = self.tokenizer.decode(a_ , skip_special_tokens=a_ ) __snake_case : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ ) self.assertNotIn(self.tokenizer.eos_token , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , a_ ) __snake_case : Optional[int] = 10 __snake_case : Optional[int] = self.tokenizer(a_ , max_length=a_ , truncation=a_ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , a_ ) self.assertEqual(len(a_ ) , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_62_03, 3] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = tempfile.mkdtemp() __snake_case : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(a_ ) __snake_case : Tuple = NllbTokenizer.from_pretrained(a_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a_ ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __snake_case : List[Any] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] ) self.assertIsInstance(a_ , a_ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __snake_case : Union[str, Any] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , a_ ) self.assertEqual(a_ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.tokenizer(self.src_text , padding=a_ , truncation=a_ , max_length=3 , return_tensors='''pt''' ) __snake_case : int = self.tokenizer( text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=10 , return_tensors='''pt''' ) __snake_case : Any = targets['''input_ids'''] __snake_case : List[str] = shift_tokens_right( a_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( nested_simplify(a_ ) , { # A, test, EOS, en_XX '''input_ids''': [[25_60_47, 70, 73_56, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_60_57, } , ) @require_torch def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = True __snake_case : Optional[int] = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) __snake_case : Union[str, Any] = False __snake_case : str = self.tokenizer( '''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
354
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
0
from __future__ import annotations class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ = 0 ): '''simple docstring''' __snake_case : Tuple = key def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(a_ ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : Union[str, Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 2_55 return [chr(ord(a_ ) ^ key ) for ch in content] def SCREAMING_SNAKE_CASE (self , a_ , a_ = 0 ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : List[str] = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __snake_case : Optional[Any] = '''''' for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def SCREAMING_SNAKE_CASE (self , a_ , a_ = 0 ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) __snake_case : int = key or self.__key or 1 # make sure key can be any size while key > 2_55: key -= 2_55 # This will be returned __snake_case : int = '''''' for ch in content: ans += chr(ord(a_ ) ^ key ) return ans def SCREAMING_SNAKE_CASE (self , a_ , a_ = 0 ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) try: with open(a_ ) as fin, open('''encrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(a_ , a_ ) ) except OSError: return False return True def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' assert isinstance(a_ , a_ ) and isinstance(a_ , a_ ) try: with open(a_ ) as fin, open('''decrypt.out''' , '''w+''' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(a_ , a_ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
355
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
0
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->int: """simple docstring""" if not isinstance(_snake_case , _snake_case ): __snake_case : Tuple = f"""Input value of [number={number}] must be an integer""" raise TypeError(_snake_case ) if number < 1: __snake_case : Any = f"""Input value of [number={number}] must be > 0""" raise ValueError(_snake_case ) elif number == 1: return 3 elif number == 2: return 5 else: __snake_case : Any = int(math.log(number // 3 , 2 ) ) + 2 __snake_case : Tuple = [3, 5] __snake_case : Tuple = 2 __snake_case : Union[str, Any] = 3 for block in range(1 , _snake_case ): for _ in range(_snake_case ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): SCREAMING_SNAKE_CASE : Dict = 0 try: SCREAMING_SNAKE_CASE : List[str] = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
356
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
0
"""simple docstring""" import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def lowercase ( _snake_case : str , _snake_case : str ) ->Any: """simple docstring""" __snake_case : int = RobertaPreLayerNormConfig.from_pretrained( _snake_case , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict __snake_case : Optional[int] = torch.load(hf_hub_download(repo_id=_snake_case , filename='''pytorch_model.bin''' ) ) __snake_case : Optional[int] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): __snake_case : Union[str, Any] = '''roberta_prelayernorm.''' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue __snake_case : Tuple = tensor_value __snake_case : List[Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=_snake_case , config=_snake_case , state_dict=_snake_case ) model.save_pretrained(_snake_case ) # convert tokenizer __snake_case : int = AutoTokenizer.from_pretrained(_snake_case ) tokenizer.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint-repo""", default=None, type=str, required=True, help="""Path the official PyTorch dump, e.g. 'andreasmadsen/efficient_mlm_m0.40'.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
357
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
0
"""simple docstring""" from math import pi def lowercase ( _snake_case : int , _snake_case : int ) ->float: """simple docstring""" return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
"""simple docstring""" import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) def lowercase ( _snake_case : bool , _snake_case : bool ) ->Optional[int]: """simple docstring""" def run_func(_snake_case : Any ): @wraps(_snake_case ) def run_in_eager_mode(*_snake_case : Union[str, Any] , **_snake_case : Optional[Any] ): return func(*_snake_case , **_snake_case ) @wraps(_snake_case ) @tf.function(experimental_compile=_snake_case ) def run_in_graph_mode(*_snake_case : Optional[int] , **_snake_case : List[str] ): return func(*_snake_case , **_snake_case ) if do_eager_mode is True: if use_xla is not False: raise ValueError( '''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int ) ->["tf.Tensor"]: """simple docstring""" __snake_case : Any = random.Random() __snake_case : Optional[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ ='TensorFlow' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return tf.__version__ def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case : List[str] = self._prepare_inference_func(a_ , a_ , a_ ) return self._measure_speed(_inference ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case : Optional[int] = self._prepare_train_func(a_ , a_ , a_ ) return self._measure_speed(_train ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a_ ) __snake_case : List[str] = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case : Tuple = self._prepare_inference_func(a_ , a_ , a_ ) return self._measure_memory(_inference ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a_ ) __snake_case : str = self.args.strategy if strategy is None: raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' ) __snake_case : str = self._prepare_train_func(a_ , a_ , a_ ) return self._measure_memory(_train ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __snake_case : Dict = ( hasattr(a_ , '''architectures''' ) and isinstance(config.architectures , a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : List[str] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : str = __import__('''transformers''' , fromlist=[model_class] ) __snake_case : Optional[Any] = getattr(a_ , a_ ) __snake_case : Dict = model_cls(a_ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __snake_case : Optional[Any] = TF_MODEL_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently __snake_case : Any = config.vocab_size if hasattr(a_ , '''vocab_size''' ) else config.encoder.vocab_size __snake_case : Union[str, Any] = random_input_ids(a_ , a_ , a_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(a_ , decoder_input_ids=a_ , training=a_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(a_ , training=a_ ) __snake_case : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' ) if self.args.fpaa: raise NotImplementedError('''Mixed precision is currently not supported.''' ) __snake_case : Optional[Any] = ( hasattr(a_ , '''architectures''' ) and isinstance(config.architectures , a_ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: __snake_case : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model __snake_case : Any = __import__('''transformers''' , fromlist=[model_class] ) __snake_case : List[str] = getattr(a_ , a_ ) __snake_case : int = model_cls(a_ ) except ImportError: raise ImportError( f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to""" ''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' ) else: __snake_case : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ ) # encoder-decoder has vocab size saved differently __snake_case : Optional[Any] = config.vocab_size if hasattr(a_ , '''vocab_size''' ) else config.encoder.vocab_size __snake_case : Union[str, Any] = random_input_ids(a_ , a_ , a_ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): __snake_case : str = model(a_ , decoder_input_ids=a_ , labels=a_ , training=a_ )[0] __snake_case : Any = tf.gradients(a_ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): __snake_case : Union[str, Any] = model(a_ , labels=a_ , training=a_ )[0] __snake_case : List[Any] = tf.gradients(a_ , model.trainable_variables ) return gradients __snake_case : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' ) timeit.repeat(a_ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average __snake_case : Union[str, Any] = timeit.repeat( a_ , repeat=self.args.repeat , number=10 , ) return min(a_ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' logger.info( '''Note that TensorFlow allocates more memory than ''' '''it might need to speed up computation. ''' '''The memory reported here corresponds to the memory ''' '''reported by `nvidia-smi`, which can vary depending ''' '''on total available memory on the GPU that is used.''' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory''' ''' consumption line by line.''' ) __snake_case : List[Any] = start_memory_tracing('''transformers''' ) if self.args.is_tpu: # tpu raise NotImplementedError( '''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking''' ''' with `args.memory=False`''' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( '''py3nvml not installed, we won\'t log GPU memory usage. ''' '''Install py3nvml (pip install py3nvml) to log information about GPU.''' ) __snake_case : Any = '''N/A''' else: logger.info( '''Measuring total GPU usage on GPU device. Make sure to not have additional processes''' ''' running on the same GPU.''' ) # init nvml nvml.nvmlInit() func() __snake_case : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) __snake_case : Any = nvml.nvmlDeviceGetMemoryInfo(a_ ) __snake_case : List[str] = meminfo.used __snake_case : Any = Memory(a_ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( '''When enabling line by line tracing, the max peak memory for CPU is inaccurate in''' ''' TensorFlow.''' ) __snake_case : int = None else: __snake_case : Optional[Any] = measure_peak_memory_cpu(a_ ) __snake_case : str = Memory(a_ ) if isinstance(a_ , a_ ) else memory_bytes if self.args.trace_memory_line_by_line: __snake_case : str = stop_memory_tracing(a_ ) if memory is None: __snake_case : str = summary.total else: __snake_case : List[str] = None return memory, summary except ResourceExhaustedError as e: self.print_fn(f"""Doesn't fit on GPU. {e}""" ) return "N/A", None
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
0
"""simple docstring""" from math import factorial def lowercase ( _snake_case : int , _snake_case : int ) ->int: """simple docstring""" if n < k or k < 0: raise ValueError('''Please enter positive integers for n and k where n >= k''' ) return factorial(_snake_case ) // (factorial(_snake_case ) * factorial(n - k )) if __name__ == "__main__": print( """The number of five-card hands possible from a standard""", F'fifty-two card deck is: {combinations(52, 5)}\n', ) print( """If a class of 40 students must be arranged into groups of""", F'4 for group projects, there are {combinations(40, 4)} ways', """to arrange them.\n""", ) print( """If 10 teams are competing in a Formula One race, there""", F'are {combinations(10, 3)} ways that first, second and', """third place can be awarded.""", )
360
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
0
"""simple docstring""" from pathlib import Path import numpy as np from PIL import Image def lowercase ( _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" __snake_case : Optional[int] = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def lowercase ( _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def lowercase ( _snake_case : np.ndarray , _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" __snake_case : Optional[Any] = np.zeros_like(_snake_case ) __snake_case : Tuple = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image __snake_case : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): __snake_case : str = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() __snake_case : Optional[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" SCREAMING_SNAKE_CASE : str = np.array(Image.open(lena_path)) # kernel to be applied SCREAMING_SNAKE_CASE : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) SCREAMING_SNAKE_CASE : List[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image SCREAMING_SNAKE_CASE : Tuple = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
361
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE : Dict = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = ["""BeitFeatureExtractor"""] SCREAMING_SNAKE_CASE : Any = ["""BeitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Any = [ """BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BeitForImageClassification""", """BeitForMaskedImageModeling""", """BeitForSemanticSegmentation""", """BeitModel""", """BeitPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ """FlaxBeitForImageClassification""", """FlaxBeitForMaskedImageModeling""", """FlaxBeitModel""", """FlaxBeitPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel SCREAMING_SNAKE_CASE : str = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } SCREAMING_SNAKE_CASE : Optional[Any] = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def lowercase ( _snake_case : Any , _snake_case : str=False ) ->Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = create_model( '''HTSAT-tiny''' , '''roberta''' , _snake_case , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_snake_case , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def lowercase ( _snake_case : Dict ) ->Optional[Any]: """simple docstring""" __snake_case : Any = {} __snake_case : Tuple = r'''.*sequential.(\d+).*''' __snake_case : Dict = r'''.*_projection.(\d+).*''' for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : str = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list __snake_case : int = re.match(_snake_case , _snake_case ).group(1 ) __snake_case : Optional[int] = key.replace(f"""sequential.{sequential_layer}.""" , f"""layers.{int(_snake_case )//3}.linear.""" ) elif re.match(_snake_case , _snake_case ): __snake_case : Union[str, Any] = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : Any = 1 if projecton_layer == 0 else 2 __snake_case : Dict = key.replace(f"""_projection.{projecton_layer}.""" , f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : str = value __snake_case : Optional[Any] = mixed_qkv.size(0 ) // 3 __snake_case : Tuple = mixed_qkv[:qkv_dim] __snake_case : int = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Optional[int] = query_layer __snake_case : Optional[Any] = key_layer __snake_case : Optional[int] = value_layer else: __snake_case : Optional[Any] = value return model_state_dict def lowercase ( _snake_case : int , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : List[Any]=False ) ->List[Any]: """simple docstring""" __snake_case : Optional[int] = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() __snake_case : str = clap_model.state_dict() __snake_case : int = rename_state_dict(_snake_case ) __snake_case : Dict = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : str = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
"""simple docstring""" from string import ascii_uppercase SCREAMING_SNAKE_CASE : Union[str, Any] = {char: i for i, char in enumerate(ascii_uppercase)} SCREAMING_SNAKE_CASE : Optional[Any] = dict(enumerate(ascii_uppercase)) def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : Dict = len(_snake_case ) __snake_case : List[Any] = 0 while True: if x == i: __snake_case : Dict = 0 if len(_snake_case ) == len(_snake_case ): break key += key[i] i += 1 return key def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : List[str] = '''''' __snake_case : Tuple = 0 for letter in message: if letter == " ": cipher_text += " " else: __snake_case : Union[str, Any] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def lowercase ( _snake_case : str , _snake_case : str ) ->str: """simple docstring""" __snake_case : Optional[int] = '''''' __snake_case : str = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __snake_case : Union[str, Any] = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def lowercase ( ) ->None: """simple docstring""" __snake_case : int = '''THE GERMAN ATTACK''' __snake_case : Tuple = '''SECRET''' __snake_case : int = generate_key(_snake_case , _snake_case ) __snake_case : Dict = cipher_text(_snake_case , _snake_case ) print(f"""Encrypted Text = {s}""" ) print(f"""Original Text = {original_text(_snake_case , _snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
364
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
0
"""simple docstring""" from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def lowercase ( ) ->Dict: """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case : int = '''__test_patch_submodule_mock__''' with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def lowercase ( ) ->Optional[int]: """simple docstring""" assert _test_patching.open is open __snake_case : str = '''__test_patch_submodule_builtin_mock__''' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , '''open''' , _snake_case ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def lowercase ( ) ->List[str]: """simple docstring""" __snake_case : Tuple = '''__test_patch_submodule_missing_mock__''' with patch_submodule(_test_patching , '''pandas.read_csv''' , _snake_case ): pass def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = '''__test_patch_submodule_missing_builtin_mock__''' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , '''len''' , _snake_case ) is None with patch_submodule(_test_patching , '''len''' , _snake_case ): assert _test_patching.len is mock assert _test_patching.len is len def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : Optional[Any] = '''__test_patch_submodule_start_and_stop_mock__''' __snake_case : Optional[int] = patch_submodule(_test_patching , '''open''' , _snake_case ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def lowercase ( ) ->Any: """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case : Dict = '''__test_patch_submodule_successive_join__''' __snake_case : Optional[Any] = '''__test_patch_submodule_successive_dirname__''' __snake_case : Dict = '''__test_patch_submodule_successive_rename__''' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): with patch_submodule(_test_patching , '''os.rename''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , _snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , '''os.rename''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.join''' , _snake_case ): with patch_submodule(_test_patching , '''os.path.dirname''' , _snake_case ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : str = '''__test_patch_submodule_doesnt_exist_mock__''' with patch_submodule(_test_patching , '''__module_that_doesn_exist__.__attribute_that_doesn_exist__''' , _snake_case ): pass with patch_submodule(_test_patching , '''os.__attribute_that_doesn_exist__''' , _snake_case ): pass
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None SCREAMING_SNAKE_CASE : List[str] = namedtuple("""CoinsDistribResult""", """moves excess""") def lowercase ( _snake_case : TreeNode | None ) ->int: """simple docstring""" if root is None: return 0 # Validation def count_nodes(_snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_snake_case : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_snake_case ) != count_coins(_snake_case ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(_snake_case : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __snake_case : str = get_distrib(node.left ) __snake_case : Optional[Any] = get_distrib(node.right ) __snake_case : Union[str, Any] = 1 - left_distrib_excess __snake_case : Optional[int] = 1 - right_distrib_excess __snake_case : str = ( left_distrib_moves + right_distrib_moves + abs(_snake_case ) + abs(_snake_case ) ) __snake_case : List[str] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_snake_case , _snake_case ) return get_distrib(_snake_case )[0] if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
0
"""simple docstring""" from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def lowercase ( _snake_case : str , _snake_case : complex , _snake_case : str = "x" , _snake_case : float = 10**-10 , _snake_case : int = 1 , ) ->complex: """simple docstring""" __snake_case : Optional[Any] = symbols(_snake_case ) __snake_case : Tuple = lambdify(_snake_case , _snake_case ) __snake_case : Optional[Any] = lambdify(_snake_case , diff(_snake_case , _snake_case ) ) __snake_case : List[str] = starting_point while True: if diff_function(_snake_case ) != 0: __snake_case : Union[str, Any] = prev_guess - multiplicity * func(_snake_case ) / diff_function( _snake_case ) else: raise ZeroDivisionError('''Could not find root''' ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __snake_case : str = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial # Find fourth Root of 5 print(F'The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5j)}') # Find value of e print( """The root of log(y) - 1 = 0 is """, F'{newton_raphson("log(y) - 1", 2, variable="y")}', ) # Exponential Roots print( """The root of exp(x) - 1 = 0 is""", F'{newton_raphson("exp(x) - 1", 10, precision=0.005)}', ) # Find root of cos(x) print(F'The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}')
367
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
0
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ ): '''simple docstring''' if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) __snake_case : int = img __snake_case : Optional[int] = img.shape[1] __snake_case : str = img.shape[0] __snake_case : int = dst_width __snake_case : Any = dst_height __snake_case : Tuple = self.src_w / self.dst_w __snake_case : Any = self.src_h / self.dst_h __snake_case : Optional[Any] = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 2_55 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for i in range(self.dst_h ): for j in range(self.dst_w ): __snake_case : List[str] = self.img[self.get_y(a_ )][self.get_x(a_ )] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return int(self.ratio_x * x ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return int(self.ratio_y * y ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = 800, 600 SCREAMING_SNAKE_CASE : Any = imread("""image_data/lena.jpg""", 1) SCREAMING_SNAKE_CASE : List[str] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}', n.output ) waitKey(0) destroyAllWindows()
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='ClapFeatureExtractor' lowerCamelCase__ =('RobertaTokenizer', 'RobertaTokenizerFast') def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Optional[Any] = kwargs.pop('''sampling_rate''' , a_ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __snake_case : Union[str, Any] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if audios is not None: __snake_case : Dict = self.feature_extractor( a_ , sampling_rate=a_ , return_tensors=a_ , **a_ ) if text is not None and audios is not None: __snake_case : Optional[int] = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.tokenizer.model_input_names __snake_case : str = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
369
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
0
"""simple docstring""" def lowercase ( _snake_case : Optional[int]=28_123 ) ->Dict: """simple docstring""" __snake_case : int = [1] * (limit + 1) for i in range(2 , int(limit**0.5 ) + 1 ): sum_divs[i * i] += i for k in range(i + 1 , limit // i + 1 ): sum_divs[k * i] += k + i __snake_case : Tuple = set() __snake_case : Optional[int] = 0 for n in range(1 , limit + 1 ): if sum_divs[n] > n: abundants.add(_snake_case ) if not any((n - a in abundants) for a in abundants ): res += n return res if __name__ == "__main__": print(solution())
370
