code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import argparse
import os
import re
SCREAMING_SNAKE_CASE : Union[str, Any] = """src/transformers/models/auto"""
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
SCREAMING_SNAKE_CASE : List[Any] = re.compile(r"""[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict""")
# re pattern that matches identifiers in mappings
SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"""\s*\(\s*\"(\S[^\"]+)\"""")
def lowercase ( _snake_case : Any , _snake_case : bool = False ) ->Tuple:
"""simple docstring"""
with open(_snake_case , '''r''' , encoding='''utf-8''' ) as f:
__snake_case : str = f.read()
__snake_case : List[Any] = content.split('''\n''' )
__snake_case : str = []
__snake_case : List[Any] = 0
while line_idx < len(_snake_case ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__snake_case : List[str] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(''' ''' * indent + '''(''' ):
new_lines.append(lines[line_idx] )
line_idx += 1
__snake_case : str = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__snake_case : Optional[Any] = line_idx
while not lines[line_idx].startswith(''' ''' * indent + ''')''' ):
line_idx += 1
blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__snake_case : Optional[int] = sorted(_snake_case , key=lambda _snake_case : _re_identifier.search(_snake_case ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write('''\n'''.join(_snake_case ) )
elif "\n".join(_snake_case ) != content:
return True
def lowercase ( _snake_case : bool = False ) ->int:
"""simple docstring"""
__snake_case : Union[str, Any] = [os.path.join(_snake_case , _snake_case ) for f in os.listdir(_snake_case ) if f.endswith('''.py''' )]
__snake_case : Optional[Any] = [sort_auto_mapping(_snake_case , overwrite=_snake_case ) for fname in fnames]
if not overwrite and any(_snake_case ):
__snake_case : List[str] = [f for f, d in zip(_snake_case , _snake_case ) if d]
raise ValueError(
f"""The following files have auto mappings that need sorting: {', '.join(_snake_case )}. Run `make style` to fix"""
''' this.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""")
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='lxmert'
lowerCamelCase__ ={}
def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_attention_heads
__snake_case : int = hidden_act
__snake_case : int = intermediate_size
__snake_case : Any = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : List[Any] = num_qa_labels
__snake_case : int = num_object_labels
__snake_case : Optional[Any] = num_attr_labels
__snake_case : Union[str, Any] = l_layers
__snake_case : Optional[int] = x_layers
__snake_case : Optional[int] = r_layers
__snake_case : Tuple = visual_feat_dim
__snake_case : Optional[int] = visual_pos_dim
__snake_case : Dict = visual_loss_normalizer
__snake_case : str = task_matched
__snake_case : Optional[Any] = task_mask_lm
__snake_case : List[str] = task_obj_predict
__snake_case : Optional[Any] = task_qa
__snake_case : Any = visual_obj_loss
__snake_case : int = visual_attr_loss
__snake_case : List[Any] = visual_feat_loss
__snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**a_ )
| 24 | 1 |
"""simple docstring"""
import re
def lowercase ( _snake_case : str ) ->list:
"""simple docstring"""
return [char.split() for char in re.split(r'''[^ a-z A-Z 0-9 \s]''' , str_ )]
def lowercase ( _snake_case : str ) ->str:
"""simple docstring"""
__snake_case : Optional[int] = split_input(str_ )
return "".join(
[''''''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] )
def lowercase ( _snake_case : str , _snake_case : bool , _snake_case : str ) ->str:
"""simple docstring"""
try:
__snake_case : Optional[int] = split_input(_snake_case )
if upper:
__snake_case : Union[str, Any] = ''''''.join(
[
separator.join([char.upper() for char in sub_str] )
for sub_str in string_split
] )
else:
__snake_case : Tuple = ''''''.join(
[
separator.join([char.lower() for char in sub_str] )
for sub_str in string_split
] )
return res_str
except IndexError:
return "not valid string"
def lowercase ( _snake_case : str ) ->str:
"""simple docstring"""
return to_simple_case(_snake_case )
def lowercase ( _snake_case : str ) ->str:
"""simple docstring"""
try:
__snake_case : Tuple = to_simple_case(_snake_case )
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def lowercase ( _snake_case : str , _snake_case : bool ) ->str:
"""simple docstring"""
return to_complex_case(_snake_case , _snake_case , '''_''' )
def lowercase ( _snake_case : str , _snake_case : bool ) ->str:
"""simple docstring"""
return to_complex_case(_snake_case , _snake_case , '''-''' )
if __name__ == "__main__":
__import__("""doctest""").testmod()
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = len(_snake_case )
__snake_case : str = sum(_snake_case )
__snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__snake_case : Optional[Any] = True
for i in range(1 , s + 1 ):
__snake_case : int = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__snake_case : Union[str, Any] = dp[i][j - 1]
if arr[i - 1] <= j:
__snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__snake_case : List[str] = s - 2 * j
break
return diff
| 24 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 |
"""simple docstring"""
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
__snake_case : List[str] = mid
else:
__snake_case : str = mid
__snake_case : str = start + (end - start) / 2.0
return mid
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
raise RuntimeError('''CUDA out of memory.''' )
class _UpperCAmelCase ( nn.Module ):
'''simple docstring'''
def __init__(self ):
'''simple docstring'''
super().__init__()
__snake_case : Optional[int] = nn.Linear(3 , 4 )
__snake_case : str = nn.BatchNormad(4 )
__snake_case : List[str] = nn.Linear(4 , 5 )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(a_ ) ) )
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(a_ ):
nonlocal batch_sizes
batch_sizes.append(a_ )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(a_ , [1_28, 64, 32, 16, 8] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(a_ , a_ ):
nonlocal batch_sizes
batch_sizes.append(a_ )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
__snake_case , __snake_case : Optional[int] = mock_training_loop_function('''hello''' )
self.assertListEqual(a_ , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, '''hello'''] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(a_ ):
pass
with self.assertRaises(a_ ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(a_ ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(a_ ) as cm:
mock_training_loop_function()
self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(a_ , a_ , a_ ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(a_ ) as cm:
mock_training_loop_function(1_28 , '''hello''' , '''world''' )
self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0] )