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : Tuple = parent __snake_case : str = batch_size __snake_case : Tuple = seq_length __snake_case : List[str] = is_training __snake_case : Optional[Any] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : List[Any] = use_labels __snake_case : Tuple = vocab_size __snake_case : List[Any] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : Any = intermediate_size __snake_case : str = hidden_act __snake_case : List[str] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : int = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Optional[int] = num_choices __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Any = None if self.use_input_mask: __snake_case : str = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[Any] = None if self.use_token_type_ids: __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : str = None __snake_case : str = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = LlamaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ , attention_mask=a_ ) __snake_case : Tuple = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : int = True __snake_case : Any = LlamaModel(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case : Tuple = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , ) __snake_case : int = model(a_ , attention_mask=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LlamaForCausalLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : str = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = True __snake_case : int = True __snake_case : Optional[Any] = LlamaForCausalLM(config=a_ ) model.to(a_ ) model.eval() # first forward pass __snake_case : List[Any] = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , use_cache=a_ , ) __snake_case : Optional[int] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case : int = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : int = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case : int = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , output_hidden_states=a_ , )['''hidden_states'''][0] __snake_case : List[Any] = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , past_key_values=a_ , output_hidden_states=a_ , )['''hidden_states'''][0] # select random slice __snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1E-3 ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() ( __snake_case ) : Any = config_and_inputs __snake_case : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () lowerCamelCase__ =(LlamaForCausalLM,) if is_torch_available() else () lowerCamelCase__ =( { 'feature-extraction': LlamaModel, 'text-classification': LlamaForSequenceClassification, 'text-generation': LlamaForCausalLM, 'zero-shot': LlamaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LlamaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : List[str] = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Any = input_dict['''input_ids'''] __snake_case : List[Any] = input_ids.ne(1 ).to(a_ ) __snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : List[Any] = LlamaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = 3 __snake_case : Tuple = '''single_label_classification''' __snake_case : Optional[int] = input_dict['''input_ids'''] __snake_case : int = input_ids.ne(1 ).to(a_ ) __snake_case : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Tuple = LlamaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Dict = 3 __snake_case : int = '''multi_label_classification''' __snake_case : Union[str, Any] = input_dict['''input_ids'''] __snake_case : Any = input_ids.ne(1 ).to(a_ ) __snake_case : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : List[Any] = LlamaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Any = ids_tensor([1, 10] , config.vocab_size ) __snake_case : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : Any = LlamaModel(a_ ) original_model.to(a_ ) original_model.eval() __snake_case : List[Any] = original_model(a_ ).last_hidden_state __snake_case : str = original_model(a_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __snake_case : str = {'''type''': scaling_type, '''factor''': 10.0} __snake_case : Optional[int] = LlamaModel(a_ ) scaled_model.to(a_ ) scaled_model.eval() __snake_case : Union[str, Any] = scaled_model(a_ ).last_hidden_state __snake_case : List[Any] = scaled_model(a_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(a_ , a_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(a_ , a_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(a_ , a_ , atol=1E-5 ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Any = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' ) __snake_case : List[str] = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __snake_case : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : List[str] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : Tuple = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' ) __snake_case : Union[str, Any] = model(torch.tensor(a_ ) ) # Expected mean on dim = -1 __snake_case : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Tuple = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' ) __snake_case : Dict = model(torch.tensor(a_ ) ) # Expected mean on dim = -1 __snake_case : List[str] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __snake_case : Dict = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) @unittest.skip( '''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38] __snake_case : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' ) __snake_case : List[Any] = model(torch.tensor(a_ ) ) __snake_case : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 ) # fmt: off __snake_case : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 ) @unittest.skip('''Model is curently gated''' ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi''' __snake_case : Dict = '''Simply put, the theory of relativity states that ''' __snake_case : Optional[int] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' ) __snake_case : Tuple = tokenizer.encode(a_ , return_tensors='''pt''' ) __snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained( '''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=a_ ) # greedy generation outputs __snake_case : Union[str, Any] = model.generate(a_ , max_new_tokens=64 , top_p=a_ , temperature=1 , do_sample=a_ ) __snake_case : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=a_ ) self.assertEqual(a_ , a_ )
371
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , a_=None , a_=None , **a_ ): '''simple docstring''' super().__init__(*a_ , **a_ ) __snake_case : List[str] = eval_examples __snake_case : Optional[Any] = post_process_function def SCREAMING_SNAKE_CASE (self , a_=None , a_=None , a_=None , a_ = "eval" ): '''simple docstring''' __snake_case : Union[str, Any] = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case : Union[str, Any] = self.get_eval_dataloader(a_ ) __snake_case : List[str] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case : Optional[Any] = self.compute_metrics __snake_case : Union[str, Any] = None __snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case : str = time.time() try: __snake_case : Dict = eval_loop( a_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: __snake_case : str = compute_metrics __snake_case : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case : Optional[Any] = self.post_process_function(a_ , a_ , output.predictions ) __snake_case : Any = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case : List[str] = metrics.pop(a_ ) metrics.update(output.metrics ) else: __snake_case : str = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(a_ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case : str = self.callback_handler.on_evaluate(self.args , self.state , self.control , a_ ) return metrics def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=None , a_ = "test" ): '''simple docstring''' __snake_case : Any = self.get_test_dataloader(a_ ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case : List[str] = self.compute_metrics __snake_case : List[Any] = None __snake_case : List[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case : Dict = time.time() try: __snake_case : List[Any] = eval_loop( a_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=a_ , metric_key_prefix=a_ , ) finally: __snake_case : Optional[int] = compute_metrics __snake_case : str = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( a_ , a_ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case : Optional[int] = self.post_process_function(a_ , a_ , output.predictions , '''predict''' ) __snake_case : Union[str, Any] = self.compute_metrics(a_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): __snake_case : int = metrics.pop(a_ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=a_ )
350
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =field(default='automatic-speech-recognition', metadata={'include_in_asdict_even_if_is_default': True} ) lowerCamelCase__ =Features({'audio': Audio()} ) lowerCamelCase__ =Features({'transcription': Value('string' )} ) lowerCamelCase__ ='audio' lowerCamelCase__ ='transcription' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.audio_column not in features: raise ValueError(f"""Column {self.audio_column} is not present in features.""" ) if not isinstance(features[self.audio_column] , a_ ): raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" ) __snake_case : Optional[int] = copy.deepcopy(self ) __snake_case : str = self.input_schema.copy() __snake_case : List[str] = features[self.audio_column] __snake_case : Tuple = input_schema return task_template @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return {self.audio_column: "audio", self.transcription_column: "transcription"}
351
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py SCREAMING_SNAKE_CASE : int = """src/transformers""" SCREAMING_SNAKE_CASE : Optional[int] = """docs/source/en/tasks""" def lowercase ( _snake_case : int , _snake_case : str , _snake_case : Tuple ) ->List[Any]: """simple docstring""" with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __snake_case : str = f.readlines() # Find the start prompt. __snake_case : Optional[int] = 0 while not lines[start_index].startswith(_snake_case ): start_index += 1 start_index += 1 __snake_case : List[Any] = start_index while not lines[end_index].startswith(_snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Optional[int] = direct_transformers_import(TRANSFORMERS_PATH) SCREAMING_SNAKE_CASE : int = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). SCREAMING_SNAKE_CASE : Optional[Any] = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def lowercase ( _snake_case : Any ) ->int: """simple docstring""" __snake_case : str = TASK_GUIDE_TO_MODELS[task_guide] __snake_case : Optional[int] = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_snake_case , set() ) __snake_case : str = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowercase ( _snake_case : Dict , _snake_case : int=False ) ->int: """simple docstring""" __snake_case : Optional[Any] = _find_text_in_file( filename=os.path.join(_snake_case , _snake_case ) , start_prompt='''<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->''' , end_prompt='''<!--End of the generated tip-->''' , ) __snake_case : int = get_model_list_for_task(_snake_case ) if current_list != new_list: if overwrite: with open(os.path.join(_snake_case , _snake_case ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ''' to fix this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
352
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } SCREAMING_SNAKE_CASE : Any = { """Salesforce/codegen-350M-mono""": 2048, } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ : int =VOCAB_FILES_NAMES lowerCamelCase__ : Tuple =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : Optional[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Optional[int] =['input_ids', 'attention_mask'] lowerCamelCase__ : List[Any] =CodeGenTokenizer def __init__(self , a_=None , a_=None , a_=None , a_="<|endoftext|>" , a_="<|endoftext|>" , a_="<|endoftext|>" , a_=False , **a_ , ): '''simple docstring''' super().__init__( a_ , a_ , tokenizer_file=a_ , unk_token=a_ , bos_token=a_ , eos_token=a_ , add_prefix_space=a_ , **a_ , ) if kwargs.pop('''add_bos_token''' , a_ ): __snake_case : Any = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f"""`CodeGenTokenizer.from_pretrained('{model_id}')`\nor\n""" f"""`AutoTokenizer.from_pretrained('{model_id}', use_fast=False)`\n""" '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) __snake_case : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a_ ) != add_prefix_space: __snake_case : List[Any] = getattr(a_ , pre_tok_state.pop('''type''' ) ) __snake_case : int = add_prefix_space __snake_case : int = pre_tok_class(**a_ ) __snake_case : Union[str, Any] = add_prefix_space def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' __snake_case : Union[str, Any] = kwargs.get('''is_split_into_words''' , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' __snake_case : Optional[int] = kwargs.get('''is_split_into_words''' , a_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Union[str, Any] = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = False , a_ = None , a_ = None , **a_ , ): '''simple docstring''' __snake_case : int = super().decode( token_ids=a_ , skip_special_tokens=a_ , clean_up_tokenization_spaces=a_ , **a_ , ) if truncate_before_pattern is not None and len(a_ ) > 0: __snake_case : List[Any] = self.truncate(a_ , a_ ) return decoded_text def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' def find_re(a_ , a_ , a_ ): __snake_case : List[str] = pattern.search(a_ , a_ ) return m.start() if m else -1 __snake_case : Optional[int] = [re.compile(a_ , re.MULTILINE ) for pattern in truncate_before_pattern] __snake_case : Any = list(re.finditer('''^print''' , a_ , re.MULTILINE ) ) if len(a_ ) > 1: __snake_case : List[str] = completion[: prints[1].start()] __snake_case : Dict = list(re.finditer('''^def''' , a_ , re.MULTILINE ) ) if len(a_ ) > 1: __snake_case : Optional[Any] = completion[: defs[1].start()] __snake_case : Dict = 0 __snake_case : List[Any] = [ pos for pos in [find_re(a_ , a_ , a_ ) for terminal in terminals] if pos != -1 ] if len(a_ ) > 0: return completion[: min(a_ )] else: return completion
353
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _UpperCAmelCase : def __init__(self , a_ = "cpu" , a_ = "openai/clip-vit-large-patch14" ): '''simple docstring''' __snake_case : Union[str, Any] = device __snake_case : int = CLIPTokenizerFast.from_pretrained(a_ ) __snake_case : Any = [0.4814_5466, 0.457_8275, 0.4082_1073] __snake_case : Optional[Any] = [0.2686_2954, 0.2613_0258, 0.2757_7711] __snake_case : int = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __snake_case : List[Any] = torchvision.transforms.Resize(2_24 ) __snake_case : str = torchvision.transforms.CenterCrop(2_24 ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = self.resize(a_ ) __snake_case : Optional[int] = self.center_crop(a_ ) __snake_case : List[str] = self.normalize(a_ ) return images def __call__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : str = self.tokenizer(text=a_ , **a_ ) __snake_case : Dict = self.preprocess_img(a_ ) __snake_case : Dict = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _UpperCAmelCase ( nn.Module ): def __init__(self , a_=10 , a_=0.01 , a_=None , a_=None , a_=None , a_=None , a_=None , a_=None , a_=False , a_=True , a_="image" , a_=True , a_=False , a_=False , a_=False , ): '''simple docstring''' super().__init__() __snake_case : Union[str, Any] = None __snake_case : List[Any] = device if device else get_device() if vqgan: __snake_case : List[str] = vqgan else: __snake_case : Optional[Any] = load_vqgan(self.device , conf_path=a_ , ckpt_path=a_ ) self.vqgan.eval() if clip: __snake_case : List[Any] = clip else: __snake_case : Optional[int] = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' ) self.clip.to(self.device ) __snake_case : Optional[int] = ProcessorGradientFlow(device=self.device ) __snake_case : Optional[int] = iterations __snake_case : Any = lr __snake_case : Optional[Any] = log __snake_case : int = make_grid __snake_case : List[str] = return_val __snake_case : int = quantize __snake_case : Optional[Any] = self.vqgan.decoder.z_shape def SCREAMING_SNAKE_CASE (self , a_=None , a_=None , a_=5 , a_=True ): '''simple docstring''' __snake_case : Union[str, Any] = [] if output_path is None: __snake_case : str = '''./animation.gif''' if input_path is None: __snake_case : Any = self.save_path __snake_case : Optional[Any] = sorted(glob(input_path + '''/*''' ) ) if not len(a_ ): raise ValueError( '''No images found in save path, aborting (did you pass save_intermediate=True to the generate''' ''' function?)''' ) if len(a_ ) == 1: print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' ) __snake_case : Optional[int] = total_duration / len(a_ ) __snake_case : int = [frame_duration] * len(a_ ) if extend_frames: __snake_case : Dict = 1.5 __snake_case : List[Any] = 3 for file_name in paths: if file_name.endswith('''.png''' ): images.append(imageio.imread(a_ ) ) imageio.mimsave(a_ , a_ , duration=a_ ) print(f"""gif saved to {output_path}""" ) def SCREAMING_SNAKE_CASE (self , a_=None , a_=None ): '''simple docstring''' if not (path or img): raise ValueError('''Input either path or tensor''' ) if img is not None: raise NotImplementedError __snake_case : Dict = preprocess(Image.open(a_ ) , target_image_size=2_56 ).to(self.device ) __snake_case : Tuple = preprocess_vqgan(a_ ) __snake_case : Union[str, Any] = self.vqgan.encode(a_ ) return z def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = self.latent.detach().requires_grad_() __snake_case : str = base_latent + transform_vector if self.quantize: __snake_case : str = self.vqgan.quantize(a_ ) else: __snake_case : Tuple = trans_latent return self.vqgan.decode(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=None ): '''simple docstring''' __snake_case : List[str] = self.clip_preprocessor(text=a_ , images=a_ , return_tensors='''pt''' , padding=a_ ) __snake_case : Dict = self.clip(**a_ ) __snake_case : Optional[Any] = clip_outputs.logits_per_image if weights is not None: __snake_case : Dict = similarity_logits * weights return similarity_logits.sum() def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : str = self._get_clip_similarity(pos_prompts['''prompts'''] , a_ , weights=(1 / pos_prompts['''weights''']) ) if neg_prompts: __snake_case : Any = self._get_clip_similarity(neg_prompts['''prompts'''] , a_ , weights=neg_prompts['''weights'''] ) else: __snake_case : Optional[Any] = torch.tensor([1] , device=self.device ) __snake_case : int = -torch.log(a_ ) + torch.log(a_ ) return loss def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = torch.randn_like(self.latent , requires_grad=a_ , device=self.device ) __snake_case : List[str] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __snake_case : Optional[int] = self._add_vector(a_ ) __snake_case : Tuple = loop_post_process(a_ ) __snake_case : Tuple = self._get_CLIP_loss(a_ , a_ , a_ ) print('''CLIP loss''' , a_ ) if self.log: wandb.log({'''CLIP Loss''': clip_loss} ) clip_loss.backward(retain_graph=a_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' wandb.init(reinit=a_ , project='''face-editor''' ) wandb.config.update({'''Positive Prompts''': positive_prompts} ) wandb.config.update({'''Negative Prompts''': negative_prompts} ) wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} ) if image_path: __snake_case : Optional[int] = Image.open(a_ ) __snake_case : Any = image.resize((2_56, 2_56) ) wandb.log('''Original Image''' , wandb.Image(a_ ) ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not prompts: return [] __snake_case : Dict = [] __snake_case : List[Any] = [] if isinstance(a_ , a_ ): __snake_case : List[str] = [prompt.strip() for prompt in prompts.split('''|''' )] for prompt in prompts: if isinstance(a_ , (tuple, list) ): __snake_case : int = prompt[0] __snake_case : str = float(prompt[1] ) elif ":" in prompt: __snake_case : Any = prompt.split(''':''' ) __snake_case : str = float(a_ ) else: __snake_case : Optional[int] = prompt __snake_case : str = 1.0 processed_prompts.append(a_ ) weights.append(a_ ) return { "prompts": processed_prompts, "weights": torch.tensor(a_ , device=self.device ), } def SCREAMING_SNAKE_CASE (self , a_ , a_=None , a_=None , a_=True , a_=False , a_=True , a_=True , a_=None , ): '''simple docstring''' if image_path: __snake_case : Optional[Any] = self._get_latent(a_ ) else: __snake_case : Union[str, Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(a_ , a_ , a_ ) assert pos_prompts, "You must provide at least one positive prompt." __snake_case : Optional[int] = self.process_prompts(a_ ) __snake_case : Union[str, Any] = self.process_prompts(a_ ) if save_final and save_path is None: __snake_case : Union[str, Any] = os.path.join('''./outputs/''' , '''_'''.join(pos_prompts['''prompts'''] ) ) if not os.path.exists(a_ ): os.makedirs(a_ ) else: __snake_case : List[Any] = save_path + '''_''' + get_timestamp() os.makedirs(a_ ) __snake_case : List[str] = save_path __snake_case : int = self.vqgan.decode(self.latent )[0] if show_intermediate: print('''Original Image''' ) show_pil(custom_to_pil(a_ ) ) __snake_case : Any = loop_post_process(a_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(a_ , a_ , a_ ) ): if show_intermediate: show_pil(a_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({'''Image''': wandb.Image(a_ )} ) if show_final: show_pil(a_ ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
354
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
0
SCREAMING_SNAKE_CASE : str = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE : str = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] SCREAMING_SNAKE_CASE : List[Any] = { 0: """Sunday""", 1: """Monday""", 2: """Tuesday""", 3: """Wednesday""", 4: """Thursday""", 5: """Friday""", 6: """Saturday""", } def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int ) ->str: """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __snake_case : Union[str, Any] = year // 100 __snake_case : List[str] = (5 * (century % 4) + 2) % 7 __snake_case : Dict = year % 100 __snake_case : Optional[int] = centurian % 12 __snake_case : Dict = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __snake_case : Tuple = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __snake_case : Optional[int] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
0
"""simple docstring""" import pprint import requests SCREAMING_SNAKE_CASE : Any = """https://zenquotes.io/api""" def lowercase ( ) ->list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/today''' ).json() def lowercase ( ) ->list: """simple docstring""" return requests.get(API_ENDPOINT_URL + '''/random''' ).json() if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = random_quotes() pprint.pprint(response)
356
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = 1 __snake_case : Optional[int] = 3 __snake_case : Dict = (32, 32) __snake_case : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ ) return image @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def extract(*a_ , **a_ ): class _UpperCAmelCase : '''simple docstring''' def __init__(self ): '''simple docstring''' __snake_case : Optional[Any] = torch.ones([0] ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' self.pixel_values.to(a_ ) return self return Out() return extract def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : Dict = self.dummy_cond_unet __snake_case : int = PNDMScheduler(skip_prk_steps=a_ ) __snake_case : Tuple = self.dummy_vae __snake_case : Optional[Any] = self.dummy_text_encoder __snake_case : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __snake_case : List[str] = 77 __snake_case : List[str] = self.dummy_image.to(a_ ) __snake_case : Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __snake_case : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) __snake_case : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=a_ ) __snake_case : Dict = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) __snake_case : int = '''A painting of a squirrel eating a burger''' __snake_case : Tuple = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : Dict = alt_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=a_ , ) __snake_case : List[Any] = output.images __snake_case : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) __snake_case : Tuple = alt_pipe( [prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=a_ , return_dict=a_ , )[0] __snake_case : Union[str, Any] = image[0, -3:, -3:, -1] __snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : Dict = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.dummy_cond_unet __snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=a_ ) __snake_case : Any = self.dummy_vae __snake_case : List[Any] = self.dummy_text_encoder __snake_case : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __snake_case : Tuple = 77 __snake_case : Optional[Any] = self.dummy_image.to(a_ ) # put models in fp16 __snake_case : List[Any] = unet.half() __snake_case : int = vae.half() __snake_case : Tuple = bert.half() # make sure here that pndm scheduler skips prk __snake_case : Optional[Any] = AltDiffusionImgaImgPipeline( unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , ) __snake_case : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=a_ ) __snake_case : int = alt_pipe.to(a_ ) alt_pipe.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = '''A painting of a squirrel eating a burger''' __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Any = alt_pipe( [prompt] , generator=a_ , num_inference_steps=2 , output_type='''np''' , image=a_ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __snake_case : Optional[Any] = init_image.resize((7_60, 5_04) ) __snake_case : Optional[Any] = '''BAAI/AltDiffusion''' __snake_case : Tuple = AltDiffusionImgaImgPipeline.from_pretrained( a_ , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : List[Any] = '''A fantasy landscape, trending on artstation''' __snake_case : Dict = torch.manual_seed(0 ) __snake_case : Optional[Any] = pipe( prompt=a_ , image=a_ , strength=0.75 , guidance_scale=7.5 , generator=a_ , output_type='''np''' , ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Any = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) __snake_case : Dict = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __snake_case : Dict = init_image.resize((7_68, 5_12) ) __snake_case : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __snake_case : Tuple = '''BAAI/AltDiffusion''' __snake_case : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained( a_ , safety_checker=a_ , ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) pipe.enable_attention_slicing() __snake_case : Optional[Any] = '''A fantasy landscape, trending on artstation''' __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : str = pipe( prompt=a_ , image=a_ , strength=0.75 , guidance_scale=7.5 , generator=a_ , output_type='''np''' , ) __snake_case : List[str] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
357
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int | str] ) ->None: """simple docstring""" create_state_space_tree(_snake_case , [] , 0 , [0 for i in range(len(_snake_case ) )] ) def lowercase ( _snake_case : list[int | str] , _snake_case : list[int | str] , _snake_case : int , _snake_case : list[int] , ) ->None: """simple docstring""" if index == len(_snake_case ): print(_snake_case ) return for i in range(len(_snake_case ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __snake_case : Union[str, Any] = True create_state_space_tree(_snake_case , _snake_case , index + 1 , _snake_case ) current_sequence.pop() __snake_case : Any = False SCREAMING_SNAKE_CASE : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) SCREAMING_SNAKE_CASE : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE : Union[str, Any] = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] SCREAMING_SNAKE_CASE : List[str] = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowercase ( _snake_case : list[float] ) ->list[float]: """simple docstring""" __snake_case : str = [] __snake_case : Dict = len(_snake_case ) for i in range(_snake_case ): __snake_case : float = -1 for j in range(i + 1 , _snake_case ): if arr[i] < arr[j]: __snake_case : List[Any] = arr[j] break result.append(_snake_case ) return result def lowercase ( _snake_case : list[float] ) ->list[float]: """simple docstring""" __snake_case : Tuple = [] for i, outer in enumerate(_snake_case ): __snake_case : float = -1 for inner in arr[i + 1 :]: if outer < inner: __snake_case : Optional[int] = inner break result.append(_snake_case ) return result def lowercase ( _snake_case : list[float] ) ->list[float]: """simple docstring""" __snake_case : Any = len(_snake_case ) __snake_case : list[float] = [] __snake_case : list[float] = [-1] * arr_size for index in reversed(range(_snake_case ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __snake_case : int = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) SCREAMING_SNAKE_CASE : Tuple = ( """from __main__ import arr, next_greatest_element_slow, """ """next_greatest_element_fast, next_greatest_element""" ) print( """next_greatest_element_slow():""", timeit("""next_greatest_element_slow(arr)""", setup=setup), ) print( """next_greatest_element_fast():""", timeit("""next_greatest_element_fast(arr)""", setup=setup), ) print( """ next_greatest_element():""", timeit("""next_greatest_element(arr)""", setup=setup), )