self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(a_ ):
raise ValueError('''Oops, we had an error!''' )
with self.assertRaises(a_ ) as cm:
mock_training_loop_function()
self.assertIn('''Oops, we had an error!''' , cm.exception.args[0] )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = torch.cuda.memory_allocated()
__snake_case : Optional[int] = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , a_ )
__snake_case : List[str] = release_memory(a_ )
self.assertEqual(torch.cuda.memory_allocated() , a_ )
| 24 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 | 1 |
"""simple docstring"""
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def lowercase ( _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = OmegaConf.load(_snake_case )
__snake_case : Tuple = torch.load(_snake_case , map_location='''cpu''' )['''model''']
__snake_case : Any = list(state_dict.keys() )
# extract state_dict for VQVAE
__snake_case : Dict = {}
__snake_case : Any = '''first_stage_model.'''
for key in keys:
if key.startswith(_snake_case ):
__snake_case : Tuple = state_dict[key]
# extract state_dict for UNetLDM
__snake_case : str = {}
__snake_case : List[Any] = '''model.diffusion_model.'''
for key in keys:
if key.startswith(_snake_case ):
__snake_case : Dict = state_dict[key]
__snake_case : Any = config.model.params.first_stage_config.params
__snake_case : Dict = config.model.params.unet_config.params
__snake_case : List[str] = VQModel(**_snake_case ).eval()
vqvae.load_state_dict(_snake_case )
__snake_case : str = UNetLDMModel(**_snake_case ).eval()
unet.load_state_dict(_snake_case )
__snake_case : str = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_snake_case , )
__snake_case : int = LDMPipeline(_snake_case , _snake_case , _snake_case )
pipeline.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--checkpoint_path""", type=str, required=True)
parser.add_argument("""--config_path""", type=str, required=True)
parser.add_argument("""--output_path""", type=str, required=True)
SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 24 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' )
__snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 24 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = {
"""configuration_mega""": ["""MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegaConfig""", """MegaOnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Optional[Any] = [
"""MEGA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegaForCausalLM""",
"""MegaForMaskedLM""",
"""MegaForMultipleChoice""",
"""MegaForQuestionAnswering""",
"""MegaForSequenceClassification""",
"""MegaForTokenClassification""",
"""MegaModel""",
"""MegaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mega import (
MEGA_PRETRAINED_MODEL_ARCHIVE_LIST,
MegaForCausalLM,
MegaForMaskedLM,
MegaForMultipleChoice,
MegaForQuestionAnswering,
MegaForSequenceClassification,
MegaForTokenClassification,
MegaModel,
MegaPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : List[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Tuple = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =MBartTokenizer
lowerCamelCase__ =[]
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Tuple = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX'''
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__snake_case : Optional[int] = src_lang
__snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ )
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ )
__snake_case : int = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ):
'''simple docstring'''
__snake_case : int = src_lang
__snake_case : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
__snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : Optional[Any] = []
__snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Callable
from typing import Any, Generic, TypeVar
SCREAMING_SNAKE_CASE : List[Any] = TypeVar("""T""")
class _UpperCAmelCase ( Generic[T] ):
'''simple docstring'''
def __init__(self , a_ , a_ ):
'''simple docstring'''
__snake_case : Any | T = None
__snake_case : int = len(a_ )
__snake_case : list[T] = [any_type for _ in range(self.N )] + arr
__snake_case : Dict = fnc
self.build()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for p in range(self.N - 1 , 0 , -1 ):
__snake_case : Optional[int] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
p += self.N
__snake_case : List[str] = v
while p > 1:
__snake_case : Any = p // 2
__snake_case : Union[str, Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ): # noqa: E741
'''simple docstring'''
__snake_case , __snake_case : str = l + self.N, r + self.N
__snake_case : T | None = None
while l <= r:
if l % 2 == 1:
__snake_case : Optional[Any] = self.st[l] if res is None else self.fn(a_ , self.st[l] )
if r % 2 == 0:
__snake_case : Any = self.st[r] if res is None else self.fn(a_ , self.st[r] )
__snake_case , __snake_case : str = (l + 1) // 2, (r - 1) // 2
return res
if __name__ == "__main__":
from functools import reduce
SCREAMING_SNAKE_CASE : Optional[Any] = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12]
SCREAMING_SNAKE_CASE : int = {
0: 7,
1: 2,
2: 6,
3: -14,
4: 5,
5: 4,
6: 7,
7: -10,
8: 9,
9: 10,
10: 12,
11: 1,
}
SCREAMING_SNAKE_CASE : Dict = SegmentTree(test_array, min)
SCREAMING_SNAKE_CASE : Dict = SegmentTree(test_array, max)
SCREAMING_SNAKE_CASE : List[str] = SegmentTree(test_array, lambda a, b: a + b)
def lowercase ( ) ->None:
"""simple docstring"""
for i in range(len(_snake_case ) ):
for j in range(_snake_case , len(_snake_case ) ):
__snake_case : List[Any] = reduce(_snake_case , test_array[i : j + 1] )
__snake_case : Any = reduce(_snake_case , test_array[i : j + 1] )
__snake_case : List[Any] = reduce(lambda _snake_case , _snake_case : a + b , test_array[i : j + 1] )
assert min_range == min_segment_tree.query(_snake_case , _snake_case )
assert max_range == max_segment_tree.query(_snake_case , _snake_case )
assert sum_range == sum_segment_tree.query(_snake_case , _snake_case )
test_all_segments()
for index, value in test_updates.items():
SCREAMING_SNAKE_CASE : Union[str, Any] = value
min_segment_tree.update(index, value)
max_segment_tree.update(index, value)
sum_segment_tree.update(index, value)
test_all_segments()
| 24 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 | 1 |
"""simple docstring"""
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def lowercase ( ) ->List[Any]:
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(_snake_case ):
requests.request('''GET''' , '''https://huggingface.co''' )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request('''GET''' , '''https://huggingface.co''' , timeout=1.0 )
@pytest.mark.integration
def lowercase ( ) ->Optional[Any]:
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request('''GET''' , '''https://huggingface.co''' )
def lowercase ( ) ->List[Any]:
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(_snake_case ):
http_head('''https://huggingface.co''' )
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"""tanreinama/GPTSAN-2.8B-spout_is_uniform""": (
"""https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"""
),
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='gptsan-japanese'
lowerCamelCase__ =[
'past_key_values',
]
lowerCamelCase__ ={
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ):
'''simple docstring'''
__snake_case : Any = vocab_size
__snake_case : str = max_position_embeddings
__snake_case : Any = d_model
__snake_case : List[str] = d_ff
__snake_case : Dict = d_ext
__snake_case : Optional[Any] = d_spout
__snake_case : int = num_switch_layers
__snake_case : List[Any] = num_ext_layers
__snake_case : Any = num_switch_layers + num_ext_layers
__snake_case : Optional[int] = num_heads
__snake_case : Tuple = num_experts
__snake_case : List[Any] = expert_capacity
__snake_case : Dict = dropout_rate
__snake_case : Optional[Any] = layer_norm_epsilon
__snake_case : Dict = router_bias
__snake_case : str = router_jitter_noise
__snake_case : List[str] = router_dtype
__snake_case : Union[str, Any] = router_ignore_padding_tokens
__snake_case : List[str] = output_hidden_states
__snake_case : Optional[Any] = output_attentions
__snake_case : Any = initializer_factor
__snake_case : int = output_router_logits
__snake_case : Union[str, Any] = use_cache
super().__init__(
separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
| 24 | 1 |
"""simple docstring"""
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__)
SCREAMING_SNAKE_CASE : Any = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
SCREAMING_SNAKE_CASE : Dict = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =field(
default=__snake_case, metadata={
'help': (
'The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'
)
}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(__snake_case )}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={
'help': (
'Override some existing default config settings when a model is trained from scratch. Example: '
'n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'
)
}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'}, )
lowerCamelCase__ =field(
default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
}, )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
lowerCamelCase__ =field(default=__snake_case, metadata={'help': 'The input training data file (a text file).'} )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'An optional input train ref data file for whole word masking in Chinese.'}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'An optional input validation ref data file for whole word masking in Chinese.'}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowerCamelCase__ =field(
default=5, metadata={
'help': 'The percentage of the train set used as validation set in case there\'s no validation split'
}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated. Default to the max input length of the model.'
)
}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'The number of processes to use for the preprocessing.'}, )
lowerCamelCase__ =field(
default=0.1_5, metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} )
lowerCamelCase__ =field(
default=__snake_case, metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
}, )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if self.train_file is not None:
__snake_case : str = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
__snake_case : int = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def lowercase ( _snake_case : Optional[Any] , _snake_case : str ) ->List[Any]:
"""simple docstring"""
with open(_snake_case , '''r''' , encoding='''utf-8''' ) as f:
__snake_case : Optional[int] = [json.loads(_snake_case ) for line in f.read().splitlines() if (len(_snake_case ) > 0 and not line.isspace())]
assert len(_snake_case ) == len(_snake_case )
__snake_case : int = {c: dataset[c] for c in dataset.column_names}
__snake_case : Optional[int] = refs
return Dataset.from_dict(_snake_case )
def lowercase ( ) ->str:
"""simple docstring"""
__snake_case : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case : Tuple = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
__snake_case : Dict = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case : int = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , _snake_case )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__snake_case : str = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
__snake_case : Optional[int] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[:{data_args.validation_split_percentage}%]""" , )
__snake_case : Optional[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=f"""train[{data_args.validation_split_percentage}%:]""" , )
else:
__snake_case : Dict = {}
if data_args.train_file is not None:
__snake_case : int = data_args.train_file
if data_args.validation_file is not None:
__snake_case : Dict = data_args.validation_file
__snake_case : str = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
__snake_case : Optional[int] = '''text'''
__snake_case : Any = load_dataset(_snake_case , data_files=_snake_case )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case : Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
__snake_case : Tuple = AutoConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
__snake_case : Optional[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
__snake_case : int = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(f"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(f"""New config: {config}""" )
__snake_case : Optional[int] = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
__snake_case : List[str] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **_snake_case )
elif model_args.model_name_or_path:
__snake_case : Dict = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
__snake_case : Any = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
__snake_case : Tuple = AutoModelForMaskedLM.from_config(_snake_case )
model.resize_token_embeddings(len(_snake_case ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
__snake_case : int = datasets['''train'''].column_names
else:
__snake_case : Tuple = datasets['''validation'''].column_names
__snake_case : str = '''text''' if '''text''' in column_names else column_names[0]
__snake_case : Optional[Any] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(_snake_case : Dict ):
# Remove empty lines
__snake_case : Optional[int] = [line for line in examples['''text'''] if len(_snake_case ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=_snake_case , truncation=_snake_case , max_length=data_args.max_seq_length )
__snake_case : List[str] = datasets.map(
_snake_case , batched=_snake_case , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