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : Optional[int] = { """vocab_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_file""": { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Dict = { """camembert-base""": 512, } SCREAMING_SNAKE_CASE : Tuple = """▁""" class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =CamembertTokenizer def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=["<s>NOTUSED", "</s>NOTUSED"] , **a_ , ): '''simple docstring''' __snake_case : Any = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : List[str] = vocab_file __snake_case : List[str] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] __snake_case : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Optional[int] = [self.sep_token_id] __snake_case : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __snake_case : Any = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
360
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
0
"""simple docstring""" import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py SCREAMING_SNAKE_CASE : Any = """src/transformers""" SCREAMING_SNAKE_CASE : Dict = """docs/source/en""" SCREAMING_SNAKE_CASE : List[str] = """.""" def lowercase ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple ) ->Optional[Any]: """simple docstring""" with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __snake_case : List[Any] = f.readlines() # Find the start prompt. __snake_case : Dict = 0 while not lines[start_index].startswith(_snake_case ): start_index += 1 start_index += 1 __snake_case : Optional[int] = start_index while not lines[end_index].startswith(_snake_case ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | SCREAMING_SNAKE_CASE : Optional[int] = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. SCREAMING_SNAKE_CASE : List[Any] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowercase ( _snake_case : Any ) ->Optional[int]: """simple docstring""" __snake_case : str = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _snake_case ) return [m.group(0 ) for m in matches] def lowercase ( _snake_case : Dict , _snake_case : List[str] ) ->List[Any]: """simple docstring""" __snake_case : Optional[int] = 2 if text == '''✅''' or text == '''❌''' else len(_snake_case ) __snake_case : str = (width - text_length) // 2 __snake_case : List[str] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowercase ( ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case : Optional[int] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } __snake_case : Union[str, Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. __snake_case : List[Any] = collections.defaultdict(_snake_case ) __snake_case : List[Any] = collections.defaultdict(_snake_case ) __snake_case : Optional[Any] = collections.defaultdict(_snake_case ) __snake_case : Optional[int] = collections.defaultdict(_snake_case ) __snake_case : Any = collections.defaultdict(_snake_case ) # Let's lookup through all transformers object (once). for attr_name in dir(_snake_case ): __snake_case : List[str] = None if attr_name.endswith('''Tokenizer''' ): __snake_case : Tuple = slow_tokenizers __snake_case : Union[str, Any] = attr_name[:-9] elif attr_name.endswith('''TokenizerFast''' ): __snake_case : List[Any] = fast_tokenizers __snake_case : Optional[int] = attr_name[:-13] elif _re_tf_models.match(_snake_case ) is not None: __snake_case : List[Any] = tf_models __snake_case : int = _re_tf_models.match(_snake_case ).groups()[0] elif _re_flax_models.match(_snake_case ) is not None: __snake_case : Tuple = flax_models __snake_case : Optional[int] = _re_flax_models.match(_snake_case ).groups()[0] elif _re_pt_models.match(_snake_case ) is not None: __snake_case : Optional[Any] = pt_models __snake_case : List[Any] = _re_pt_models.match(_snake_case ).groups()[0] if lookup_dict is not None: while len(_snake_case ) > 0: if attr_name in model_name_to_prefix.values(): __snake_case : Optional[int] = True break # Try again after removing the last word in the name __snake_case : Dict = ''''''.join(camel_case_split(_snake_case )[:-1] ) # Let's build that table! __snake_case : int = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) __snake_case : List[Any] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support'''] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). __snake_case : int = [len(_snake_case ) + 2 for c in columns] __snake_case : List[Any] = max([len(_snake_case ) for name in model_names] ) + 2 # Build the table per se __snake_case : Optional[int] = '''|''' + '''|'''.join([_center_text(_snake_case , _snake_case ) for c, w in zip(_snake_case , _snake_case )] ) + '''|\n''' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n" __snake_case : Optional[int] = {True: '''✅''', False: '''❌'''} for name in model_names: __snake_case : Optional[Any] = model_name_to_prefix[name] __snake_case : Optional[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_snake_case , _snake_case ) for l, w in zip(_snake_case , _snake_case )] ) + "|\n" return table def lowercase ( _snake_case : List[str]=False ) ->Dict: """simple docstring""" __snake_case : int = _find_text_in_file( filename=os.path.join(_snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , ) __snake_case : Optional[Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( '''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() check_model_table(args.fix_and_overwrite)
361
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
0
"""simple docstring""" from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def lowercase ( _snake_case : dict ) ->tuple: """simple docstring""" return (data["data"], data["target"]) def lowercase ( _snake_case : np.ndarray , _snake_case : np.ndarray , _snake_case : np.ndarray ) ->np.ndarray: """simple docstring""" __snake_case : Union[str, Any] = XGBRegressor(verbosity=0 , random_state=42 ) xgb.fit(_snake_case , _snake_case ) # Predict target for test data __snake_case : Any = xgb.predict(_snake_case ) __snake_case : Optional[int] = predictions.reshape(len(_snake_case ) , 1 ) return predictions def lowercase ( ) ->None: """simple docstring""" __snake_case : Union[str, Any] = fetch_california_housing() __snake_case : str = data_handling(_snake_case ) __snake_case : Dict = train_test_split( _snake_case , _snake_case , test_size=0.25 , random_state=1 ) __snake_case : List[str] = xgboost(_snake_case , _snake_case , _snake_case ) # Error printing print(f"""Mean Absolute Error : {mean_absolute_error(_snake_case , _snake_case )}""" ) print(f"""Mean Square Error : {mean_squared_error(_snake_case , _snake_case )}""" ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ) ->np.ndarray: """simple docstring""" if (ksize % 2) == 0: __snake_case : int = ksize + 1 __snake_case : Optional[int] = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_snake_case ): for x in range(_snake_case ): # distance from center __snake_case : List[Any] = x - ksize // 2 __snake_case : Tuple = y - ksize // 2 # degree to radiant __snake_case : Union[str, Any] = theta / 180 * np.pi __snake_case : Dict = np.cos(_theta ) __snake_case : Any = np.sin(_theta ) # get kernel x __snake_case : Optional[Any] = cos_theta * px + sin_theta * py # get kernel y __snake_case : Union[str, Any] = -sin_theta * px + cos_theta * py # fill kernel __snake_case : int = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image SCREAMING_SNAKE_CASE : Tuple = imread("""../image_data/lena.jpg""") # turn image in gray scale value SCREAMING_SNAKE_CASE : str = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: SCREAMING_SNAKE_CASE : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) SCREAMING_SNAKE_CASE : int = out / out.max() * 255 SCREAMING_SNAKE_CASE : Optional[Any] = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
364
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
0
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Any = { """t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='t5' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__(self , a_=3_21_28 , a_=5_12 , a_=64 , a_=20_48 , a_=6 , a_=None , a_=8 , a_=32 , a_=1_28 , a_=0.1 , a_=1E-6 , a_=1.0 , a_="relu" , a_=True , a_=True , a_=0 , a_=1 , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : Dict = d_model __snake_case : str = d_kv __snake_case : Optional[int] = d_ff __snake_case : Optional[Any] = num_layers __snake_case : Optional[int] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __snake_case : List[str] = num_heads __snake_case : Optional[Any] = relative_attention_num_buckets __snake_case : str = relative_attention_max_distance __snake_case : Optional[Any] = dropout_rate __snake_case : List[str] = layer_norm_epsilon __snake_case : Optional[Any] = initializer_factor __snake_case : Tuple = feed_forward_proj __snake_case : Tuple = use_cache __snake_case : str = self.feed_forward_proj.split('''-''' ) __snake_case : Optional[Any] = act_info[-1] __snake_case : Any = act_info[0] == '''gated''' if len(a_ ) > 1 and act_info[0] != "gated" or len(a_ ) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __snake_case : List[Any] = '''gelu_new''' super().__init__( pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , **a_ , ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: __snake_case : Optional[Any] = '''past_encoder_sequence + sequence''' __snake_case : List[str] = {0: '''batch'''} __snake_case : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case : int = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case : Tuple = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a_ , direction='''inputs''' ) return common_inputs @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return 13
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
0
"""simple docstring""" import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , a_=False , ): '''simple docstring''' __snake_case : str = size if size is not None else {'''height''': 20, '''width''': 20} __snake_case : Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : List[Any] = parent __snake_case : List[str] = batch_size __snake_case : str = num_channels __snake_case : List[Any] = image_size __snake_case : List[str] = min_resolution __snake_case : Optional[Any] = max_resolution __snake_case : Dict = do_resize __snake_case : List[str] = size __snake_case : Dict = do_center_crop __snake_case : int = crop_size __snake_case : int = do_normalize __snake_case : Dict = image_mean __snake_case : List[str] = image_std __snake_case : List[str] = do_reduce_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def lowercase ( ) ->Any: """simple docstring""" __snake_case : List[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __snake_case : Optional[Any] = Image.open(dataset[0]['''file'''] ) __snake_case : int = Image.open(dataset[1]['''file'''] ) return image, map def lowercase ( ) ->Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) __snake_case : Any = Image.open(ds[0]['''file'''] ) __snake_case : List[str] = Image.open(ds[1]['''file'''] ) __snake_case : Optional[int] = Image.open(ds[2]['''file'''] ) __snake_case : List[str] = Image.open(ds[3]['''file'''] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =BeitImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = BeitImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) self.assertEqual(image_processor.do_reduce_labels , a_ ) __snake_case : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a_ ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) self.assertEqual(image_processor.do_reduce_labels , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Any = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Any = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) __snake_case : Dict = [] for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched __snake_case : str = image_processing(a_ , a_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test not batched input (PIL images) __snake_case : List[Any] = prepare_semantic_single_inputs() __snake_case : List[str] = image_processing(a_ , a_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 1, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) # Test batched input (PIL images) __snake_case : Any = prepare_semantic_batch_inputs() __snake_case : Dict = image_processing(a_ , a_ , return_tensors='''pt''' ) self.assertEqual( encoding['''pixel_values'''].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual( encoding['''labels'''].shape , ( 2, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) self.assertEqual(encoding['''labels'''].dtype , torch.long ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 __snake_case : Dict = prepare_semantic_single_inputs() __snake_case : str = image_processing(a_ , a_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 1_50 ) __snake_case : int = True __snake_case : Any = image_processing(a_ , a_ , return_tensors='''pt''' ) self.assertTrue(encoding['''labels'''].min().item() >= 0 ) self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
367
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : int = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.dummy_uncond_unet __snake_case : Optional[int] = PNDMScheduler() __snake_case : List[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case : List[str] = torch.manual_seed(0 ) __snake_case : Dict = pndm(generator=a_ , num_inference_steps=20 , output_type='''numpy''' ).images __snake_case : List[Any] = torch.manual_seed(0 ) __snake_case : List[str] = pndm(generator=a_ , num_inference_steps=20 , output_type='''numpy''' , return_dict=a_ )[0] __snake_case : Any = image[0, -3:, -3:, -1] __snake_case : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : str = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''google/ddpm-cifar10-32''' __snake_case : str = UNetaDModel.from_pretrained(a_ ) __snake_case : List[Any] = PNDMScheduler() __snake_case : Optional[Any] = PNDMPipeline(unet=a_ , scheduler=a_ ) pndm.to(a_ ) pndm.set_progress_bar_config(disable=a_ ) __snake_case : Optional[Any] = torch.manual_seed(0 ) __snake_case : str = pndm(generator=a_ , output_type='''numpy''' ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : List[Any] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model SCREAMING_SNAKE_CASE : Optional[Any] = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase ( _snake_case : List[str] , _snake_case : Any , _snake_case : int=None ) ->Tuple: """simple docstring""" if rng is None: __snake_case : str = random.Random() __snake_case : Optional[int] = 1 for dim in shape: total_dims *= dim __snake_case : Optional[int] = [] for _ in range(_snake_case ): values.append(rng.randint(0 , vocab_size - 1 ) ) __snake_case : List[str] = np.array(_snake_case , dtype=jnp.intaa ).reshape(_snake_case ) return output def lowercase ( _snake_case : Optional[int] , _snake_case : List[Any]=None ) ->Any: """simple docstring""" __snake_case : Optional[int] = ids_tensor(_snake_case , vocab_size=2 , rng=_snake_case ) # make sure that at least one token is attended to for each batch __snake_case : Optional[Any] = 1 return attn_mask @require_flax class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =None lowerCamelCase__ =() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 __snake_case : str = 2 __snake_case : Tuple = inputs['''input_ids'''].shape[-1] // 2 __snake_case : int = inputs['''input_ids'''][:max_batch_size, :sequence_length] __snake_case : int = jnp.ones_like(a_ ) __snake_case : Optional[int] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens __snake_case : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` __snake_case : str = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self._get_input_ids_and_config() __snake_case : Optional[Any] = False __snake_case : Tuple = max_length __snake_case : int = 0 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning __snake_case : Any = getattr(a_ , a_ ) __snake_case : Optional[Any] = pt_model_class(a_ ).eval() __snake_case : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ , flax_model.params ) __snake_case : Optional[Any] = flax_model.generate(a_ ).sequences __snake_case : Dict = pt_model.generate(torch.tensor(a_ , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: __snake_case : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self._get_input_ids_and_config() __snake_case : Any = False __snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Tuple = jit(model.generate ) __snake_case : Tuple = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self._get_input_ids_and_config() __snake_case : Dict = True __snake_case : Optional[Any] = max_length for model_class in self.all_generative_model_classes: __snake_case : List[str] = model_class(a_ ) __snake_case : Tuple = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Union[str, Any] = jit(model.generate ) __snake_case : List[str] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self._get_input_ids_and_config() __snake_case : List[str] = False __snake_case : List[Any] = max_length __snake_case : List[str] = 2 for model_class in self.all_generative_model_classes: __snake_case : Optional[int] = model_class(a_ ) __snake_case : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : List[Any] = jit(model.generate ) __snake_case : List[str] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self._get_input_ids_and_config() __snake_case : Optional[Any] = False __snake_case : Dict = max_length __snake_case : List[str] = 2 __snake_case : List[str] = 2 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : str = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self._get_input_ids_and_config() __snake_case : List[str] = True __snake_case : Tuple = max_length __snake_case : Optional[int] = 0.8 __snake_case : Dict = 10 __snake_case : Tuple = 0.3 __snake_case : List[Any] = 1 __snake_case : Tuple = 8 __snake_case : Optional[int] = 9 for model_class in self.all_generative_model_classes: __snake_case : Any = model_class(a_ ) __snake_case : Any = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Any = jit(model.generate ) __snake_case : int = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self._get_input_ids_and_config() __snake_case : Optional[int] = max_length __snake_case : int = 1 __snake_case : Dict = 8 __snake_case : Dict = 9 for model_class in self.all_generative_model_classes: __snake_case : Tuple = model_class(a_ ) __snake_case : Union[str, Any] = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[Any] = jit(model.generate ) __snake_case : Optional[Any] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self._get_input_ids_and_config() __snake_case : Optional[int] = max_length __snake_case : Tuple = 2 __snake_case : Any = 1 __snake_case : Any = 8 __snake_case : Any = 9 for model_class in self.all_generative_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : Any = model.generate(a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[Any] = jit(model.generate ) __snake_case : Optional[int] = jit_generate(a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Optional[int] = attention_mask.at[(0, 0)].set(0 ) __snake_case : str = False __snake_case : int = max_length for model_class in self.all_generative_model_classes: __snake_case : Union[str, Any] = model_class(a_ ) __snake_case : int = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : int = jit(model.generate ) __snake_case : Tuple = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Any = attention_mask.at[(0, 0)].set(0 ) __snake_case : Optional[Any] = True __snake_case : List[str] = max_length for model_class in self.all_generative_model_classes: __snake_case : str = model_class(a_ ) __snake_case : Dict = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Optional[int] = jit(model.generate ) __snake_case : List[Any] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left __snake_case : Any = attention_mask.at[(0, 0)].set(0 ) __snake_case : Union[str, Any] = 2 __snake_case : int = max_length for model_class in self.all_generative_model_classes: __snake_case : List[str] = model_class(a_ ) __snake_case : Dict = model.generate(a_ , attention_mask=a_ ).sequences self.assertEqual(generation_outputs.shape[-1] , a_ ) __snake_case : Any = jit(model.generate ) __snake_case : Optional[int] = jit_generate(a_ , attention_mask=a_ ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-bert''' ) __snake_case : int = FlaxAutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __snake_case : Union[str, Any] = '''Hello world''' __snake_case : Optional[Any] = tokenizer(a_ , return_tensors='''np''' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(a_ , '''do_samples''' ): model.generate(a_ , do_samples=a_ ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(a_ , '''foo''' ): __snake_case : Optional[int] = {'''foo''': '''bar'''} model.generate(a_ , **a_ )
369
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
0
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=2 , a_=3 , a_=4 , a_=2 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=36 , a_=3 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=6 , a_=6 , a_=3 , a_=4 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : int = parent __snake_case : Union[str, Any] = batch_size __snake_case : Optional[Any] = num_channels __snake_case : str = image_size __snake_case : Tuple = patch_size __snake_case : str = text_seq_length __snake_case : List[Any] = is_training __snake_case : List[str] = use_input_mask __snake_case : List[str] = use_token_type_ids __snake_case : List[str] = use_labels __snake_case : Any = vocab_size __snake_case : List[str] = hidden_size __snake_case : int = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Union[str, Any] = intermediate_size __snake_case : str = hidden_act __snake_case : List[Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Optional[int] = type_sequence_label_size __snake_case : Optional[int] = initializer_range __snake_case : List[Any] = coordinate_size __snake_case : List[str] = shape_size __snake_case : Optional[int] = num_labels __snake_case : Dict = num_choices __snake_case : Any = scope __snake_case : List[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __snake_case : int = text_seq_length __snake_case : Optional[Any] = (image_size // patch_size) ** 2 + 1 __snake_case : List[str] = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : Dict = bbox[i, j, 3] __snake_case : List[str] = bbox[i, j, 1] __snake_case : Optional[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : Any = bbox[i, j, 2] __snake_case : Optional[Any] = bbox[i, j, 0] __snake_case : List[str] = t __snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : int = None if self.use_input_mask: __snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __snake_case : List[Any] = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __snake_case : Union[str, Any] = None __snake_case : List[Any] = None if self.use_labels: __snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __snake_case : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = LayoutLMvaModel(config=a_ ) model.to(a_ ) model.eval() # text + image __snake_case : Dict = model(a_ , pixel_values=a_ ) __snake_case : Union[str, Any] = model( a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : Union[str, Any] = model(a_ , bbox=a_ , pixel_values=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , pixel_values=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __snake_case : List[str] = model(a_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __snake_case : Any = model(pixel_values=a_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = self.num_labels __snake_case : Optional[int] = LayoutLMvaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : List[str] = model( a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.num_labels __snake_case : List[Any] = LayoutLMvaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model( a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = LayoutLMvaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model( a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.prepare_config_and_inputs() ( __snake_case ) : List[Any] = config_and_inputs __snake_case : List[Any] = { '''input_ids''': input_ids, '''bbox''': bbox, '''pixel_values''': pixel_values, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = LayoutLMvaModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=False ): '''simple docstring''' __snake_case : int = copy.deepcopy(a_ ) if model_class in get_values(a_ ): __snake_case : Any = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(a_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a_ ): __snake_case : Tuple = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a_ ) elif model_class in get_values(a_ ): __snake_case : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) __snake_case : Optional[int] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) elif model_class in [ *get_values(a_ ), ]: __snake_case : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a_ ) elif model_class in [ *get_values(a_ ), ]: __snake_case : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a_ , ) return inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Optional[int] = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Optional[int] = LayoutLMvaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->List[Any]: """simple docstring""" __snake_case : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LayoutLMvaImageProcessor(apply_ocr=a_ ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(a_ ) __snake_case : List[Any] = self.default_image_processor __snake_case : List[Any] = prepare_img() __snake_case : int = image_processor(images=a_ , return_tensors='''pt''' ).pixel_values.to(a_ ) __snake_case : Tuple = torch.tensor([[1, 2]] ) __snake_case : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __snake_case : Tuple = model( input_ids=input_ids.to(a_ ) , bbox=bbox.to(a_ ) , pixel_values=pixel_values.to(a_ ) , ) # verify the logits __snake_case : Union[str, Any] = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , a_ ) __snake_case : List[str] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1E-4 ) )
370
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int] ) ->list[int]: # This function is recursive """simple docstring""" __snake_case : int = len(_snake_case ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __snake_case : Optional[Any] = array[0] __snake_case : Optional[Any] = False __snake_case : List[Any] = 1 __snake_case : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __snake_case : Optional[Any] = True __snake_case : List[str] = [element for element in array[i:] if element >= array[i]] __snake_case : Dict = longest_subsequence(_snake_case ) if len(_snake_case ) > len(_snake_case ): __snake_case : List[Any] = temp_array else: i += 1 __snake_case : Union[str, Any] = [element for element in array[1:] if element >= pivot] __snake_case : str = [pivot, *longest_subsequence(_snake_case )] if len(_snake_case ) > len(_snake_case ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = logging.get_logger() # the current default level is logging.WARNING __snake_case : Any = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = logging.get_verbosity() __snake_case : Optional[int] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case : str = '''Testing 1, 2, 3''' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out , msg + '''\n''' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out , '''''' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(a_ ) as cl: logger.warning(a_ ) self.assertEqual(cl.out , msg + '''\n''' ) # restore to the original level logging.set_verbosity(a_ ) @mockenv(TRANSFORMERS_VERBOSITY='''error''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var __snake_case : List[str] = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case : Any = os.getenv('''TRANSFORMERS_VERBOSITY''' , a_ ) __snake_case : Union[str, Any] = logging.log_levels[env_level_str] __snake_case : Tuple = logging.get_verbosity() self.assertEqual( a_ , a_ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , ) # restore to the original level __snake_case : Dict = '''''' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='''super-error''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() __snake_case : Union[str, Any] = logging.logging.getLogger() with CaptureLogger(a_ ) as cl: # this action activates the env var logging.get_logger('''transformers.models.bart.tokenization_bart''' ) self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out ) # no need to restore as nothing was changed def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() __snake_case : Tuple = logging.get_logger('''transformers.models.bart.tokenization_bart''' ) __snake_case : Optional[Any] = '''Testing 1, 2, 3''' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ): # nothing should be logged as env var disables this method with CaptureLogger(a_ ) as cl: logger.warning_advice(a_ ) self.assertEqual(cl.out , '''''' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(a_ ) as cl: logger.warning_advice(a_ ) self.assertEqual(cl.out , msg + '''\n''' ) def lowercase ( ) ->Any: """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
350
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) def lowercase ( _snake_case : Optional[int] , _snake_case : Union[str, Any] , _snake_case : Dict ) ->Tuple: """simple docstring""" return [ int(1_000 * (box[0] / width) ), int(1_000 * (box[1] / height) ), int(1_000 * (box[2] / width) ), int(1_000 * (box[3] / height) ), ] def lowercase ( _snake_case : np.ndarray , _snake_case : Optional[str] , _snake_case : Optional[str] = None ) ->List[Any]: """simple docstring""" __snake_case : List[Any] = tesseract_config if tesseract_config is not None else '''''' # apply OCR __snake_case : List[Any] = to_pil_image(_snake_case ) __snake_case : str = pil_image.size __snake_case : int = pytesseract.image_to_data(_snake_case , lang=_snake_case , output_type='''dict''' , config=_snake_case ) __snake_case : Union[str, Any] = data['''text'''], data['''left'''], data['''top'''], data['''width'''], data['''height'''] # filter empty words and corresponding coordinates __snake_case : Union[str, Any] = [idx for idx, word in enumerate(_snake_case ) if not word.strip()] __snake_case : List[str] = [word for idx, word in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Any = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Optional[int] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Dict = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] __snake_case : Optional[Any] = [coord for idx, coord in enumerate(_snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case : List[Any] = [] for x, y, w, h in zip(_snake_case , _snake_case , _snake_case , _snake_case ): __snake_case : Optional[Any] = [x, y, x + w, y + h] actual_boxes.append(_snake_case ) # finally, normalize the bounding boxes __snake_case : Optional[int] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_snake_case , _snake_case , _snake_case ) ) assert len(_snake_case ) == len(_snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['pixel_values'] def __init__(self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = None , a_ = "" , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : Optional[int] = size if size is not None else {'''height''': 2_24, '''width''': 2_24} __snake_case : Dict = get_size_dict(a_ ) __snake_case : Any = do_resize __snake_case : List[Any] = size __snake_case : int = resample __snake_case : Optional[int] = apply_ocr __snake_case : Dict = ocr_lang __snake_case : str = tesseract_config def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ = PILImageResampling.BILINEAR , a_ = None , **a_ , ): '''simple docstring''' __snake_case : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __snake_case : int = (size['''height'''], size['''width''']) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): '''simple docstring''' __snake_case : int = do_resize if do_resize is not None else self.do_resize __snake_case : Any = size if size is not None else self.size __snake_case : Any = get_size_dict(a_ ) __snake_case : Dict = resample if resample is not None else self.resample __snake_case : Optional[int] = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case : Tuple = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case : List[Any] = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case : Tuple = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) # All transformations expect numpy arrays. __snake_case : Any = [to_numpy_array(a_ ) for image in images] if apply_ocr: requires_backends(self , '''pytesseract''' ) __snake_case : Union[str, Any] = [] __snake_case : Optional[Any] = [] for image in images: __snake_case : Optional[Any] = apply_tesseract(a_ , a_ , a_ ) words_batch.append(a_ ) boxes_batch.append(a_ ) if do_resize: __snake_case : List[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) __snake_case : List[Any] = [flip_channel_order(a_ ) for image in images] __snake_case : Union[str, Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] __snake_case : Union[str, Any] = BatchFeature(data={'''pixel_values''': images} , tensor_type=a_ ) if apply_ocr: __snake_case : Optional[Any] = words_batch __snake_case : int = boxes_batch return data
351
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float ) ->dict[str, float]: """simple docstring""" if (voltage, current, resistance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance < 0: raise ValueError('''Resistance cannot be negative''' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
352
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
0
"""simple docstring""" import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase ( ) ->Optional[int]: """simple docstring""" raise RuntimeError('''CUDA out of memory.''' ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self ): '''simple docstring''' super().__init__() __snake_case : Optional[int] = nn.Linear(3 , 4 ) __snake_case : str = nn.BatchNormad(4 ) __snake_case : List[str] = nn.Linear(4 , 5 ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(a_ ) ) ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a_ ): nonlocal batch_sizes batch_sizes.append(a_ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(a_ , [1_28, 64, 32, 16, 8] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = [] @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a_ , a_ ): nonlocal batch_sizes batch_sizes.append(a_ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __snake_case : Optional[int] = mock_training_loop_function('''hello''' ) self.assertListEqual(a_ , [1_28, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, '''hello'''] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(a_ ): pass with self.assertRaises(a_ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a_ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(a_ ) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=1_28 ) def mock_training_loop_function(a_ , a_ , a_ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(a_ ) as cm: mock_training_loop_function(1_28 , '''hello''' , '''world''' ) self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] ) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(a_ ): raise ValueError('''Oops, we had an error!''' ) with self.assertRaises(a_ ) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = torch.cuda.memory_allocated() __snake_case : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , a_ ) __snake_case : List[str] = release_memory(a_ ) self.assertEqual(torch.cuda.memory_allocated() , a_ )
353
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
0
"""simple docstring""" import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration SCREAMING_SNAKE_CASE : str = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def lowercase ( _snake_case : List[Any] ) ->List[str]: """simple docstring""" __snake_case : Union[str, Any] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE : str = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def lowercase ( _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Any = list(s_dict.keys() ) for key in keys: __snake_case : str = key for k, v in WHISPER_MAPPING.items(): if k in key: __snake_case : Any = new_key.replace(_snake_case , _snake_case ) print(f"""{key} -> {new_key}""" ) __snake_case : str = s_dict.pop(_snake_case ) return s_dict def lowercase ( _snake_case : int ) ->str: """simple docstring""" __snake_case : int = emb.weight.shape __snake_case : List[str] = nn.Linear(_snake_case , _snake_case , bias=_snake_case ) __snake_case : Any = emb.weight.data return lin_layer def lowercase ( _snake_case : str , _snake_case : str ) ->bytes: """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : List[str] = os.path.basename(_snake_case ) __snake_case : str = url.split('''/''' )[-2] __snake_case : Optional[int] = os.path.join(_snake_case , _snake_case ) if os.path.exists(_snake_case ) and not os.path.isfile(_snake_case ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(_snake_case ): __snake_case : List[Any] = open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(_snake_case ) as source, open(_snake_case , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=_snake_case , unit_divisor=1_024 ) as loop: while True: __snake_case : Union[str, Any] = source.read(8_192 ) if not buffer: break output.write(_snake_case ) loop.update(len(_snake_case ) ) __snake_case : List[Any] = open(_snake_case , '''rb''' ).read() if hashlib.shaaaa(_snake_case ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def lowercase ( _snake_case : Any , _snake_case : int ) ->str: """simple docstring""" if ".pt" not in checkpoint_path: __snake_case : Any = _download(_MODELS[checkpoint_path] ) else: __snake_case : Optional[Any] = torch.load(_snake_case , map_location='''cpu''' ) __snake_case : int = original_checkpoint['''dims'''] __snake_case : List[Any] = original_checkpoint['''model_state_dict'''] __snake_case : List[str] = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(_snake_case ) rename_keys(_snake_case ) __snake_case : Optional[int] = True __snake_case : int = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] __snake_case : List[Any] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=_snake_case , decoder_ffn_dim=_snake_case , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) __snake_case : int = WhisperForConditionalGeneration(_snake_case ) __snake_case : List[Any] = model.model.load_state_dict(_snake_case , strict=_snake_case ) if len(_snake_case ) > 0 and not set(_snake_case ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: __snake_case : List[Any] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __snake_case : List[str] = proj_out_weights model.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
354
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
0
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=None , a_=None , a_=None , a_="resnet50" , a_=3 , a_=32 , a_=3 , a_=True , a_=True , ): '''simple docstring''' __snake_case : Optional[int] = parent __snake_case : int = out_indices if out_indices is not None else [4] __snake_case : int = stage_names __snake_case : Union[str, Any] = out_features __snake_case : List[str] = backbone __snake_case : Union[str, Any] = batch_size __snake_case : Optional[Any] = image_size __snake_case : int = num_channels __snake_case : Optional[int] = use_pretrained_backbone __snake_case : Optional[Any] = is_training def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[Any] = self.get_config() return config, pixel_values def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = TimmBackbone(config=a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Optional[Any] = model(a_ ) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() __snake_case : Union[str, Any] = config_and_inputs __snake_case : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =(TimmBackbone,) if is_torch_available() else () lowerCamelCase__ ={'feature-extraction': TimmBackbone} if is_torch_available() else {} lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = TimmBackboneModelTester(self ) __snake_case : Optional[int] = ConfigTester(self , config_class=a_ , has_text_modality=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''resnet18''' __snake_case : List[Any] = '''microsoft/resnet-18''' __snake_case : List[str] = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ ) __snake_case : Optional[int] = AutoBackbone.from_pretrained(a_ ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,) ) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] ) __snake_case : List[Any] = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] ) __snake_case : Tuple = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices , transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels , transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Dict = model_class(a_ ) __snake_case : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[Any] = True __snake_case : Optional[int] = self.has_attentions # no need to test all models as different heads yield the same functionality __snake_case : Tuple = self.all_model_classes[0] __snake_case : Dict = model_class(a_ ) model.to(a_ ) __snake_case : Union[str, Any] = self._prepare_for_class(a_ , a_ ) __snake_case : int = model(**a_ ) __snake_case : Optional[int] = outputs[0][-1] # Encoder-/Decoder-only models __snake_case : int = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __snake_case : Tuple = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=a_ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Union[str, Any] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : str = model(**a_ ) self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) ) self.assertEqual(len(model.channels ) , len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __snake_case : Dict = copy.deepcopy(a_ ) __snake_case : List[str] = None __snake_case : List[str] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(**a_ ) self.assertEqual(len(result.feature_maps ) , 1 ) self.assertEqual(len(model.channels ) , 1 ) # Check backbone can be initialized with fresh weights __snake_case : str = copy.deepcopy(a_ ) __snake_case : List[Any] = False __snake_case : Optional[int] = model_class(a_ ) model.to(a_ ) model.eval() __snake_case : str = model(**a_ )
355
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
0
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def lowercase ( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ) ->float: """simple docstring""" __snake_case : Optional[int] = x_start __snake_case : int = fnc(_snake_case ) __snake_case : List[str] = 0.0 for _ in range(_snake_case ): # Approximates curve as a sequence of linear lines and sums their length __snake_case : int = (x_end - x_start) / steps + xa __snake_case : Dict = fnc(_snake_case ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __snake_case : Tuple = xa __snake_case : Dict = fxa return length if __name__ == "__main__": def lowercase ( _snake_case : List[Any] ) ->Optional[int]: """simple docstring""" return math.sin(10 * x ) print("""f(x) = sin(10 * x)""") print("""The length of the curve from x = -10 to x = 10 is:""") SCREAMING_SNAKE_CASE : Union[str, Any] = 10 while i <= 10_0000: print(F'With {i} steps: {line_length(f, -10, 10, i)}') i *= 10
356
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Optional[Any] = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
357
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
0
"""simple docstring""" import math def lowercase ( _snake_case : int ) ->bool: """simple docstring""" assert isinstance(_snake_case , _snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False __snake_case : Optional[Any] = range(3 , int(math.sqrt(_snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowercase ( _snake_case : Dict , _snake_case : int=1 , **_snake_case : Optional[int] ) ->Optional[Any]: """simple docstring""" __snake_case : Tuple = factor * value __snake_case : int = value while not is_prime(_snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **_snake_case ) return value
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=False , a_=True , a_="None" , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : Dict = parent __snake_case : Dict = batch_size __snake_case : Optional[int] = seq_length __snake_case : Union[str, Any] = is_training __snake_case : int = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Tuple = use_labels __snake_case : Any = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : Optional[Any] = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : List[Any] = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : Any = attention_probs_dropout_prob __snake_case : Any = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : Optional[int] = type_sequence_label_size __snake_case : int = initializer_range __snake_case : Dict = num_labels __snake_case : List[str] = num_choices __snake_case : int = relative_attention __snake_case : List[Any] = position_biased_input __snake_case : Dict = pos_att_type __snake_case : Optional[Any] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str = None if self.use_input_mask: __snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Any = None __snake_case : int = None __snake_case : Tuple = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = self.get_config() __snake_case : str = 3_00 return config def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DebertaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ )[0] __snake_case : str = model(a_ , token_type_ids=a_ )[0] __snake_case : Dict = model(a_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = DebertaForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : List[Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = self.num_labels __snake_case : Union[str, Any] = DebertaForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Optional[int] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = self.num_labels __snake_case : str = DebertaForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DebertaForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model( a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() ( __snake_case ) : Tuple = config_and_inputs __snake_case : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = DebertaModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DebertaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) __snake_case : str = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) __snake_case : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : Optional[int] = model(a_ , attention_mask=a_ )[0] # compare the actual values for a slice. __snake_case : int = torch.tensor( [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) , f"""{output[:, 1:4, 1:4]}""" )
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
0
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : Tuple = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , ) return model @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' torch.manual_seed(0 ) __snake_case : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.dummy_uncond_unet __snake_case : int = DDIMScheduler() __snake_case : str = self.dummy_vq_model __snake_case : Union[str, Any] = LDMPipeline(unet=a_ , vqvae=a_ , scheduler=a_ ) ldm.to(a_ ) ldm.set_progress_bar_config(disable=a_ ) __snake_case : Union[str, Any] = torch.manual_seed(0 ) __snake_case : Optional[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' ).images __snake_case : Any = torch.manual_seed(0 ) __snake_case : List[Any] = ldm(generator=a_ , num_inference_steps=2 , output_type='''numpy''' , return_dict=a_ )[0] __snake_case : Dict = image[0, -3:, -3:, -1] __snake_case : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __snake_case : List[Any] = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172] ) __snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = LDMPipeline.from_pretrained('''CompVis/ldm-celebahq-256''' ) ldm.to(a_ ) ldm.set_progress_bar_config(disable=a_ ) __snake_case : Tuple = torch.manual_seed(0 ) __snake_case : Dict = ldm(generator=a_ , num_inference_steps=5 , output_type='''numpy''' ).images __snake_case : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __snake_case : Dict = np.array([0.4399, 0.4_4975, 0.4_6825, 0.474, 0.4359, 0.4581, 0.4_5095, 0.4341, 0.4447] ) __snake_case : str = 1E-2 if torch_device != '''mps''' else 3E-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
360
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
0
"""simple docstring""" class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = n __snake_case : Dict = [None] * self.n __snake_case : List[str] = 0 # index of the first element __snake_case : Optional[int] = 0 __snake_case : Tuple = 0 def __len__(self ): '''simple docstring''' return self.size def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.size == 0 def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return False if self.is_empty() else self.array[self.front] def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) __snake_case : Tuple = data __snake_case : Any = (self.rear + 1) % self.n self.size += 1 return self def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.size == 0: raise Exception('''UNDERFLOW''' ) __snake_case : int = self.array[self.front] __snake_case : Union[str, Any] = None __snake_case : Tuple = (self.front + 1) % self.n self.size -= 1 return temp
361
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
0
"""simple docstring""" def lowercase ( _snake_case : int = 1 , _snake_case : int = 1_000 ) ->int: """simple docstring""" __snake_case : List[Any] = 1 __snake_case : int = 0 for divide_by_number in range(_snake_case , digit + 1 ): __snake_case : list[int] = [] __snake_case : List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(_snake_case ): __snake_case : Optional[int] = len(_snake_case ) __snake_case : Union[str, Any] = divide_by_number else: has_been_divided.append(_snake_case ) __snake_case : str = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" import math def lowercase ( _snake_case : float , _snake_case : float ) ->float: """simple docstring""" return math.pow(_snake_case , 2 ) - a def lowercase ( _snake_case : float ) ->float: """simple docstring""" return 2 * x def lowercase ( _snake_case : float ) ->float: """simple docstring""" __snake_case : Optional[Any] = 2.0 while start <= a: __snake_case : List[Any] = math.pow(_snake_case , 2 ) return start def lowercase ( _snake_case : float , _snake_case : int = 9_999 , _snake_case : float = 0.00000000000001 ) ->float: """simple docstring""" if a < 0: raise ValueError('''math domain error''' ) __snake_case : Tuple = get_initial_point(_snake_case ) for _ in range(_snake_case ): __snake_case : str = value __snake_case : Dict = value - fx(_snake_case , _snake_case ) / fx_derivative(_snake_case ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , ): '''simple docstring''' __snake_case : str = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case : str = parent __snake_case : Optional[Any] = batch_size __snake_case : int = num_channels __snake_case : List[Any] = image_size __snake_case : Optional[int] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[str] = do_resize __snake_case : str = size __snake_case : Union[str, Any] = do_normalize __snake_case : Optional[Any] = image_mean __snake_case : str = image_std def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =DPTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = DPTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''image_mean''' ) ) self.assertTrue(hasattr(a_ , '''image_std''' ) ) self.assertTrue(hasattr(a_ , '''do_normalize''' ) ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : List[Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case : int = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
364
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Optional[int] = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Dict = { """google/canine-s""": """https://huggingface.co/google/canine-s/resolve/main/config.json""", # See all CANINE models at https://huggingface.co/models?filter=canine } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='canine' def __init__(self , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=1_63_84 , a_=16 , a_=0.02 , a_=1E-12 , a_=0 , a_=0XE_0_0_0 , a_=0XE_0_0_1 , a_=4 , a_=4 , a_=8 , a_=1_63_84 , a_=1_28 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) __snake_case : int = max_position_embeddings __snake_case : Union[str, Any] = hidden_size __snake_case : Any = num_hidden_layers __snake_case : Tuple = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : Dict = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : str = initializer_range __snake_case : Tuple = type_vocab_size __snake_case : Dict = layer_norm_eps # Character config: __snake_case : Dict = downsampling_rate __snake_case : List[Any] = upsampling_kernel_size __snake_case : Optional[Any] = num_hash_functions __snake_case : Any = num_hash_buckets __snake_case : Optional[int] = local_transformer_stride
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
0
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE : Optional[int] = list[list[int]] # assigning initial values to the grid SCREAMING_SNAKE_CASE : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution SCREAMING_SNAKE_CASE : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase ( _snake_case : Matrix , _snake_case : int , _snake_case : int , _snake_case : int ) ->bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase ( _snake_case : Matrix ) ->tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase ( _snake_case : Matrix ) ->Matrix | None: """simple docstring""" if location := find_empty_location(_snake_case ): __snake_case : List[str] = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(_snake_case , _snake_case , _snake_case , _snake_case ): __snake_case : Any = digit if sudoku(_snake_case ) is not None: return grid __snake_case : List[Any] = 0 return None def lowercase ( _snake_case : Matrix ) ->None: """simple docstring""" for row in grid: for cell in row: print(_snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print("""\nExample grid:\n""" + """=""" * 20) print_solution(example_grid) print("""\nExample grid solution:""") SCREAMING_SNAKE_CASE : Tuple = sudoku(example_grid) if solution is not None: print_solution(solution) else: print("""Cannot find a solution.""")