__snake_case : Tuple = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
__snake_case : Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
__snake_case : Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
__snake_case : Optional[int] = False
# Data collator
# This one will take care of randomly masking the tokens.
__snake_case : int = DataCollatorForWholeWordMask(tokenizer=_snake_case , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__snake_case : List[str] = Trainer(
model=_snake_case , args=_snake_case , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
__snake_case : str = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
__snake_case : str = model_args.model_name_or_path
else:
__snake_case : List[str] = None
__snake_case : Tuple = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case : List[Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(_snake_case , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
__snake_case : str = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
__snake_case : Optional[int] = trainer.evaluate()
__snake_case : int = math.exp(eval_output['''eval_loss'''] )
__snake_case : Any = perplexity
__snake_case : int = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(_snake_case , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(f""" {key} = {value}""" )
writer.write(f"""{key} = {value}\n""" )
return results
def lowercase ( _snake_case : Optional[int] ) ->str:
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 24 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
SCREAMING_SNAKE_CASE : int = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
__snake_case : int = {}
with open(_snake_case , '''r''' ) as file:
for line_number, line in enumerate(_snake_case ):
__snake_case : Union[str, Any] = line.strip()
if line:
__snake_case : str = line.split()
__snake_case : Union[str, Any] = line_number
__snake_case : Dict = words[0]
__snake_case : str = value
return result
def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]:
"""simple docstring"""
for attribute in key.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : str = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape
elif weight_type is not None and weight_type == "param":
__snake_case : Optional[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : List[str] = shape_pointer.shape
# let's reduce dimension
__snake_case : int = value[0]
else:
__snake_case : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__snake_case : List[Any] = value
elif weight_type == "weight_g":
__snake_case : Tuple = value
elif weight_type == "weight_v":
__snake_case : str = value
elif weight_type == "bias":
__snake_case : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__snake_case : List[Any] = getattr(_snake_case , _snake_case )
__snake_case : int = value
else:
__snake_case : List[Any] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int:
"""simple docstring"""
__snake_case : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : List[str] = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : str = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__snake_case : Tuple = '''.'''.join([key, hf_param_name] )
else:
__snake_case : Optional[int] = key
__snake_case : List[Any] = value if '''lm_head''' in full_key else value[0]
SCREAMING_SNAKE_CASE : Tuple = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict:
"""simple docstring"""
__snake_case : Tuple = False
for key, mapped_key in MAPPING.items():
__snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__snake_case : int = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2]
__snake_case : Tuple = mapped_key.replace('''*''' , _snake_case )
if "weight_g" in name:
__snake_case : Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
__snake_case : List[str] = '''weight_v'''
elif "bias" in name:
__snake_case : Any = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case : List[Any] = '''weight'''
else:
__snake_case : Union[str, Any] = None
if hf_dict is not None:
rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
else:
set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
return is_used
return is_used
def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any:
"""simple docstring"""
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = fairseq_model.state_dict()
__snake_case : str = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : str = False
if "conv_layers" in name:
load_conv_layer(
_snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , )
__snake_case : Union[str, Any] = True
else:
__snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case )
if not is_used:
unused_weights.append(_snake_case )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
__snake_case : str = name.split('''.''' )
__snake_case : Optional[int] = int(items[0] )
__snake_case : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__snake_case : int = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__snake_case : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_snake_case )
@torch.no_grad()
def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict:
"""simple docstring"""
if config_path is not None:
__snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case )
else:
__snake_case : Tuple = WavaVecaConfig()
if is_seq_class:
__snake_case : Optional[int] = read_txt_into_dict(_snake_case )
__snake_case : List[Any] = idalabel
__snake_case : int = WavaVecaForSequenceClassification(_snake_case )
__snake_case : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
feature_extractor.save_pretrained(_snake_case )
elif is_finetuned:
if dict_path:
__snake_case : int = Dictionary.load(_snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Tuple = target_dict.pad_index
__snake_case : int = target_dict.bos_index
__snake_case : Tuple = target_dict.eos_index
__snake_case : Optional[Any] = len(target_dict.symbols )
__snake_case : Any = os.path.join(_snake_case , '''vocab.json''' )
if not os.path.isdir(_snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) )
return
os.makedirs(_snake_case , exist_ok=_snake_case )
__snake_case : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__snake_case : Dict = 0
__snake_case : List[Any] = 1
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_snake_case , _snake_case )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , )
__snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False
__snake_case : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
__snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case )
processor.save_pretrained(_snake_case )
__snake_case : Optional[int] = WavaVecaForCTC(_snake_case )
else:
__snake_case : Tuple = WavaVecaForPreTraining(_snake_case )
if is_finetuned or is_seq_class:
__snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' )
__snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case )
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case )
__snake_case : int = model[0].eval()
recursively_load_weights(_snake_case , _snake_case , not is_finetuned )
hf_wavavec.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 24 | 1 |
"""simple docstring"""
import math
def lowercase ( _snake_case : int ) ->int:
"""simple docstring"""
if not isinstance(_snake_case , _snake_case ):
__snake_case : Tuple = f"""Input value of [number={number}] must be an integer"""
raise TypeError(_snake_case )
if number < 1:
__snake_case : Any = f"""Input value of [number={number}] must be > 0"""
raise ValueError(_snake_case )
elif number == 1:
return 3
elif number == 2:
return 5
else:
__snake_case : Any = int(math.log(number // 3 , 2 ) ) + 2
__snake_case : Tuple = [3, 5]
__snake_case : Tuple = 2
__snake_case : Union[str, Any] = 3
for block in range(1 , _snake_case ):
for _ in range(_snake_case ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
SCREAMING_SNAKE_CASE : Dict = 0
try:
SCREAMING_SNAKE_CASE : List[str] = proth(number)
except ValueError:
print(F'ValueError: there is no {number}th Proth number')
continue
print(F'The {number}th Proth number: {value}')
| 24 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=__snake_case ):
'''simple docstring'''
lowerCamelCase__ =['transformers', 'torch', 'note_seq']
def __init__(self , *a_ , **a_ ):
'''simple docstring'''
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
| 24 | 1 |
"""simple docstring"""
from typing import List
from .keymap import KEYMAP, get_character
def lowercase ( _snake_case : str ) ->Optional[Any]:
"""simple docstring"""
def decorator(_snake_case : List[str] ):
__snake_case : str = getattr(_snake_case , '''handle_key''' , [] )
handle += [key]
setattr(_snake_case , '''handle_key''' , _snake_case )
return func
return decorator
def lowercase ( *_snake_case : List[str] ) ->Dict:
"""simple docstring"""
def decorator(_snake_case : int ):
__snake_case : List[str] = getattr(_snake_case , '''handle_key''' , [] )
handle += keys
setattr(_snake_case , '''handle_key''' , _snake_case )
return func
return decorator
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __new__(cls , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = super().__new__(cls , a_ , a_ , a_ )
if not hasattr(a_ , '''key_handler''' ):
setattr(a_ , '''key_handler''' , {} )
setattr(a_ , '''handle_input''' , KeyHandler.handle_input )
for value in attrs.values():
__snake_case : Optional[int] = getattr(a_ , '''handle_key''' , [] )
for key in handled_keys:
__snake_case : Tuple = value
return new_cls
@staticmethod
def SCREAMING_SNAKE_CASE (cls ):
'''simple docstring'''
__snake_case : int = get_character()
if char != KEYMAP["undefined"]:
__snake_case : Optional[int] = ord(a_ )
__snake_case : List[Any] = cls.key_handler.get(a_ )
if handler:
__snake_case : str = char
return handler(cls )
else:
return None
def lowercase ( cls : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 24 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ):
'''simple docstring'''
__snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20}
__snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : Tuple = num_channels
__snake_case : List[str] = image_size
__snake_case : Optional[Any] = min_resolution
__snake_case : List[Any] = max_resolution
__snake_case : List[Any] = do_resize
__snake_case : Dict = size
__snake_case : Dict = do_center_crop
__snake_case : Dict = crop_size
__snake_case : str = do_flip_channel_order
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(a_ , '''center_crop''' ) )
self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 24 | 1 |
"""simple docstring"""
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : int ) ->np.ndarray:
"""simple docstring"""
if (ksize % 2) == 0:
__snake_case : int = ksize + 1
__snake_case : Optional[int] = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(_snake_case ):
for x in range(_snake_case ):
# distance from center
__snake_case : List[Any] = x - ksize // 2
__snake_case : Tuple = y - ksize // 2
# degree to radiant
__snake_case : Union[str, Any] = theta / 180 * np.pi
__snake_case : Dict = np.cos(_theta )
__snake_case : Any = np.sin(_theta )
# get kernel x
__snake_case : Optional[Any] = cos_theta * px + sin_theta * py
# get kernel y
__snake_case : Union[str, Any] = -sin_theta * px + cos_theta * py
# fill kernel
__snake_case : int = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
SCREAMING_SNAKE_CASE : Tuple = imread("""../image_data/lena.jpg""")
# turn image in gray scale value
SCREAMING_SNAKE_CASE : str = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
SCREAMING_SNAKE_CASE : Tuple = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
SCREAMING_SNAKE_CASE : int = out / out.max() * 255
SCREAMING_SNAKE_CASE : Optional[Any] = out.astype(np.uinta)
imshow("""Original""", gray)
imshow("""Gabor filter with 20x20 mask and 6 directions""", out)
waitKey(0)
| 24 |
"""simple docstring"""
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : int = torch.nn.Linear(2 , 4 )
__snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
__snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
__snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def lowercase ( _snake_case : str ) ->Optional[Any]:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def lowercase ( _snake_case : Union[str, Any] ) ->Tuple:
"""simple docstring"""
__snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(_snake_case )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(a_ ):
__snake_case : Any = Accelerator(cpu=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case : Optional[int] = GradientState()
assert state.num_steps == 1
__snake_case : str = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__snake_case : List[Any] = False
assert state.sync_gradients is False
GradientState._reset_state()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*a_ , **a_ ):
pass
with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ):