367
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
0
"""simple docstring""" from manim import * class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Rectangle(height=0.5 , width=0.5 ) __snake_case : int = Rectangle(height=0.25 , width=0.25 ) __snake_case : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __snake_case : Optional[int] = [mem.copy() for i in range(6 )] __snake_case : str = [mem.copy() for i in range(6 )] __snake_case : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Union[str, Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case : Tuple = Text('''CPU''' , font_size=24 ) __snake_case : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(a_ ) __snake_case : int = [mem.copy() for i in range(4 )] __snake_case : List[str] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : List[Any] = Text('''GPU''' , font_size=24 ) __snake_case : Any = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) gpu.move_to([-1, -1, 0] ) self.add(a_ ) __snake_case : List[str] = [mem.copy() for i in range(6 )] __snake_case : Dict = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Dict = Text('''Model''' , font_size=24 ) __snake_case : int = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) model.move_to([3, -1.0, 0] ) self.add(a_ ) __snake_case : List[str] = [] __snake_case : str = [] __snake_case : str = [] for i, rect in enumerate(a_ ): rect.set_stroke(a_ ) __snake_case : str = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=a_ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=a_ , buff=0.0 ) self.add(a_ ) model_cpu_arr.append(a_ ) self.add(*a_ , *a_ , *a_ ) __snake_case : str = [mem.copy() for i in range(6 )] __snake_case : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Optional[Any] = Text('''Loaded Checkpoint''' , font_size=24 ) __snake_case : Optional[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) checkpoint.move_to([3, 0.5, 0] ) self.add(a_ ) __snake_case : Tuple = [] __snake_case : Optional[int] = [] for i, rect in enumerate(a_ ): __snake_case : int = fill.copy().set_fill(a_ , opacity=0.7 ) target.move_to(a_ ) ckpt_arr.append(a_ ) __snake_case : Optional[Any] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(a_ ) self.add(*a_ , *a_ ) __snake_case : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __snake_case : Optional[int] = MarkupText( f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(a_ , a_ ) __snake_case : List[str] = MarkupText( f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(a_ ) __snake_case : Tuple = MarkupText( f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) __snake_case : Dict = [meta_mem.copy() for i in range(6 )] __snake_case : Optional[int] = [meta_mem.copy() for i in range(6 )] __snake_case : Any = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 ) __snake_case : Optional[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 ) __snake_case : List[Any] = Text('''Disk''' , font_size=24 ) __snake_case : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(a_ , run_time=3 ) , Write(a_ , run_time=1 ) , Create(a_ , run_time=1 ) ) __snake_case : int = [] for i, rect in enumerate(a_ ): __snake_case : Optional[Any] = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(a_ , run_time=1.5 ) ) self.play(*a_ ) self.play(FadeOut(a_ ) ) __snake_case : List[str] = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(a_ , run_time=3 ) ) self.play( FadeOut(a_ , a_ , *a_ , *a_ ) , ) self.wait()
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
"""simple docstring""" from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) @add_end_docstrings(__snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , **a_ ): '''simple docstring''' super().__init__(*a_ , **a_ ) requires_backends(self , '''vision''' ) self.check_model_type(a_ ) def __call__(self , a_ , **a_ ): '''simple docstring''' return super().__call__(a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , **a_ ): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = load_image(a_ ) __snake_case : Optional[int] = image.size __snake_case : int = self.image_processor(images=a_ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Any = self.model(**a_ ) return model_outputs def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[int] = model_outputs.predicted_depth __snake_case : Tuple = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='''bicubic''' , align_corners=a_ ) __snake_case : Optional[Any] = prediction.squeeze().cpu().numpy() __snake_case : str = (output * 2_55 / np.max(a_ )).astype('''uint8''' ) __snake_case : List[Any] = Image.fromarray(a_ ) __snake_case : List[str] = {} __snake_case : Union[str, Any] = predicted_depth __snake_case : Tuple = depth return output_dict
369
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
0
"""simple docstring""" import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =CpmAntTokenizer lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().setUp() __snake_case : Optional[int] = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] __snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) __snake_case : Tuple = '''今天天气真好!''' __snake_case : int = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] __snake_case : int = tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) __snake_case : List[Any] = '''今天天气真好!''' __snake_case : Dict = [tokenizer.bos_token] + tokens __snake_case : List[str] = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ ) __snake_case : Optional[Any] = tokenizer.decode(a_ ) self.assertEqual(a_ , a_ )
370
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lilt' def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=12 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=0 , a_="absolute" , a_=None , a_=4 , a_=10_24 , **a_ , ): '''simple docstring''' super().__init__(pad_token_id=a_ , **a_ ) __snake_case : str = vocab_size __snake_case : str = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : Union[str, Any] = num_attention_heads __snake_case : Any = hidden_act __snake_case : str = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : Union[str, Any] = max_position_embeddings __snake_case : str = type_vocab_size __snake_case : int = initializer_range __snake_case : int = layer_norm_eps __snake_case : Optional[int] = position_embedding_type __snake_case : Dict = classifier_dropout __snake_case : Any = channel_shrink_ratio __snake_case : Dict = max_ad_position_embeddings
371
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
0
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_=0.0 , a_ = None , a_ = "geglu" , a_ = None , a_ = False , a_ = False , a_ = False , a_ = False , a_ = True , a_ = "layer_norm" , a_ = False , ): '''simple docstring''' super().__init__() __snake_case : List[Any] = only_cross_attention __snake_case : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __snake_case : Dict = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f"""`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to""" f""" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.""" ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __snake_case : List[Any] = AdaLayerNorm(a_ , a_ ) elif self.use_ada_layer_norm_zero: __snake_case : List[str] = AdaLayerNormZero(a_ , a_ ) else: __snake_case : List[str] = nn.LayerNorm(a_ , elementwise_affine=a_ ) __snake_case : List[Any] = Attention( query_dim=a_ , heads=a_ , dim_head=a_ , dropout=a_ , bias=a_ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=a_ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __snake_case : Union[str, Any] = ( AdaLayerNorm(a_ , a_ ) if self.use_ada_layer_norm else nn.LayerNorm(a_ , elementwise_affine=a_ ) ) __snake_case : Union[str, Any] = Attention( query_dim=a_ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=a_ , dim_head=a_ , dropout=a_ , bias=a_ , upcast_attention=a_ , ) # is self-attn if encoder_hidden_states is none else: __snake_case : Dict = None __snake_case : Optional[int] = None # 3. Feed-forward __snake_case : Optional[Any] = nn.LayerNorm(a_ , elementwise_affine=a_ ) __snake_case : Union[str, Any] = FeedForward(a_ , dropout=a_ , activation_fn=a_ , final_dropout=a_ ) # let chunk size default to None __snake_case : Union[str, Any] = None __snake_case : Any = 0 def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : int = chunk_size __snake_case : Any = dim def SCREAMING_SNAKE_CASE (self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , ): '''simple docstring''' if self.use_ada_layer_norm: __snake_case : str = self.norma(a_ , a_ ) elif self.use_ada_layer_norm_zero: __snake_case : Any = self.norma( a_ , a_ , a_ , hidden_dtype=hidden_states.dtype ) else: __snake_case : Dict = self.norma(a_ ) __snake_case : Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} __snake_case : Union[str, Any] = self.attna( a_ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=a_ , **a_ , ) if self.use_ada_layer_norm_zero: __snake_case : Tuple = gate_msa.unsqueeze(1 ) * attn_output __snake_case : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __snake_case : List[str] = ( self.norma(a_ , a_ ) if self.use_ada_layer_norm else self.norma(a_ ) ) __snake_case : Tuple = self.attna( a_ , encoder_hidden_states=a_ , attention_mask=a_ , **a_ , ) __snake_case : str = attn_output + hidden_states # 3. Feed-forward __snake_case : Union[str, Any] = self.norma(a_ ) if self.use_ada_layer_norm_zero: __snake_case : List[str] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f"""`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.""" ) __snake_case : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __snake_case : Dict = torch.cat( [self.ff(a_ ) for hid_slice in norm_hidden_states.chunk(a_ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __snake_case : str = self.ff(a_ ) if self.use_ada_layer_norm_zero: __snake_case : Dict = gate_mlp.unsqueeze(1 ) * ff_output __snake_case : List[str] = ff_output + hidden_states return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ = None , a_ = 4 , a_ = 0.0 , a_ = "geglu" , a_ = False , ): '''simple docstring''' super().__init__() __snake_case : Dict = int(dim * mult ) __snake_case : Union[str, Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __snake_case : Optional[int] = GELU(a_ , a_ ) if activation_fn == "gelu-approximate": __snake_case : int = GELU(a_ , a_ , approximate='''tanh''' ) elif activation_fn == "geglu": __snake_case : List[Any] = GEGLU(a_ , a_ ) elif activation_fn == "geglu-approximate": __snake_case : Dict = ApproximateGELU(a_ , a_ ) __snake_case : Any = nn.ModuleList([] ) # project in self.net.append(a_ ) # project dropout self.net.append(nn.Dropout(a_ ) ) # project out self.net.append(nn.Linear(a_ , a_ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(a_ ) ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for module in self.net: __snake_case : str = module(a_ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = "none" ): '''simple docstring''' super().__init__() __snake_case : Union[str, Any] = nn.Linear(a_ , a_ ) __snake_case : Tuple = approximate def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(a_ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.proj(a_ ) __snake_case : str = self.gelu(a_ ) return hidden_states class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : List[str] = nn.Linear(a_ , dim_out * 2 ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if gate.device.type != "mps": return F.gelu(a_ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[int] = self.proj(a_ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(a_ ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : Union[str, Any] = nn.Linear(a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.proj(a_ ) return x * torch.sigmoid(1.702 * x ) class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : Optional[Any] = nn.Embedding(a_ , a_ ) __snake_case : Optional[int] = nn.SiLU() __snake_case : Dict = nn.Linear(a_ , embedding_dim * 2 ) __snake_case : int = nn.LayerNorm(a_ , elementwise_affine=a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.linear(self.silu(self.emb(a_ ) ) ) __snake_case : Union[str, Any] = torch.chunk(a_ , 2 ) __snake_case : Dict = self.norm(a_ ) * (1 + scale) + shift return x class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' super().__init__() __snake_case : Optional[int] = CombinedTimestepLabelEmbeddings(a_ , a_ ) __snake_case : Union[str, Any] = nn.SiLU() __snake_case : Union[str, Any] = nn.Linear(a_ , 6 * embedding_dim , bias=a_ ) __snake_case : List[Any] = nn.LayerNorm(a_ , elementwise_affine=a_ , eps=1E-6 ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_=None ): '''simple docstring''' __snake_case : List[str] = self.linear(self.silu(self.emb(a_ , a_ , hidden_dtype=a_ ) ) ) __snake_case : Optional[int] = emb.chunk(6 , dim=1 ) __snake_case : str = self.norm(a_ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _UpperCAmelCase ( nn.Module ): '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = 1E-5 ): '''simple docstring''' super().__init__() __snake_case : List[str] = num_groups __snake_case : int = eps if act_fn is None: __snake_case : List[str] = None else: __snake_case : int = get_activation(a_ ) __snake_case : Any = nn.Linear(a_ , out_dim * 2 ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if self.act: __snake_case : Dict = self.act(a_ ) __snake_case : List[str] = self.linear(a_ ) __snake_case : int = emb[:, :, None, None] __snake_case : Union[str, Any] = emb.chunk(2 , dim=1 ) __snake_case : Any = F.group_norm(a_ , self.num_groups , eps=self.eps ) __snake_case : Any = x * (1 + scale) + shift return x
350
"""simple docstring""" def lowercase ( ) ->int: """simple docstring""" return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(_snake_case , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate SCREAMING_SNAKE_CASE : List[Any] = trt.Logger(trt.Logger.WARNING) SCREAMING_SNAKE_CASE : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--onnx_model_path""", default=None, type=str, required=True, help="""Path to ONNX model: """, ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""The output directory where the model checkpoints and predictions will be written.""", ) # Other parameters parser.add_argument( """--tokenizer_name""", default="""""", type=str, required=True, help="""Pretrained tokenizer name or path if not the same as model_name""", ) parser.add_argument( """--version_2_with_negative""", action="""store_true""", help="""If true, the SQuAD examples contain some that do not have an answer.""", ) parser.add_argument( """--null_score_diff_threshold""", type=float, default=0.0, help="""If null_score - best_non_null is greater than the threshold predict null.""", ) parser.add_argument( """--max_seq_length""", default=384, type=int, help=( """The maximum total input sequence length after WordPiece tokenization. Sequences """ """longer than this will be truncated, and sequences shorter than this will be padded.""" ), ) parser.add_argument( """--doc_stride""", default=128, type=int, help="""When splitting up a long document into chunks, how much stride to take between chunks.""", ) parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""") parser.add_argument( """--n_best_size""", default=20, type=int, help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""", ) parser.add_argument( """--max_answer_length""", default=30, type=int, help=( """The maximum length of an answer that can be generated. This is needed because the start """ """and end predictions are not conditioned on one another.""" ), ) parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""") parser.add_argument( """--dataset_name""", type=str, default=None, required=True, help="""The name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--dataset_config_name""", type=str, default=None, help="""The configuration name of the dataset to use (via the datasets library).""", ) parser.add_argument( """--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data.""" ) parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""") parser.add_argument( """--fp16""", action="""store_true""", help="""Whether to use 16-bit (mixed) precision instead of 32-bit""", ) parser.add_argument( """--int8""", action="""store_true""", help="""Whether to use INT8""", ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() if args.tokenizer_name: SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) logger.info("""Training/evaluation parameters %s""", args) SCREAMING_SNAKE_CASE : int = args.per_device_eval_batch_size SCREAMING_SNAKE_CASE : Optional[int] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : Optional[int] = """temp_engine/bert-fp32.engine""" if args.fpaa: SCREAMING_SNAKE_CASE : str = """temp_engine/bert-fp16.engine""" if args.inta: SCREAMING_SNAKE_CASE : List[str] = """temp_engine/bert-int8.engine""" # import ONNX file if not os.path.exists("""temp_engine"""): os.makedirs("""temp_engine""") SCREAMING_SNAKE_CASE : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, """rb""") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network SCREAMING_SNAKE_CASE : Any = [network.get_input(i) for i in range(network.num_inputs)] SCREAMING_SNAKE_CASE : Tuple = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: SCREAMING_SNAKE_CASE : int = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) SCREAMING_SNAKE_CASE : str = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) SCREAMING_SNAKE_CASE : str = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, """wb""") as f: f.write(engine.serialize()) def lowercase ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : List[Any] ) ->Any: """simple docstring""" __snake_case : Optional[int] = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) __snake_case : Optional[int] = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) __snake_case : Tuple = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _snake_case ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _snake_case ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _snake_case ) # start time __snake_case : int = time.time() # Run inference context.execute_async( bindings=[int(_snake_case ) for d_inp in d_inputs] + [int(_snake_case ), int(_snake_case )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_snake_case , _snake_case , _snake_case ) cuda.memcpy_dtoh_async(_snake_case , _snake_case , _snake_case ) # Synchronize the stream and take time stream.synchronize() # end time __snake_case : List[str] = time.time() __snake_case : str = end_time - start_time __snake_case : List[Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. SCREAMING_SNAKE_CASE : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE : int = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("""Evaluation requires a dataset name""") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. SCREAMING_SNAKE_CASE : Union[str, Any] = raw_datasets["""validation"""].column_names SCREAMING_SNAKE_CASE : str = """question""" if """question""" in column_names else column_names[0] SCREAMING_SNAKE_CASE : List[Any] = """context""" if """context""" in column_names else column_names[1] SCREAMING_SNAKE_CASE : int = """answers""" if """answers""" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.padding_side == """right""" if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) SCREAMING_SNAKE_CASE : List[str] = min(args.max_seq_length, tokenizer.model_max_length) def lowercase ( _snake_case : List[str] ) ->Tuple: """simple docstring""" __snake_case : Optional[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. __snake_case : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=_snake_case , stride=args.doc_stride , return_overflowing_tokens=_snake_case , return_offsets_mapping=_snake_case , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. __snake_case : Optional[Any] = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. __snake_case : Dict = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). __snake_case : Tuple = tokenized_examples.sequence_ids(_snake_case ) __snake_case : int = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. __snake_case : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. __snake_case : Optional[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples SCREAMING_SNAKE_CASE : int = raw_datasets["""validation"""] # Validation Feature Creation SCREAMING_SNAKE_CASE : str = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) SCREAMING_SNAKE_CASE : Tuple = default_data_collator SCREAMING_SNAKE_CASE : Tuple = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""]) SCREAMING_SNAKE_CASE : List[str] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowercase ( _snake_case : List[Any] , _snake_case : Dict , _snake_case : Tuple , _snake_case : Tuple="eval" ) ->Any: """simple docstring""" __snake_case : Optional[Any] = postprocess_qa_predictions( examples=_snake_case , features=_snake_case , predictions=_snake_case , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_snake_case , ) # Format the result to the format the metric expects. if args.version_2_with_negative: __snake_case : Tuple = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: __snake_case : str = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] __snake_case : List[Any] = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_snake_case , label_ids=_snake_case ) SCREAMING_SNAKE_CASE : int = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""") # Evaluation! logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path) with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowercase ( _snake_case : str ) ->Dict: """simple docstring""" return trt.volume(engine.get_binding_shape(_snake_case ) ) * engine.get_binding_dtype(_snake_case ).itemsize # Allocate device memory for inputs and outputs. SCREAMING_SNAKE_CASE : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer SCREAMING_SNAKE_CASE : Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) SCREAMING_SNAKE_CASE : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes) SCREAMING_SNAKE_CASE : Any = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. SCREAMING_SNAKE_CASE : Optional[int] = cuda.Stream() # Evaluation logger.info("""***** Running Evaluation *****""") logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') SCREAMING_SNAKE_CASE : Tuple = 0.0 SCREAMING_SNAKE_CASE : Tuple = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = timeit.default_timer() SCREAMING_SNAKE_CASE : Union[str, Any] = None for step, batch in enumerate(eval_dataloader): SCREAMING_SNAKE_CASE : Tuple = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 SCREAMING_SNAKE_CASE : List[Any] = outputs SCREAMING_SNAKE_CASE : Tuple = torch.tensor(start_logits) SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE : Any = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) SCREAMING_SNAKE_CASE : Optional[int] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) SCREAMING_SNAKE_CASE : List[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: SCREAMING_SNAKE_CASE : Optional[int] = nested_truncate(all_preds, len(eval_dataset)) SCREAMING_SNAKE_CASE : Union[str, Any] = timeit.default_timer() - start_time logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter)) logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000)) logger.info("""Total Number of Inference = %d""", niter) SCREAMING_SNAKE_CASE : Tuple = post_processing_function(eval_examples, eval_dataset, all_preds) SCREAMING_SNAKE_CASE : Tuple = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
351
"""simple docstring""" def lowercase ( _snake_case : int = 100 ) ->int: """simple docstring""" __snake_case : str = n * (n + 1) * (2 * n + 1) / 6 __snake_case : Dict = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'{solution() = }')
24
0
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowercase ( _snake_case : str , _snake_case : Tuple , _snake_case : List[Any] ) ->Dict: """simple docstring""" __snake_case : Optional[Any] = AutoConfig.from_pretrained(_snake_case ) __snake_case : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_snake_case ) __snake_case : Dict = checkpoints.load_tax_checkpoint(_snake_case ) __snake_case : str = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": __snake_case : Any = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": __snake_case : Any = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __snake_case : List[Any] = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): __snake_case : Optional[Any] = f"""layers_{str(_snake_case )}""" # Self-Attention __snake_case : str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] __snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] __snake_case : int = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] __snake_case : Any = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization __snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: __snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __snake_case : str = flax_model.params['''encoder''']['''block'''][str(_snake_case )]['''layer'''] __snake_case : Optional[int] = tax_attention_key __snake_case : Any = tax_attention_out __snake_case : Union[str, Any] = tax_attention_query __snake_case : str = tax_attention_value __snake_case : List[str] = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __snake_case : str = tax_global_layer_norm if split_mlp_wi: __snake_case : Dict = tax_mlp_wi_a __snake_case : List[str] = tax_mlp_wi_a else: __snake_case : Optional[Any] = tax_mlp_wi __snake_case : Any = tax_mlp_wo __snake_case : Optional[int] = tax_mlp_layer_norm __snake_case : Any = flax_model_encoder_layer_block # Only for layer 0: __snake_case : Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T __snake_case : Dict = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": __snake_case : Union[str, Any] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T __snake_case : Dict = tax_encoder_global_rel_embedding # Assigning __snake_case : Optional[int] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] __snake_case : Dict = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): __snake_case : Any = f"""layers_{str(_snake_case )}""" # Self-Attention __snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] __snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] __snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] __snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization __snake_case : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention __snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] __snake_case : Tuple = tax_enc_dec_attention_module['''key''']['''kernel'''] __snake_case : Tuple = tax_enc_dec_attention_module['''out''']['''kernel'''] __snake_case : Tuple = tax_enc_dec_attention_module['''query''']['''kernel'''] __snake_case : List[str] = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization __snake_case : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: __snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] __snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: __snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] __snake_case : int = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization __snake_case : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning __snake_case : int = flax_model.params['''decoder''']['''block'''][str(_snake_case )]['''layer'''] __snake_case : List[str] = tax_attention_key __snake_case : Optional[int] = tax_attention_out __snake_case : str = tax_attention_query __snake_case : Union[str, Any] = tax_attention_value __snake_case : Dict = tax_pre_attention_layer_norm __snake_case : List[Any] = tax_enc_dec_attention_key __snake_case : Any = tax_enc_dec_attention_out __snake_case : Union[str, Any] = tax_enc_dec_attention_query __snake_case : Dict = tax_enc_dec_attention_value __snake_case : str = tax_cross_layer_norm if split_mlp_wi: __snake_case : Optional[Any] = tax_mlp_wi_a __snake_case : int = tax_mlp_wi_a else: __snake_case : Any = tax_mlp_wi __snake_case : List[str] = tax_mlp_wo __snake_case : str = txa_mlp_layer_norm __snake_case : Dict = flax_model_decoder_layer_block # Decoder Normalization __snake_case : List[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] __snake_case : Any = txa_decoder_norm # Only for layer 0: __snake_case : List[str] = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T __snake_case : Optional[int] = tax_decoder_rel_embedding # Token Embeddings __snake_case : str = tax_model['''target''']['''token_embedder''']['''embedding'''] __snake_case : List[str] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: __snake_case : int = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(_snake_case ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
352
"""simple docstring""" import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' lowerCamelCase__ =10000 lowerCamelCase__ =None lowerCamelCase__ =None class _UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' lowerCamelCase__ =ParquetConfig def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return datasets.DatasetInfo(features=self.config.features ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) __snake_case : int = dl_manager.download_and_extract(self.config.data_files ) if isinstance(a_ , (str, list, tuple) ): __snake_case : Union[str, Any] = data_files if isinstance(a_ , a_ ): __snake_case : Union[str, Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __snake_case : int = [] for split_name, files in data_files.items(): if isinstance(a_ , a_ ): __snake_case : List[Any] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __snake_case : int = [dl_manager.iter_files(a_ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a_ ): with open(a_ , '''rb''' ) as f: __snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) ) break splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) ) return splits def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema ) return pa_table def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" ) for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ): with open(a_ , '''rb''' ) as f: __snake_case : int = pq.ParquetFile(a_ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __snake_case : Dict = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" ) raise