__snake_case : List[Any] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : Any = get_signature(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# make sure loaded weights match
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : List[Any] = get_signature(a_ )
# saving hook
def save_config(a_ , a_ , a_ ):
__snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__}
with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f:
json.dump(a_ , a_ )
# loading hook
def load_config(a_ , a_ ):
with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f:
__snake_case : Any = json.load(a_ )
__snake_case : List[str] = config['''class_name''']
__snake_case : str = accelerator.register_save_state_pre_hook(a_ )
__snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Any = '''random'''
# make sure loaded weights match with hooks
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks removed
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Union[str, Any] = '''random'''
# make sure loaded weights match with hooks removed
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components()
__snake_case : Union[str, Any] = None
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertTrue(dummy_obj is None )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
__snake_case : Optional[int] = [1, 2, 3]
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , )
__snake_case : Optional[Any] = Accelerator()
# This should work
__snake_case : Any = accelerator.prepare(a_ )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Any = Accelerator()
with init_empty_weights():
__snake_case : List[str] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : Union[str, Any] = infer_auto_device_map(a_ )
__snake_case : str = '''cpu'''
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ )
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Dict = accelerator.prepare(a_ )
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU}
with init_empty_weights():
__snake_case : Any = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : List[Any] = infer_auto_device_map(a_ )
__snake_case : Dict = 1
__snake_case : str = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Any = Accelerator()
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Tuple = accelerator.prepare(a_ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
with init_empty_weights():
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
__snake_case : Tuple = infer_auto_device_map(a_ )
__snake_case : Tuple = 1
__snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Tuple = Accelerator()
# This should work
__snake_case : Dict = accelerator.prepare(a_ )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = torch.nn.Linear(10 , 10 )
__snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 )
__snake_case : Optional[Any] = Accelerator(cpu=a_ )
__snake_case : str = accelerator.prepare(a_ )
| 24 | 1 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import (
AltDiffusionImgaImgPipeline,
AutoencoderKL,
PNDMScheduler,
UNetaDConditionModel,
)
from diffusers.image_processor import VaeImageProcessor
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = 1
__snake_case : Optional[int] = 3
__snake_case : Dict = (32, 32)
__snake_case : str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(a_ )
return image
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , )
return model
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , )
return model
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
torch.manual_seed(0 )
__snake_case : str = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , )
return RobertaSeriesModelWithTransformation(a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
def extract(*a_ , **a_ ):
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self ):
'''simple docstring'''
__snake_case : Optional[Any] = torch.ones([0] )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
self.pixel_values.to(a_ )
return self
return Out()
return extract
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__snake_case : Dict = self.dummy_cond_unet
__snake_case : int = PNDMScheduler(skip_prk_steps=a_ )
__snake_case : Tuple = self.dummy_vae
__snake_case : Optional[Any] = self.dummy_text_encoder
__snake_case : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
__snake_case : List[str] = 77
__snake_case : List[str] = self.dummy_image.to(a_ )
__snake_case : Dict = init_image / 2 + 0.5
# make sure here that pndm scheduler skips prk
__snake_case : Union[str, Any] = AltDiffusionImgaImgPipeline(
unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , )
__snake_case : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=a_ )
__snake_case : Dict = alt_pipe.to(a_ )
alt_pipe.set_progress_bar_config(disable=a_ )
__snake_case : int = '''A painting of a squirrel eating a burger'''
__snake_case : Tuple = torch.Generator(device=a_ ).manual_seed(0 )
__snake_case : Dict = alt_pipe(
[prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=a_ , )
__snake_case : List[Any] = output.images
__snake_case : List[Any] = torch.Generator(device=a_ ).manual_seed(0 )
__snake_case : Tuple = alt_pipe(
[prompt] , generator=a_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=a_ , return_dict=a_ , )[0]
__snake_case : Union[str, Any] = image[0, -3:, -3:, -1]
__snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__snake_case : Dict = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.dummy_cond_unet
__snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=a_ )
__snake_case : Any = self.dummy_vae
__snake_case : List[Any] = self.dummy_text_encoder
__snake_case : Optional[Any] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' )
__snake_case : Tuple = 77
__snake_case : Optional[Any] = self.dummy_image.to(a_ )
# put models in fp16
__snake_case : List[Any] = unet.half()
__snake_case : int = vae.half()
__snake_case : Tuple = bert.half()
# make sure here that pndm scheduler skips prk
__snake_case : Optional[Any] = AltDiffusionImgaImgPipeline(
unet=a_ , scheduler=a_ , vae=a_ , text_encoder=a_ , tokenizer=a_ , safety_checker=a_ , feature_extractor=self.dummy_extractor , )
__snake_case : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=a_ )
__snake_case : int = alt_pipe.to(a_ )
alt_pipe.set_progress_bar_config(disable=a_ )
__snake_case : Optional[Any] = '''A painting of a squirrel eating a burger'''
__snake_case : Dict = torch.manual_seed(0 )
__snake_case : Any = alt_pipe(
[prompt] , generator=a_ , num_inference_steps=2 , output_type='''np''' , image=a_ , ).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
# resize to resolution that is divisible by 8 but not 16 or 32
__snake_case : Optional[Any] = init_image.resize((7_60, 5_04) )
__snake_case : Optional[Any] = '''BAAI/AltDiffusion'''
__snake_case : Tuple = AltDiffusionImgaImgPipeline.from_pretrained(
a_ , safety_checker=a_ , )
pipe.to(a_ )
pipe.set_progress_bar_config(disable=a_ )
pipe.enable_attention_slicing()
__snake_case : List[Any] = '''A fantasy landscape, trending on artstation'''
__snake_case : Dict = torch.manual_seed(0 )
__snake_case : Optional[Any] = pipe(
prompt=a_ , image=a_ , strength=0.75 , guidance_scale=7.5 , generator=a_ , output_type='''np''' , )
__snake_case : Union[str, Any] = output.images[0]
__snake_case : Any = image[2_55:2_58, 3_83:3_86, -1]
assert image.shape == (5_04, 7_60, 3)
__snake_case : Dict = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/img2img/sketch-mountains-input.jpg''' )
__snake_case : Dict = init_image.resize((7_68, 5_12) )
__snake_case : Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' )
__snake_case : Tuple = '''BAAI/AltDiffusion'''
__snake_case : Optional[int] = AltDiffusionImgaImgPipeline.from_pretrained(
a_ , safety_checker=a_ , )
pipe.to(a_ )
pipe.set_progress_bar_config(disable=a_ )
pipe.enable_attention_slicing()
__snake_case : Optional[Any] = '''A fantasy landscape, trending on artstation'''
__snake_case : Optional[Any] = torch.manual_seed(0 )
__snake_case : str = pipe(
prompt=a_ , image=a_ , strength=0.75 , guidance_scale=7.5 , generator=a_ , output_type='''np''' , )
__snake_case : List[str] = output.images[0]
assert image.shape == (5_12, 7_68, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image ).max() < 1E-2
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int ) ->str:
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
__snake_case : Any = len(bin(_snake_case )[3:] )
__snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:]
__snake_case : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(_snake_case ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
from math import factorial
SCREAMING_SNAKE_CASE : int = {str(d): factorial(d) for d in range(10)}
def lowercase ( _snake_case : int ) ->int:
"""simple docstring"""
return sum(DIGIT_FACTORIAL[d] for d in str(_snake_case ) )
def lowercase ( ) ->int:
"""simple docstring"""
__snake_case : Any = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , _snake_case ) if sum_of_digit_factorial(_snake_case ) == i )
if __name__ == "__main__":
print(F'{solution() = }')
| 24 |
"""simple docstring"""
def lowercase ( ) ->int:
"""simple docstring"""
return [
a * b * (1_000 - a - b)
for a in range(1 , 999 )
for b in range(_snake_case , 999 )
if (a * a + b * b == (1_000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 1 |
"""simple docstring"""
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / """utils"""))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
SCREAMING_SNAKE_CASE : Tuple = get_tests_dir("""fixtures""")
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = mock.Mock()
__snake_case : Union[str, Any] = 5_00
__snake_case : str = {}
__snake_case : List[Any] = HTTPError
__snake_case : int = {}
# Download this model to make sure it's in the cache.
__snake_case : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=a_ ) as mock_head:
__snake_case : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''hf-internal-testing/tiny-random-wav2vec2''' )
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = WavaVecaFeatureExtractor.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json''' )
@is_staging_test
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def SCREAMING_SNAKE_CASE (cls ):
'''simple docstring'''
__snake_case : List[Any] = TOKEN
HfFolder.save_token(a_ )
@classmethod
def SCREAMING_SNAKE_CASE (cls ):
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-feature-extractor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-feature-extractor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-feature-extractor''' )
except HTTPError:
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = WavaVecaFeatureExtractor.from_pretrained(a_ )
feature_extractor.push_to_hub('''test-feature-extractor''' , use_auth_token=self._token )
__snake_case : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a_ , getattr(a_ , a_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
a_ , repo_id='''test-feature-extractor''' , push_to_hub=a_ , use_auth_token=self._token )
__snake_case : List[Any] = WavaVecaFeatureExtractor.from_pretrained(f"""{USER}/test-feature-extractor""" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a_ , getattr(a_ , a_ ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = WavaVecaFeatureExtractor.from_pretrained(a_ )
feature_extractor.push_to_hub('''valid_org/test-feature-extractor''' , use_auth_token=self._token )
__snake_case : Any = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a_ , getattr(a_ , a_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-feature-extractor''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
a_ , repo_id='''valid_org/test-feature-extractor-org''' , push_to_hub=a_ , use_auth_token=self._token )
__snake_case : List[Any] = WavaVecaFeatureExtractor.from_pretrained('''valid_org/test-feature-extractor-org''' )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(a_ , getattr(a_ , a_ ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
__snake_case : Tuple = CustomFeatureExtractor.from_pretrained(a_ )
feature_extractor.push_to_hub('''test-dynamic-feature-extractor''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor'''} , )
__snake_case : str = AutoFeatureExtractor.from_pretrained(
f"""{USER}/test-dynamic-feature-extractor""" , trust_remote_code=a_ )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , '''CustomFeatureExtractor''' )
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int = 100 ) ->int:
"""simple docstring"""
__snake_case : str = n * (n + 1) * (2 * n + 1) / 6
__snake_case : Dict = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 1 |
"""simple docstring"""
from collections import deque
from math import floor
from random import random
from time import time
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self ):
'''simple docstring'''
__snake_case : Tuple = {}
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=1 ):
'''simple docstring'''
if self.graph.get(a_ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