24
0
"""simple docstring""" from __future__ import annotations import numpy as np def lowercase ( _snake_case : np.ndarray ) ->tuple[np.ndarray, np.ndarray]: """simple docstring""" __snake_case : Optional[Any] = np.shape(_snake_case ) if rows != columns: __snake_case : Union[str, Any] = ( '''\'table\' has to be of square shaped array but got a ''' f"""{rows}x{columns} array:\n{table}""" ) raise ValueError(_snake_case ) __snake_case : Tuple = np.zeros((rows, columns) ) __snake_case : List[str] = np.zeros((rows, columns) ) for i in range(_snake_case ): for j in range(_snake_case ): __snake_case : List[Any] = sum(lower[i][k] * upper[k][j] for k in range(_snake_case ) ) if upper[j][j] == 0: raise ArithmeticError('''No LU decomposition exists''' ) __snake_case : Dict = (table[i][j] - total) / upper[j][j] __snake_case : Tuple = 1 for j in range(_snake_case , _snake_case ): __snake_case : List[str] = sum(lower[i][k] * upper[k][j] for k in range(_snake_case ) ) __snake_case : int = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ): __snake_case : Dict = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = '''sshleifer/tiny-gpt2''' __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = '''sgugger/tiny-distilbert-classification''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , ) __snake_case : Optional[Any] = TensorFlowBenchmark(a_ ) __snake_case : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Any = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ ) __snake_case : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = '''sshleifer/tiny-gpt2''' __snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : Dict = TensorFlowBenchmark(a_ , [config] ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : int = TensorFlowBenchmark(a_ ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = '''sshleifer/tiny-gpt2''' __snake_case : Dict = AutoConfig.from_pretrained(a_ ) __snake_case : Any = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] ) __snake_case : Any = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random''' __snake_case : Tuple = AutoConfig.from_pretrained(a_ ) __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , ) __snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] ) __snake_case : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = '''sshleifer/tiny-gpt2''' __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , ) __snake_case : Optional[int] = TensorFlowBenchmark(a_ ) __snake_case : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , ) __snake_case : Union[str, Any] = TensorFlowBenchmark(a_ ) benchmark.run() self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(a_ ): self.assertTrue(hasattr(a_ , '''sequential''' ) ) self.assertTrue(hasattr(a_ , '''cumulative''' ) ) self.assertTrue(hasattr(a_ , '''current''' ) ) self.assertTrue(hasattr(a_ , '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __snake_case : Optional[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , ) __snake_case : List[Any] = TensorFlowBenchmark(a_ ) __snake_case : Optional[int] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
24
0
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class _UpperCAmelCase : def __init__(self ): '''simple docstring''' __snake_case : Tuple = {} def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=1 ): '''simple docstring''' if self.graph.get(a_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: __snake_case : Optional[int] = [[w, v]] if not self.graph.get(a_ ): __snake_case : int = [] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ): '''simple docstring''' if s == d: return [] __snake_case : str = [] __snake_case : Any = [] if s == -2: __snake_case : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __snake_case : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: __snake_case : List[str] = stack[len(a_ ) - 1] else: __snake_case : List[Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def SCREAMING_SNAKE_CASE (self , a_=-1 ): '''simple docstring''' if c == -1: __snake_case : List[Any] = floor(random() * 1_00_00 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __snake_case : Dict = floor(random() * c ) + 1 if n != i: self.add_pair(a_ , a_ , 1 ) def SCREAMING_SNAKE_CASE (self , a_=-2 ): '''simple docstring''' __snake_case : List[str] = deque() __snake_case : Optional[Any] = [] if s == -2: __snake_case : List[str] = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: __snake_case : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE (self , a_=-2 ): '''simple docstring''' __snake_case : int = [] __snake_case : Tuple = [] if s == -2: __snake_case : Optional[int] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : Dict = s __snake_case : List[str] = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case : Optional[int] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a_ ) != 0: __snake_case : List[str] = stack[len(a_ ) - 1] else: __snake_case : Dict = ss # check if se have reached the starting point if len(a_ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[str] = [] __snake_case : Optional[int] = [] __snake_case : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : List[Any] = -2 __snake_case : Optional[int] = [] __snake_case : Union[str, Any] = s __snake_case : List[Any] = False __snake_case : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case : int = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case : int = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case : Optional[int] = True if len(a_ ) != 0: __snake_case : Tuple = stack[len(a_ ) - 1] else: __snake_case : Optional[int] = False indirect_parents.append(a_ ) __snake_case : List[str] = s __snake_case : int = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = [] __snake_case : Any = [] __snake_case : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : int = -2 __snake_case : Optional[int] = [] __snake_case : List[str] = s __snake_case : List[str] = False __snake_case : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case : Union[str, Any] = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case : str = True if len(a_ ) != 0: __snake_case : Dict = stack[len(a_ ) - 1] else: __snake_case : Tuple = False indirect_parents.append(a_ ) __snake_case : Optional[int] = s __snake_case : List[str] = ss # check if se have reached the starting point if len(a_ ) == 0: return False def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ): '''simple docstring''' __snake_case : Union[str, Any] = time() self.dfs(a_ , a_ ) __snake_case : List[str] = time() return end - begin def SCREAMING_SNAKE_CASE (self , a_=-2 ): '''simple docstring''' __snake_case : Any = time() self.bfs(a_ ) __snake_case : Any = time() return end - begin class _UpperCAmelCase : def __init__(self ): '''simple docstring''' __snake_case : Union[str, Any] = {} def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=1 ): '''simple docstring''' if self.graph.get(a_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist __snake_case : str = [[w, v]] # add the other way if self.graph.get(a_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist __snake_case : Optional[int] = [[w, u]] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) # the other way round if self.graph.get(a_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a_ ) def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ): '''simple docstring''' if s == d: return [] __snake_case : Tuple = [] __snake_case : int = [] if s == -2: __snake_case : Optional[int] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : List[Any] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) __snake_case : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: __snake_case : List[str] = stack[len(a_ ) - 1] else: __snake_case : List[Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def SCREAMING_SNAKE_CASE (self , a_=-1 ): '''simple docstring''' if c == -1: __snake_case : Union[str, Any] = floor(random() * 1_00_00 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 1_02 ) + 1 ): __snake_case : Tuple = floor(random() * c ) + 1 if n != i: self.add_pair(a_ , a_ , 1 ) def SCREAMING_SNAKE_CASE (self , a_=-2 ): '''simple docstring''' __snake_case : Tuple = deque() __snake_case : Optional[Any] = [] if s == -2: __snake_case : Optional[int] = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: __snake_case : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = [] __snake_case : List[str] = [] __snake_case : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : List[str] = -2 __snake_case : List[Any] = [] __snake_case : Dict = s __snake_case : List[str] = False __snake_case : Optional[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : Optional[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case : Optional[int] = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case : Tuple = True if len(a_ ) != 0: __snake_case : Optional[int] = stack[len(a_ ) - 1] else: __snake_case : Optional[Any] = False indirect_parents.append(a_ ) __snake_case : Optional[Any] = s __snake_case : List[str] = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = [] __snake_case : Any = [] __snake_case : Optional[int] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) __snake_case : List[Any] = -2 __snake_case : Optional[int] = [] __snake_case : Union[str, Any] = s __snake_case : List[str] = False __snake_case : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: __snake_case : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): __snake_case : Any = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) __snake_case : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() __snake_case : List[str] = True if len(a_ ) != 0: __snake_case : Any = stack[len(a_ ) - 1] else: __snake_case : int = False indirect_parents.append(a_ ) __snake_case : Union[str, Any] = s __snake_case : str = ss # check if se have reached the starting point if len(a_ ) == 0: return False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ): '''simple docstring''' __snake_case : Tuple = time() self.dfs(a_ , a_ ) __snake_case : Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE (self , a_=-2 ): '''simple docstring''' __snake_case : List[Any] = time() self.bfs(a_ ) __snake_case : List[Any] = time() return end - begin
354
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: SCREAMING_SNAKE_CASE : Tuple = None try: import msvcrt except ImportError: SCREAMING_SNAKE_CASE : List[str] = None try: import fcntl except ImportError: SCREAMING_SNAKE_CASE : Tuple = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: SCREAMING_SNAKE_CASE : List[str] = OSError # Data # ------------------------------------------------ SCREAMING_SNAKE_CASE : List[Any] = [ """Timeout""", """BaseFileLock""", """WindowsFileLock""", """UnixFileLock""", """SoftFileLock""", """FileLock""", ] SCREAMING_SNAKE_CASE : List[Any] = """3.0.12""" SCREAMING_SNAKE_CASE : int = None def lowercase ( ) ->str: """simple docstring""" global _logger __snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ ) return _logger class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[int] = lock_file return None def __str__(self ): '''simple docstring''' __snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired.""" return temp class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ ): '''simple docstring''' __snake_case : Optional[Any] = lock return None def __enter__(self ): '''simple docstring''' return self.lock def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.lock.release() return None class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long __snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ ) # The path to the lock file. __snake_case : str = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. __snake_case : Dict = None # The default timeout value. __snake_case : List[Any] = timeout # We use this lock primarily for the lock counter. __snake_case : Tuple = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. __snake_case : Optional[Any] = 0 return None @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Dict = float(a_ ) return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' raise NotImplementedError() @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ): '''simple docstring''' if timeout is None: __snake_case : List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 __snake_case : Optional[int] = id(self ) __snake_case : str = self._lock_file __snake_case : Optional[int] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" ) self._acquire() if self.is_locked: logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" ) raise Timeout(self._lock_file ) else: logger().debug( f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" ) time.sleep(a_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: __snake_case : Optional[int] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE (self , a_=False ): '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: __snake_case : Tuple = id(self ) __snake_case : str = self._lock_file logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" ) self._release() __snake_case : Dict = 0 logger().debug(f"""Lock {lock_id} released on {lock_filename}""" ) return None def __enter__(self ): '''simple docstring''' self.acquire() return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' self.release() return None def __del__(self ): '''simple docstring''' self.release(force=a_ ) return None def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : Any = os.path.basename(a_ ) if len(a_ ) > max_length and max_length > 0: __snake_case : List[Any] = os.path.dirname(a_ ) __snake_case : Any = str(hash(a_ ) ) __snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(a_ , a_ ) else: return path class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) __snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: __snake_case : Any = os.open(self._lock_file , a_ ) except OSError: pass else: try: msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(a_ ) else: __snake_case : Dict = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Dict = None msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 ) os.close(a_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=-1 , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax super().__init__(a_ , timeout=a_ , max_filename_length=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC __snake_case : List[str] = os.open(self._lock_file , a_ ) try: fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(a_ ) else: __snake_case : Optional[int] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self._lock_file_fd __snake_case : Tuple = None fcntl.flock(a_ , fcntl.LOCK_UN ) os.close(a_ ) return None class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: __snake_case : Tuple = os.open(self._lock_file , a_ ) except OSError: pass else: __snake_case : List[Any] = fd return None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' os.close(self._lock_file_fd ) __snake_case : int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None SCREAMING_SNAKE_CASE : Dict = None if msvcrt: SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock elif fcntl: SCREAMING_SNAKE_CASE : List[str] = UnixFileLock else: SCREAMING_SNAKE_CASE : str = SoftFileLock if warnings is not None: warnings.warn("""only soft file lock is available""")
24
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , **a_ ): '''simple docstring''' warnings.warn( '''The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use LayoutLMv2ImageProcessor instead.''' , a_ , ) super().__init__(*a_ , **a_ )
355
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
24
0
"""simple docstring""" from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowercase ( _snake_case : str = "" ) ->dict[str, float]: """simple docstring""" __snake_case : List[str] = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' __snake_case : str = BeautifulSoup(requests.get(_snake_case ).text , '''html.parser''' ) __snake_case : List[str] = soup.find_all('''td''' , attrs='''titleColumn''' ) __snake_case : Tuple = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(_snake_case , _snake_case ) } def lowercase ( _snake_case : str = "IMDb_Top_250_Movies.csv" ) ->None: """simple docstring""" __snake_case : Dict = get_imdb_top_aaa_movies() with open(_snake_case , '''w''' , newline='''''' ) as out_file: __snake_case : Optional[Any] = csv.writer(_snake_case ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
356
"""simple docstring""" import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ): '''simple docstring''' __snake_case : List[Any] = parent __snake_case : List[Any] = batch_size __snake_case : str = seq_length __snake_case : Any = is_training __snake_case : Any = use_input_mask __snake_case : str = use_token_type_ids __snake_case : Dict = use_labels __snake_case : int = vocab_size __snake_case : Union[str, Any] = hidden_size __snake_case : List[str] = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : Optional[int] = intermediate_size __snake_case : str = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Optional[Any] = attention_probs_dropout_prob __snake_case : str = max_position_embeddings __snake_case : Dict = type_vocab_size __snake_case : List[Any] = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : str = num_labels __snake_case : Dict = num_choices __snake_case : Optional[int] = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : Dict = None if self.use_input_mask: __snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Tuple = None __snake_case : List[str] = None __snake_case : Dict = None if self.use_labels: __snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[str] = DistilBertModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model(a_ , a_ ) __snake_case : List[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : Optional[Any] = model( a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = self.num_labels __snake_case : Optional[int] = DistilBertForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Union[str, Any] = self.num_labels __snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = self.num_choices __snake_case : Any = DistilBertForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __snake_case : Optional[int] = model( a_ , attention_mask=a_ , labels=a_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.prepare_config_and_inputs() ((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs __snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) lowerCamelCase__ =( { 'feature-extraction': DistilBertModel, 'fill-mask': DistilBertForMaskedLM, 'question-answering': DistilBertForQuestionAnswering, 'text-classification': DistilBertForSequenceClassification, 'token-classification': DistilBertForTokenClassification, 'zero-shot': DistilBertForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = DistilBertModelTester(self ) __snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = DistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return __snake_case : List[str] = True __snake_case : Tuple = model_class(config=a_ ) __snake_case : Any = self._prepare_for_class(a_ , a_ ) __snake_case : Dict = torch.jit.trace( a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) ) __snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ ) loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) ) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' ) __snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __snake_case : List[Any] = model(a_ , attention_mask=a_ )[0] __snake_case : Tuple = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , a_ ) __snake_case : Optional[int] = torch.tensor( [[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
24
0
"""simple docstring""" import math SCREAMING_SNAKE_CASE : List[str] = 10 SCREAMING_SNAKE_CASE : Optional[int] = 7 SCREAMING_SNAKE_CASE : int = BALLS_PER_COLOUR * NUM_COLOURS def lowercase ( _snake_case : int = 20 ) ->str: """simple docstring""" __snake_case : Any = math.comb(_snake_case , _snake_case ) __snake_case : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _snake_case ) __snake_case : List[Any] = NUM_COLOURS * (1 - missing_colour / total) return f"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
357
"""simple docstring""" import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]: """simple docstring""" def get_masked_lm_array(_snake_case : str ): __snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : str = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Any = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_array(_snake_case : str ): __snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_layer_array(_snake_case : int , _snake_case : str ): __snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case ) if "kernel" in name: __snake_case : Optional[Any] = array.transpose() return torch.from_numpy(_snake_case ) def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ): __snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE""" __snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case ) __snake_case : int = array.reshape(_snake_case ) if "kernel" in name: __snake_case : Optional[int] = array.transpose() return torch.from_numpy(_snake_case ) print(f"""Loading model based on config from {config_path}...""" ) __snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case ) __snake_case : Dict = BertForMaskedLM(_snake_case ) # Layers for layer_index in range(0 , config.num_hidden_layers ): __snake_case : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention __snake_case : BertSelfAttention = layer.attention.self __snake_case : int = get_encoder_attention_layer_array( _snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape ) __snake_case : str = get_encoder_attention_layer_array( _snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape ) __snake_case : List[Any] = get_encoder_attention_layer_array( _snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape ) __snake_case : Union[str, Any] = get_encoder_attention_layer_array( _snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape ) # Self-attention Output __snake_case : BertSelfOutput = layer.attention.output __snake_case : Dict = get_encoder_attention_layer_array( _snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape ) __snake_case : Tuple = get_encoder_attention_layer_array( _snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape ) __snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' ) __snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' ) # Intermediate __snake_case : BertIntermediate = layer.intermediate __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' ) __snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' ) # Output __snake_case : BertOutput = layer.output __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' ) __snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' ) __snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' ) __snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' ) # Embeddings __snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' ) __snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' ) __snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' ) __snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' ) # LM Head __snake_case : Optional[Any] = model.cls.predictions.transform __snake_case : Dict = get_masked_lm_array('''dense/kernel''' ) __snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' ) __snake_case : str = get_masked_lm_array('''layer_norm/gamma''' ) __snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' ) __snake_case : Tuple = get_masked_lm_array('''embedding_table''' ) # Pooling __snake_case : Optional[Any] = BertPooler(config=_snake_case ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' ) __snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' ) # Export final model model.save_pretrained(_snake_case ) # Integration test - should load without any errors ;) __snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case ) print(new_model.eval() ) print('''Model conversion was done sucessfully!''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model.""", ) SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
24
0
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ): '''simple docstring''' __snake_case : Any = parent __snake_case : int = batch_size __snake_case : Dict = seq_length __snake_case : List[str] = is_training __snake_case : List[Any] = use_input_mask __snake_case : int = use_token_type_ids __snake_case : Union[str, Any] = use_labels __snake_case : str = vocab_size __snake_case : int = hidden_size __snake_case : Optional[int] = num_hidden_layers __snake_case : int = num_attention_heads __snake_case : str = intermediate_size __snake_case : Union[str, Any] = hidden_act __snake_case : int = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : List[Any] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Optional[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Any = scope __snake_case : Any = range_bbox def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __snake_case : List[str] = bbox[i, j, 3] __snake_case : Any = bbox[i, j, 1] __snake_case : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: __snake_case : List[str] = bbox[i, j, 2] __snake_case : Union[str, Any] = bbox[i, j, 0] __snake_case : Dict = t __snake_case : Optional[int] = None if self.use_input_mask: __snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __snake_case : Dict = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Union[str, Any] = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ ) __snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ ) __snake_case : List[str] = model(a_ , bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ): '''simple docstring''' __snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() __snake_case : int = model( a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.prepare_config_and_inputs() ( __snake_case ) : Dict = config_and_inputs __snake_case : Any = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase__ =( { 'feature-extraction': LiltModel, 'question-answering': LiltForQuestionAnswering, 'text-classification': LiltForSequenceClassification, 'token-classification': LiltForTokenClassification, 'zero-shot': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ): '''simple docstring''' return True def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModelTester(self ) __snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Dict = type self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ ) __snake_case : Dict = torch.tensor([[1, 2]] , device=a_ ) __snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ ) __snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] ) __snake_case : str = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , ) self.assertTrue(outputs.last_hidden_state.shape , a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
358
"""simple docstring""" import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ): '''simple docstring''' super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ ) __snake_case : Union[str, Any] = Sql( cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Union[str, Any] = None __snake_case : Dict = None __snake_case : Dict = None __snake_case : List[str] = None self.builder.download_and_prepare( download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , ) # Build dataset for splits __snake_case : Any = self.builder.as_dataset( split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __snake_case : List[str] = dataset __snake_case : Tuple = name __snake_case : Optional[int] = con __snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __snake_case : Dict = num_proc __snake_case : Dict = to_sql_kwargs def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ ) __snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ ) __snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ ) __snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs ) return written def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case , __snake_case , __snake_case : Optional[Any] = args __snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs __snake_case : Dict = query_table( table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , ) __snake_case : Tuple = batch.to_pandas() __snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ ) return num_rows or len(a_ ) def SCREAMING_SNAKE_CASE (self , a_ , **a_ ): '''simple docstring''' __snake_case : int = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ): written += num_rows return written
24
0
"""simple docstring""" from math import factorial SCREAMING_SNAKE_CASE : int = {str(d): factorial(d) for d in range(10)} def lowercase ( _snake_case : int ) ->int: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(_snake_case ) ) def lowercase ( ) ->int: """simple docstring""" __snake_case : Any = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , _snake_case ) if sum_of_digit_factorial(_snake_case ) == i ) if __name__ == "__main__": print(F'{solution() = }')
359
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='lxmert' lowerCamelCase__ ={} def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = vocab_size __snake_case : List[str] = hidden_size __snake_case : List[Any] = num_attention_heads __snake_case : int = hidden_act __snake_case : int = intermediate_size __snake_case : Any = hidden_dropout_prob __snake_case : List[Any] = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : List[str] = type_vocab_size __snake_case : str = initializer_range __snake_case : Tuple = layer_norm_eps __snake_case : List[Any] = num_qa_labels __snake_case : int = num_object_labels __snake_case : Optional[Any] = num_attr_labels __snake_case : Union[str, Any] = l_layers __snake_case : Optional[int] = x_layers __snake_case : Optional[int] = r_layers __snake_case : Tuple = visual_feat_dim __snake_case : Optional[int] = visual_pos_dim __snake_case : Dict = visual_loss_normalizer __snake_case : str = task_matched __snake_case : Optional[Any] = task_mask_lm __snake_case : List[str] = task_obj_predict __snake_case : Optional[Any] = task_qa __snake_case : Any = visual_obj_loss __snake_case : int = visual_attr_loss __snake_case : List[Any] = visual_feat_loss __snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers} super().__init__(**a_ )
24
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
360
"""simple docstring""" def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" __snake_case : Tuple = len(_snake_case ) __snake_case : str = sum(_snake_case ) __snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __snake_case : Optional[Any] = True for i in range(1 , s + 1 ): __snake_case : int = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __snake_case : Union[str, Any] = dp[i][j - 1] if arr[i - 1] <= j: __snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __snake_case : List[str] = s - 2 * j break return diff
24
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int = 4 ) ->list[list[int]]: """simple docstring""" __snake_case : str = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[str] = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[str] = matrix[::-1] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : Dict = [x[::-1] for x in matrix] return matrix def lowercase ( _snake_case : list[list[int]] ) ->None: """simple docstring""" for i in matrix: print(*_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE : Dict = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE : Tuple = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
361
"""simple docstring""" from collections.abc import Callable def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : float = a __snake_case : float = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: __snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: __snake_case : List[str] = mid else: __snake_case : str = mid __snake_case : str = start + (end - start) / 2.0 return mid def lowercase ( _snake_case : float ) ->float: """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
24
0
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
362
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[str] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
24
0
"""simple docstring""" def lowercase ( _snake_case : str , _snake_case : str ) ->bool: """simple docstring""" __snake_case : Optional[int] = len(_snake_case ) + 1 __snake_case : Optional[int] = len(_snake_case ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. __snake_case : Tuple = [[0 for i in range(_snake_case )] for j in range(_snake_case )] # since string of zero length match pattern of zero length __snake_case : Tuple = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _snake_case ): __snake_case : List[Any] = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _snake_case ): __snake_case : Optional[int] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _snake_case ): for j in range(1 , _snake_case ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": __snake_case : List[str] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: __snake_case : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): __snake_case : str = dp[i - 1][j] else: __snake_case : str = 0 else: __snake_case : Tuple = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") SCREAMING_SNAKE_CASE : Any = """aab""" SCREAMING_SNAKE_CASE : str = """c*a*b""" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
363
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =['image_processor', 'tokenizer'] lowerCamelCase__ ='CLIPImageProcessor' lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__(self , a_=None , a_=None , **a_ ): '''simple docstring''' __snake_case : Any = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , a_ , ) __snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' ) __snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(a_ , a_ ) def __call__(self , a_=None , a_=None , a_=None , **a_ ): '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ ) if images is not None: __snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ ) if text is not None and images is not None: __snake_case : List[str] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.batch_decode(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' return self.tokenizer.decode(*a_ , **a_ ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.tokenizer.model_input_names __snake_case : Union[str, Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Union[str, Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE : List[Any] = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE : Tuple = { """facebook/mbart-large-en-ro""": 1024, """facebook/mbart-large-cc25""": 1024, } # fmt: off SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =VOCAB_FILES_NAMES lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ =['input_ids', 'attention_mask'] lowerCamelCase__ =MBartTokenizer lowerCamelCase__ =[] lowerCamelCase__ =[] def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ): '''simple docstring''' __snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , ) __snake_case : Tuple = vocab_file __snake_case : Optional[Any] = False if not self.vocab_file else True __snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) __snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX''' __snake_case : Any = self.convert_tokens_to_ids(self._src_lang ) __snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' __snake_case : Tuple = [self.sep_token_id] __snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __snake_case : Optional[int] = src_lang __snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ ) __snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ ) __snake_case : int = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ): '''simple docstring''' __snake_case : int = src_lang __snake_case : List[Any] = tgt_lang return super().prepare_seqaseq_batch(a_ , a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : List[Any] = [] __snake_case : Any = [self.eos_token_id, self.cur_lang_code] __snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : int = self.convert_tokens_to_ids(a_ ) __snake_case : Optional[Any] = [] __snake_case : Dict = [self.eos_token_id, self.cur_lang_code] __snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens ) __snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens ) __snake_case : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(a_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return __snake_case : Optional[Any] = os.path.join( a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
24
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """google/pegasus-large""": """https://huggingface.co/google/pegasus-large/resolve/main/config.json""", # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='pegasus' lowerCamelCase__ =['past_key_values'] lowerCamelCase__ ={'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self , a_=5_02_65 , a_=10_24 , a_=12 , a_=40_96 , a_=16 , a_=12 , a_=40_96 , a_=16 , a_=0.0 , a_=0.0 , a_=True , a_=True , a_="gelu" , a_=10_24 , a_=0.1 , a_=0.0 , a_=0.0 , a_=0.02 , a_=0 , a_=False , a_=0 , a_=1 , a_=1 , **a_ , ): '''simple docstring''' __snake_case : List[Any] = vocab_size __snake_case : Dict = max_position_embeddings __snake_case : Union[str, Any] = d_model __snake_case : List[Any] = encoder_ffn_dim __snake_case : Union[str, Any] = encoder_layers __snake_case : int = encoder_attention_heads __snake_case : Optional[Any] = decoder_ffn_dim __snake_case : List[str] = decoder_layers __snake_case : List[str] = decoder_attention_heads __snake_case : int = dropout __snake_case : List[Any] = attention_dropout __snake_case : Any = activation_dropout __snake_case : Dict = activation_function __snake_case : Optional[int] = init_std __snake_case : int = encoder_layerdrop __snake_case : List[Any] = decoder_layerdrop __snake_case : List[str] = use_cache __snake_case : int = encoder_layers __snake_case : int = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , decoder_start_token_id=a_ , forced_eos_token_id=a_ , **a_ , ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.d_model
365
"""simple docstring""" import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__) @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None @dataclass(frozen=__snake_case ) class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if is_torch_available(): import torch from torch.utils.data import Dataset class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ): '''simple docstring''' __snake_case : Any = hans_processors[task]() __snake_case : int = os.path.join( a_ , '''cached_{}_{}_{}_{}'''.format( '''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , ) __snake_case : Tuple = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Dict = label_list[2], label_list[1] __snake_case : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __snake_case : int = cached_features_file + '''.lock''' with FileLock(a_ ): if os.path.exists(a_ ) and not overwrite_cache: logger.info(f"""Loading features from cached file {cached_features_file}""" ) __snake_case : Union[str, Any] = torch.load(a_ ) else: logger.info(f"""Creating features from dataset file at {data_dir}""" ) __snake_case : Dict = ( processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) ) logger.info('''Training examples: %s''' , len(a_ ) ) __snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) logger.info('''Saving features into cached file %s''' , a_ ) torch.save(self.features , a_ ) def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list if is_tf_available(): import tensorflow as tf class _UpperCAmelCase : '''simple docstring''' lowerCamelCase__ =42 def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ): '''simple docstring''' __snake_case : List[Any] = hans_processors[task]() __snake_case : str = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) __snake_case , __snake_case : Tuple = label_list[2], label_list[1] __snake_case : Dict = label_list __snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ ) __snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ): if ex_index % 1_00_00 == 0: logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) __snake_case : Union[str, Any] = tf.data.Dataset.from_generator( a_ , ( { '''example_id''': tf.intaa, '''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa, }, tf.intaa, ) , ( { '''example_id''': tf.TensorShape([] ), '''input_ids''': tf.TensorShape([None, None] ), '''attention_mask''': tf.TensorShape([None, None] ), '''token_type_ids''': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.dataset def __len__(self ): '''simple docstring''' return len(self.features ) def __getitem__(self , a_ ): '''simple docstring''' return self.features[i] def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.label_list class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' ) def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ["contradiction", "entailment", "neutral"] def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' __snake_case : List[Any] = [] for i, line in enumerate(a_ ): if i == 0: continue __snake_case : Tuple = '''%s-%s''' % (set_type, line[0]) __snake_case : Dict = line[5] __snake_case : int = line[6] __snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7] __snake_case : List[Any] = line[0] examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) ) return examples def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]: """simple docstring""" __snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )} __snake_case : Tuple = [] for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ): if ex_index % 10_000 == 0: logger.info('''Writing example %d''' % (ex_index) ) __snake_case : List[Any] = tokenizer( example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , ) __snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0 __snake_case : Union[str, Any] = int(example.pairID ) features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) ) for i, example in enumerate(examples[:5] ): logger.info('''*** Example ***''' ) logger.info(f"""guid: {example}""" ) logger.info(f"""features: {features[i]}""" ) return features SCREAMING_SNAKE_CASE : Dict = { """hans""": 3, } SCREAMING_SNAKE_CASE : str = { """hans""": HansProcessor, }
24
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ) ->tuple[float, list[float]]: """simple docstring""" __snake_case : int = list(range(len(_snake_case ) ) ) __snake_case : Dict = [v / w for v, w in zip(_snake_case , _snake_case )] index.sort(key=lambda _snake_case : ratio[i] , reverse=_snake_case ) __snake_case : float = 0 __snake_case : list[float] = [0] * len(_snake_case ) for i in index: if weight[i] <= capacity: __snake_case : Optional[Any] = 1 max_value += value[i] capacity -= weight[i] else: __snake_case : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
366
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : List[str] = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='gptsan-japanese' lowerCamelCase__ =[ 'past_key_values', ] lowerCamelCase__ ={ 'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ): '''simple docstring''' __snake_case : Any = vocab_size __snake_case : str = max_position_embeddings __snake_case : Any = d_model __snake_case : List[str] = d_ff __snake_case : Dict = d_ext __snake_case : Optional[Any] = d_spout __snake_case : int = num_switch_layers __snake_case : List[Any] = num_ext_layers __snake_case : Any = num_switch_layers + num_ext_layers __snake_case : Optional[int] = num_heads __snake_case : Tuple = num_experts __snake_case : List[Any] = expert_capacity __snake_case : Dict = dropout_rate __snake_case : Optional[Any] = layer_norm_epsilon __snake_case : Dict = router_bias __snake_case : str = router_jitter_noise __snake_case : List[str] = router_dtype __snake_case : Union[str, Any] = router_ignore_padding_tokens __snake_case : List[str] = output_hidden_states __snake_case : Optional[Any] = output_attentions __snake_case : Any = initializer_factor __snake_case : int = output_router_logits __snake_case : Union[str, Any] = use_cache super().__init__( separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
24
0
"""simple docstring""" from collections import defaultdict from math import gcd def lowercase ( _snake_case : int = 1_500_000 ) ->int: """simple docstring""" __snake_case : defaultdict = defaultdict(_snake_case ) __snake_case : Any = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _snake_case , 2 ): if gcd(_snake_case , _snake_case ) > 1: continue __snake_case : Tuple = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_snake_case , limit + 1 , _snake_case ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'{solution() = }')
367
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : str = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } SCREAMING_SNAKE_CASE : int = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def lowercase ( _snake_case : Optional[int] ) ->int: """simple docstring""" __snake_case : int = {} with open(_snake_case , '''r''' ) as file: for line_number, line in enumerate(_snake_case ): __snake_case : Union[str, Any] = line.strip() if line: __snake_case : str = line.split() __snake_case : Union[str, Any] = line_number __snake_case : Dict = words[0] __snake_case : str = value return result def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]: """simple docstring""" for attribute in key.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : str = '''param''' if weight_type is not None and weight_type != "param": __snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": __snake_case : Optional[Any] = hf_pointer for attribute in hf_param_name.split('''.''' ): __snake_case : Dict = getattr(_snake_case , _snake_case ) __snake_case : List[str] = shape_pointer.shape # let's reduce dimension __snake_case : int = value[0] else: __snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __snake_case : List[Any] = value elif weight_type == "weight_g": __snake_case : Tuple = value elif weight_type == "weight_v": __snake_case : str = value elif weight_type == "bias": __snake_case : str = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): __snake_case : List[Any] = getattr(_snake_case , _snake_case ) __snake_case : int = value else: __snake_case : List[Any] = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int: """simple docstring""" __snake_case : Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): __snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]] __snake_case : List[str] = '''param''' if weight_type is not None and weight_type != "param": __snake_case : str = '''.'''.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __snake_case : Tuple = '''.'''.join([key, hf_param_name] ) else: __snake_case : Optional[int] = key __snake_case : List[Any] = value if '''lm_head''' in full_key else value[0] SCREAMING_SNAKE_CASE : Tuple = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict: """simple docstring""" __snake_case : Tuple = False for key, mapped_key in MAPPING.items(): __snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case : int = True if "*" in mapped_key: __snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2] __snake_case : Tuple = mapped_key.replace('''*''' , _snake_case ) if "weight_g" in name: __snake_case : Union[str, Any] = '''weight_g''' elif "weight_v" in name: __snake_case : List[str] = '''weight_v''' elif "bias" in name: __snake_case : Any = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case : List[Any] = '''weight''' else: __snake_case : Union[str, Any] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any: """simple docstring""" __snake_case : Union[str, Any] = [] __snake_case : Union[str, Any] = fairseq_model.state_dict() __snake_case : str = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __snake_case : str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case : Union[str, Any] = True else: __snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1] __snake_case : str = name.split('''.''' ) __snake_case : Optional[int] = int(items[0] ) __snake_case : Any = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __snake_case : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) __snake_case : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) __snake_case : List[str] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict: """simple docstring""" if config_path is not None: __snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case ) else: __snake_case : Tuple = WavaVecaConfig() if is_seq_class: __snake_case : Optional[int] = read_txt_into_dict(_snake_case ) __snake_case : List[Any] = idalabel __snake_case : int = WavaVecaForSequenceClassification(_snake_case ) __snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: __snake_case : int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case : Tuple = target_dict.pad_index __snake_case : int = target_dict.bos_index __snake_case : Tuple = target_dict.eos_index __snake_case : Optional[Any] = len(target_dict.symbols ) __snake_case : Any = os.path.join(_snake_case , '''vocab.json''' ) if not os.path.isdir(_snake_case ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) __snake_case : Optional[Any] = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case : Dict = 0 __snake_case : List[Any] = 1 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_snake_case , _snake_case ) __snake_case : List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , ) __snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False __snake_case : str = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) __snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) __snake_case : Optional[int] = WavaVecaForCTC(_snake_case ) else: __snake_case : Tuple = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: __snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' ) __snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case ) __snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) __snake_case : int = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
24
0
"""simple docstring""" import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase ( _snake_case : List[str] , _snake_case : Any=False ) ->Optional[int]: """simple docstring""" try: __snake_case : List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. __snake_case : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: __snake_case : Tuple = strtobool(_snake_case ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"""If set, {key} must be yes or no.""" ) return _value SCREAMING_SNAKE_CASE : str = parse_flag_from_env("""RUN_SLOW""", default=False) def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" return unittest.skip('''Test was skipped''' )(_snake_case ) def lowercase ( _snake_case : List[str] ) ->List[str]: """simple docstring""" return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_snake_case ) def lowercase ( _snake_case : Optional[int] ) ->List[str]: """simple docstring""" return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_snake_case ) def lowercase ( _snake_case : Tuple ) ->Any: """simple docstring""" return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_snake_case ) def lowercase ( _snake_case : List[Any] ) ->int: """simple docstring""" return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Dict: """simple docstring""" return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_snake_case ) def lowercase ( _snake_case : Optional[Any] ) ->List[str]: """simple docstring""" return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_snake_case ) def lowercase ( _snake_case : Dict ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_snake_case ) def lowercase ( _snake_case : List[Any] ) ->Dict: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_snake_case ) def lowercase ( _snake_case : str ) ->Any: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_snake_case ) def lowercase ( _snake_case : List[Any] ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_snake_case ) def lowercase ( _snake_case : Any ) ->Union[str, Any]: """simple docstring""" return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_snake_case ) def lowercase ( _snake_case : List[str] ) ->List[str]: """simple docstring""" return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_snake_case ) def lowercase ( _snake_case : Optional[int] ) ->Optional[Any]: """simple docstring""" return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Any: """simple docstring""" return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_snake_case ) def lowercase ( _snake_case : int=None , _snake_case : List[Any]=None ) ->str: """simple docstring""" if test_case is None: return partial(_snake_case , version=_snake_case ) return unittest.skipUnless(is_torch_version('''>=''' , _snake_case ) , f"""test requires torch version >= {version}""" )(_snake_case ) def lowercase ( _snake_case : Tuple ) ->List[Any]: """simple docstring""" return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_snake_case ) def lowercase ( _snake_case : Union[str, Any] ) ->Any: """simple docstring""" return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_snake_case ) def lowercase ( _snake_case : Tuple ) ->int: """simple docstring""" return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_snake_case ) SCREAMING_SNAKE_CASE : Optional[Any] = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase ( _snake_case : Optional[Any] ) ->Optional[int]: """simple docstring""" return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_snake_case ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =True @classmethod def SCREAMING_SNAKE_CASE (cls ): '''simple docstring''' __snake_case : Dict = tempfile.mkdtemp() @classmethod def SCREAMING_SNAKE_CASE (cls ): '''simple docstring''' if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(a_ ) class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE (self , a_ ): '''simple docstring''' __snake_case : Tuple = mocks if isinstance(a_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase ( _snake_case : Tuple ) ->List[str]: """simple docstring""" __snake_case : Dict = AcceleratorState() __snake_case : Union[str, Any] = tensor[None].clone().to(state.device ) __snake_case : Dict = gather(_snake_case ).cpu() __snake_case : List[Any] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _snake_case ): return False return True class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : int = returncode __snake_case : str = stdout __snake_case : List[Any] = stderr async def lowercase ( _snake_case : str , _snake_case : List[str] ) ->Optional[Any]: """simple docstring""" while True: __snake_case : str = await stream.readline() if line: callback(_snake_case ) else: break async def lowercase ( _snake_case : Tuple , _snake_case : int=None , _snake_case : Any=None , _snake_case : List[Any]=None , _snake_case : List[str]=False , _snake_case : str=False ) ->_RunOutput: """simple docstring""" if echo: print('''\nRunning: ''' , ''' '''.join(_snake_case ) ) __snake_case : Union[str, Any] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) __snake_case : Optional[int] = [] __snake_case : Tuple = [] def tee(_snake_case : Tuple , _snake_case : str , _snake_case : int , _snake_case : Any="" ): __snake_case : Tuple = line.decode('''utf-8''' ).rstrip() sink.append(_snake_case ) if not quiet: print(_snake_case , _snake_case , file=_snake_case ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _snake_case : tee(_snake_case , _snake_case , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _snake_case : tee(_snake_case , _snake_case , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_snake_case , ) return _RunOutput(await p.wait() , _snake_case , _snake_case ) def lowercase ( _snake_case : str , _snake_case : Union[str, Any]=None , _snake_case : int=None , _snake_case : List[str]=180 , _snake_case : Optional[int]=False , _snake_case : Optional[Any]=True ) ->_RunOutput: """simple docstring""" __snake_case : List[str] = asyncio.get_event_loop() __snake_case : List[str] = loop.run_until_complete( _stream_subprocess(_snake_case , env=_snake_case , stdin=_snake_case , timeout=_snake_case , quiet=_snake_case , echo=_snake_case ) ) __snake_case : Tuple = ''' '''.join(_snake_case ) if result.returncode > 0: __snake_case : Tuple = '''\n'''.join(result.stderr ) raise RuntimeError( f"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" f"""The combined stderr from workers follows:\n{stderr}""" ) return result class _UpperCAmelCase ( __snake_case ): '''simple docstring''' pass def lowercase ( _snake_case : List[str] , _snake_case : Union[str, Any]=False ) ->Tuple: """simple docstring""" try: __snake_case : Optional[int] = subprocess.check_output(_snake_case , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_snake_case , '''decode''' ): __snake_case : str = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f"""Command `{' '.join(_snake_case )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
368
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=__snake_case ): '''simple docstring''' lowerCamelCase__ =['transformers', 'torch', 'note_seq'] def __init__(self , *a_ , **a_ ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
24
0
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowercase ( ) ->tuple[list[int], int]: """simple docstring""" __snake_case : Union[str, Any] = [randint(-1_000 , 1_000 ) for i in range(10 )] __snake_case : int = randint(-5_000 , 5_000 ) return (arr, r) SCREAMING_SNAKE_CASE : Any = make_dataset() def lowercase ( _snake_case : list[int] , _snake_case : int ) ->tuple[int, ...]: """simple docstring""" for triplet in permutations(_snake_case , 3 ): if sum(_snake_case ) == target: return tuple(sorted(_snake_case ) ) return (0, 0, 0) def lowercase ( _snake_case : list[int] , _snake_case : int ) ->tuple[int, int, int]: """simple docstring""" arr.sort() __snake_case : int = len(_snake_case ) for i in range(n - 1 ): __snake_case : str = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowercase ( ) ->tuple[float, float]: """simple docstring""" __snake_case : Tuple = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' __snake_case : Optional[int] = ''' triplet_sum1(*dataset) ''' __snake_case : Optional[Any] = ''' triplet_sum2(*dataset) ''' __snake_case : List[Any] = repeat(setup=_snake_case , stmt=_snake_case , repeat=5 , number=10_000 ) __snake_case : str = repeat(setup=_snake_case , stmt=_snake_case , repeat=5 , number=10_000 ) return (min(_snake_case ), min(_snake_case )) if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE : Union[str, Any] = solution_times() print(F'The time for naive implementation is {times[0]}.') print(F'The time for optimized implementation is {times[1]}.')
369
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ): '''simple docstring''' __snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20} __snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} __snake_case : Tuple = parent __snake_case : Tuple = batch_size __snake_case : Tuple = num_channels __snake_case : List[str] = image_size __snake_case : Optional[Any] = min_resolution __snake_case : List[Any] = max_resolution __snake_case : List[Any] = do_resize __snake_case : Dict = size __snake_case : Dict = do_center_crop __snake_case : Dict = crop_size __snake_case : str = do_flip_channel_order def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _UpperCAmelCase ( __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ , '''do_resize''' ) ) self.assertTrue(hasattr(a_ , '''size''' ) ) self.assertTrue(hasattr(a_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(a_ , '''center_crop''' ) ) self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) __snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ ) for image in image_inputs: self.assertIsInstance(a_ , Image.Image ) # Test not batched input __snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , np.ndarray ) # Test not batched input __snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ ) for image in image_inputs: self.assertIsInstance(a_ , torch.Tensor ) # Test not batched input __snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched __snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
24
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ , a_ , a_=None , a_=None ): '''simple docstring''' __snake_case : Optional[Any] = start __snake_case : Optional[int] = end __snake_case : Optional[Any] = val __snake_case : List[Any] = (start + end) // 2 __snake_case : Union[str, Any] = left __snake_case : str = right def __repr__(self ): '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_ ): '''simple docstring''' __snake_case : Optional[Any] = collection __snake_case : Optional[Any] = function if self.collection: __snake_case : Optional[Any] = self._build_tree(0 , len(a_ ) - 1 ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' self._update_tree(self.root , a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' return self._query_range(self.root , a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ ): '''simple docstring''' if start == end: return SegmentTreeNode(a_ , a_ , self.collection[start] ) __snake_case : str = (start + end) // 2 __snake_case : Dict = self._build_tree(a_ , a_ ) __snake_case : Optional[int] = self._build_tree(mid + 1 , a_ ) return SegmentTreeNode(a_ , a_ , self.fn(left.val , right.val ) , a_ , a_ ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' if node.start == i and node.end == i: __snake_case : str = val return if i <= node.mid: self._update_tree(node.left , a_ , a_ ) else: self._update_tree(node.right , a_ , a_ ) __snake_case : Optional[Any] = self.fn(node.left.val , node.right.val ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , a_ , a_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , a_ , node.mid ) , self._query_range(node.right , node.mid + 1 , a_ ) , ) else: # range in right child tree return self._query_range(node.right , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if self.root is not None: __snake_case : str = Queue() queue.put(self.root ) while not queue.empty(): __snake_case : List[Any] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) SCREAMING_SNAKE_CASE : Union[str, Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
370
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) ->Optional[int]: """simple docstring""" __snake_case : int = torch.nn.Linear(2 , 4 ) __snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) __snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) __snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) __snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( _snake_case : str ) ->Optional[Any]: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( _snake_case : Union[str, Any] ) ->Tuple: """simple docstring""" __snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_snake_case ) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(a_ ): __snake_case : Any = Accelerator(cpu=a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case : Optional[int] = GradientState() assert state.num_steps == 1 __snake_case : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True __snake_case : List[Any] = False assert state.sync_gradients is False GradientState._reset_state() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Tuple = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a_ , **a_ ): pass with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ): __snake_case : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[int] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : Any = get_signature(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components() accelerator.prepare(a_ , a_ , a_ , a_ , a_ ) __snake_case : List[Any] = get_signature(a_ ) # saving hook def save_config(a_ , a_ , a_ ): __snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__} with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f: json.dump(a_ , a_ ) # loading hook def load_config(a_ , a_ ): with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f: __snake_case : Any = json.load(a_ ) __snake_case : List[str] = config['''class_name'''] __snake_case : str = accelerator.register_save_state_pre_hook(a_ ) __snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Any = '''random''' # make sure loaded weights match with hooks accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(a_ ) # make sure random weights don't match with hooks removed load_random_weights(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 ) # random class name to verify correct one is loaded __snake_case : Union[str, Any] = '''random''' # make sure loaded weights match with hooks removed accelerator.load_state(a_ ) self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components() __snake_case : Union[str, Any] = None # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertTrue(dummy_obj is None ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = Accelerator() __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components() __snake_case : Optional[int] = [1, 2, 3] # This should work __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare( a_ , a_ , a_ , a_ , a_ , a_ ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) self.assertEqual( getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , ) __snake_case : Optional[Any] = Accelerator() # This should work __snake_case : Any = accelerator.prepare(a_ ) @slow @require_bnb def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : Any = Accelerator() with init_empty_weights(): __snake_case : List[str] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : Union[str, Any] = infer_auto_device_map(a_ ) __snake_case : str = '''cpu''' __snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ ) # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Dict = accelerator.prepare(a_ ) @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM __snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU} with init_empty_weights(): __snake_case : Any = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) model.tie_weights() __snake_case : List[Any] = infer_auto_device_map(a_ ) __snake_case : Dict = 1 __snake_case : str = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Any = Accelerator() # This should not work and get value error with self.assertRaises(a_ ): __snake_case : Tuple = accelerator.prepare(a_ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): __snake_case : Dict = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , ) __snake_case : Tuple = infer_auto_device_map(a_ ) __snake_case : Tuple = 1 __snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( '''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , ) __snake_case : Tuple = Accelerator() # This should work __snake_case : Dict = accelerator.prepare(a_ ) @require_cuda def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : List[Any] = torch.nn.Linear(10 , 10 ) __snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 ) __snake_case : Optional[Any] = Accelerator(cpu=a_ ) __snake_case : str = accelerator.prepare(a_ )
24
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Dict = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : List[str] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
371
"""simple docstring""" def lowercase ( _snake_case : int ) ->str: """simple docstring""" if number > 0: raise ValueError('''input must be a negative integer''' ) __snake_case : Any = len(bin(_snake_case )[3:] ) __snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:] __snake_case : Dict = ( ( '''1''' + '''0''' * (binary_number_length - len(_snake_case )) + twos_complement_number ) if number < 0 else '''0''' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
24
0
'''simple docstring''' import random import timeit from functools import wraps from typing import Callable, Optional from ..configuration_utils import PretrainedConfig from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING from ..utils import is_pyanvml_available, is_tf_available, logging from .benchmark_utils import ( Benchmark, Memory, MemorySummary, measure_peak_memory_cpu, start_memory_tracing, stop_memory_tracing, ) if is_tf_available(): import tensorflow as tf from tensorflow.python.framework.errors_impl import ResourceExhaustedError from .benchmark_args_tf import TensorFlowBenchmarkArguments if is_pyanvml_available(): import pyanvml.pyanvml as nvml lowerCAmelCase : str = logging.get_logger(__name__) def lowercase (_A , _A ): """simple docstring""" def run_func(_A ): @wraps(_A ) def run_in_eager_mode(*_A , **_A ): return func(*_A , **_A ) @wraps(_A ) @tf.function(experimental_compile=_A ) def run_in_graph_mode(*_A , **_A ): return func(*_A , **_A ) if do_eager_mode is True: if use_xla is not False: raise ValueError( 'Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.' ) return run_in_eager_mode else: return run_in_graph_mode return run_func def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Optional[int] = random.Random() _lowerCAmelCase : List[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )] return tf.constant(_A , shape=(batch_size, sequence_length) , dtype=tf.intaa ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = 42 __magic_name__ = 42 __magic_name__ = "TensorFlow" @property def a ( self ): '''simple docstring''' return tf.__version__ def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : int = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase : Tuple = self._prepare_inference_func(snake_case__ , snake_case__ , snake_case__ ) return self._measure_speed(_inference ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Tuple = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase : Union[str, Any] = self._prepare_train_func(snake_case__ , snake_case__ , snake_case__ ) return self._measure_speed(_train ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case__ ) _lowerCAmelCase : List[Any] = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase : Union[str, Any] = self._prepare_inference_func(snake_case__ , snake_case__ , snake_case__ ) return self._measure_memory(_inference ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if self.args.is_gpu: tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , snake_case__ ) _lowerCAmelCase : str = self.args.strategy if strategy is None: raise ValueError('A device strategy has to be initialized before using TensorFlow.' ) _lowerCAmelCase : str = self._prepare_train_func(snake_case__ , snake_case__ , snake_case__ ) return self._measure_memory(_train ) def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : Any = self.config_dict[model_name] if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _lowerCAmelCase : int = ( hasattr(snake_case__ , 'architectures' ) and isinstance(config.architectures , snake_case__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase : str = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase : Optional[int] = __import__('transformers' , fromlist=[model_class] ) _lowerCAmelCase : List[str] = getattr(snake_case__ , snake_case__ ) _lowerCAmelCase : Dict = model_cls(snake_case__ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _lowerCAmelCase : Dict = TF_MODEL_MAPPING[config.__class__](snake_case__ ) # encoder-decoder has vocab size saved differently _lowerCAmelCase : str = config.vocab_size if hasattr(snake_case__ , 'vocab_size' ) else config.encoder.vocab_size _lowerCAmelCase : List[str] = random_input_ids(snake_case__ , snake_case__ , snake_case__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_forward(): return model(snake_case__ , decoder_input_ids=snake_case__ , training=snake_case__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_forward(): return model(snake_case__ , training=snake_case__ ) _lowerCAmelCase : Dict = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward return _inference def a ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' _lowerCAmelCase : List[str] = self.config_dict[model_name] if self.args.eager_mode is not False: raise ValueError('Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.' ) if self.args.fpaa: raise NotImplementedError('Mixed precision is currently not supported.' ) _lowerCAmelCase : Dict = ( hasattr(snake_case__ , 'architectures' ) and isinstance(config.architectures , snake_case__ ) and len(config.architectures ) > 0 ) if not self.args.only_pretrain_model and has_model_class_in_config: try: _lowerCAmelCase : Any = 'TF' + config.architectures[0] # prepend 'TF' for tensorflow model _lowerCAmelCase : Optional[Any] = __import__('transformers' , fromlist=[model_class] ) _lowerCAmelCase : Tuple = getattr(snake_case__ , snake_case__ ) _lowerCAmelCase : str = model_cls(snake_case__ ) except ImportError: raise ImportError( F'{model_class} does not exist. If you just want to test the pretrained model, you might want to' ' set `--only_pretrain_model` or `args.only_pretrain_model=True`.' ) else: _lowerCAmelCase : Optional[Any] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](snake_case__ ) # encoder-decoder has vocab size saved differently _lowerCAmelCase : Union[str, Any] = config.vocab_size if hasattr(snake_case__ , 'vocab_size' ) else config.encoder.vocab_size _lowerCAmelCase : Optional[int] = random_input_ids(snake_case__ , snake_case__ , snake_case__ ) @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_decoder_train(): _lowerCAmelCase : Optional[int] = model(snake_case__ , decoder_input_ids=snake_case__ , labels=snake_case__ , training=snake_case__ )[0] _lowerCAmelCase : List[Any] = tf.gradients(snake_case__ , model.trainable_variables ) return gradients @run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla ) def encoder_train(): _lowerCAmelCase : Union[str, Any] = model(snake_case__ , labels=snake_case__ , training=snake_case__ )[0] _lowerCAmelCase : Union[str, Any] = tf.gradients(snake_case__ , model.trainable_variables ) return gradients _lowerCAmelCase : Dict = encoder_decoder_train if config.is_encoder_decoder else encoder_train return _train def a ( self , snake_case__ ): '''simple docstring''' with self.args.strategy.scope(): try: if self.args.is_tpu or self.args.use_xla: # run additional 10 times to stabilize compilation for tpu logger.info('Do inference on TPU. Running model 5 times to stabilize compilation' ) timeit.repeat(snake_case__ , repeat=1 , number=5 ) # as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average _lowerCAmelCase : Dict = timeit.repeat( snake_case__ , repeat=self.args.repeat , number=10 , ) return min(snake_case__ ) / 10.0 except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) def a ( self , snake_case__ ): '''simple docstring''' logger.info( 'Note that TensorFlow allocates more memory than ' 'it might need to speed up computation. ' 'The memory reported here corresponds to the memory ' 'reported by `nvidia-smi`, which can vary depending ' 'on total available memory on the GPU that is used.' ) with self.args.strategy.scope(): try: if self.args.trace_memory_line_by_line: if not self.args.eager_mode: raise ValueError( '`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory' ' consumption line by line.' ) _lowerCAmelCase : Tuple = start_memory_tracing('transformers' ) if self.args.is_tpu: # tpu raise NotImplementedError( 'Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking' ' with `args.memory=False`' ) elif self.args.is_gpu: # gpu if not is_pyanvml_available(): logger.warning( 'py3nvml not installed, we won\'t log GPU memory usage. ' 'Install py3nvml (pip install py3nvml) to log information about GPU.' ) _lowerCAmelCase : int = 'N/A' else: logger.info( 'Measuring total GPU usage on GPU device. Make sure to not have additional processes' ' running on the same GPU.' ) # init nvml nvml.nvmlInit() func() _lowerCAmelCase : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx ) _lowerCAmelCase : Optional[Any] = nvml.nvmlDeviceGetMemoryInfo(snake_case__ ) _lowerCAmelCase : Optional[Any] = meminfo.used _lowerCAmelCase : Optional[int] = Memory(snake_case__ ) # shutdown nvml nvml.nvmlShutdown() else: # cpu if self.args.trace_memory_line_by_line: logger.info( 'When enabling line by line tracing, the max peak memory for CPU is inaccurate in' ' TensorFlow.' ) _lowerCAmelCase : str = None else: _lowerCAmelCase : str = measure_peak_memory_cpu(snake_case__ ) _lowerCAmelCase : Optional[int] = Memory(snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else memory_bytes if self.args.trace_memory_line_by_line: _lowerCAmelCase : List[Any] = stop_memory_tracing(snake_case__ ) if memory is None: _lowerCAmelCase : int = summary.total else: _lowerCAmelCase : int = None return memory, summary except ResourceExhaustedError as e: self.print_fn(F'Doesn\'t fit on GPU. {e}' ) return "N/A", None
25
'''simple docstring''' def lowercase (_A ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _lowerCAmelCase : List[str] = '' _lowerCAmelCase : Any = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_A ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _lowerCAmelCase , _lowerCAmelCase : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _lowerCAmelCase : List[str] = [1 for i in range(len(_A ) )] # for each character in new_string find corresponding palindromic string _lowerCAmelCase : Any = 0 for j in range(len(_A ) ): _lowerCAmelCase : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_A ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _lowerCAmelCase : List[str] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _lowerCAmelCase : Optional[Any] = j - k + 1 # noqa: E741 _lowerCAmelCase : int = j + k - 1 # update max_length and start position if max_length < length[j]: _lowerCAmelCase : Dict = length[j] _lowerCAmelCase : Optional[int] = j # create that string _lowerCAmelCase : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
25
1