__snake_case : Optional[int] = [[w, v]]
if not self.graph.get(a_ ):
__snake_case : int = []
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return list(self.graph )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
if self.graph.get(a_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(a_ )
def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ):
'''simple docstring'''
if s == d:
return []
__snake_case : str = []
__snake_case : Any = []
if s == -2:
__snake_case : Dict = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : Dict = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : int = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(a_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : Optional[Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(a_ ) != 0:
__snake_case : List[str] = stack[len(a_ ) - 1]
else:
__snake_case : List[Any] = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return visited
def SCREAMING_SNAKE_CASE (self , a_=-1 ):
'''simple docstring'''
if c == -1:
__snake_case : List[Any] = floor(random() * 1_00_00 ) + 10
for i in range(a_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
__snake_case : Dict = floor(random() * c ) + 1
if n != i:
self.add_pair(a_ , a_ , 1 )
def SCREAMING_SNAKE_CASE (self , a_=-2 ):
'''simple docstring'''
__snake_case : List[str] = deque()
__snake_case : Optional[Any] = []
if s == -2:
__snake_case : List[str] = list(self.graph )[0]
d.append(a_ )
visited.append(a_ )
while d:
__snake_case : Any = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return len(self.graph[u] )
def SCREAMING_SNAKE_CASE (self , a_=-2 ):
'''simple docstring'''
__snake_case : int = []
__snake_case : Tuple = []
if s == -2:
__snake_case : Optional[int] = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : Dict = s
__snake_case : List[str] = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : Any = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : Optional[int] = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(a_ ) != 0:
__snake_case : List[str] = stack[len(a_ ) - 1]
else:
__snake_case : Dict = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return sorted_nodes
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = []
__snake_case : Optional[int] = []
__snake_case : Dict = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : List[Any] = -2
__snake_case : Optional[int] = []
__snake_case : Union[str, Any] = s
__snake_case : List[Any] = False
__snake_case : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : Dict = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__snake_case : int = len(a_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : int = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__snake_case : Optional[int] = True
if len(a_ ) != 0:
__snake_case : Tuple = stack[len(a_ ) - 1]
else:
__snake_case : Optional[int] = False
indirect_parents.append(a_ )
__snake_case : List[str] = s
__snake_case : int = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return list(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = []
__snake_case : Any = []
__snake_case : Dict = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : int = -2
__snake_case : Optional[int] = []
__snake_case : List[str] = s
__snake_case : List[str] = False
__snake_case : Union[str, Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : Dict = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__snake_case : Union[str, Any] = len(a_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : Union[str, Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__snake_case : str = True
if len(a_ ) != 0:
__snake_case : Dict = stack[len(a_ ) - 1]
else:
__snake_case : Tuple = False
indirect_parents.append(a_ )
__snake_case : Optional[int] = s
__snake_case : List[str] = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return False
def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ):
'''simple docstring'''
__snake_case : Union[str, Any] = time()
self.dfs(a_ , a_ )
__snake_case : List[str] = time()
return end - begin
def SCREAMING_SNAKE_CASE (self , a_=-2 ):
'''simple docstring'''
__snake_case : Any = time()
self.bfs(a_ )
__snake_case : Any = time()
return end - begin
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self ):
'''simple docstring'''
__snake_case : Union[str, Any] = {}
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=1 ):
'''simple docstring'''
if self.graph.get(a_ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
__snake_case : str = [[w, v]]
# add the other way
if self.graph.get(a_ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
__snake_case : Optional[int] = [[w, u]]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
if self.graph.get(a_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(a_ )
# the other way round
if self.graph.get(a_ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(a_ )
def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ):
'''simple docstring'''
if s == d:
return []
__snake_case : Tuple = []
__snake_case : int = []
if s == -2:
__snake_case : Optional[int] = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : List[Any] = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : List[str] = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(a_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : Optional[int] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(a_ ) != 0:
__snake_case : List[str] = stack[len(a_ ) - 1]
else:
__snake_case : List[Any] = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return visited
def SCREAMING_SNAKE_CASE (self , a_=-1 ):
'''simple docstring'''
if c == -1:
__snake_case : Union[str, Any] = floor(random() * 1_00_00 ) + 10
for i in range(a_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 1_02 ) + 1 ):
__snake_case : Tuple = floor(random() * c ) + 1
if n != i:
self.add_pair(a_ , a_ , 1 )
def SCREAMING_SNAKE_CASE (self , a_=-2 ):
'''simple docstring'''
__snake_case : Tuple = deque()
__snake_case : Optional[Any] = []
if s == -2:
__snake_case : Optional[int] = list(self.graph )[0]
d.append(a_ )
visited.append(a_ )
while d:
__snake_case : Optional[int] = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return len(self.graph[u] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = []
__snake_case : List[str] = []
__snake_case : Dict = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : List[str] = -2
__snake_case : List[Any] = []
__snake_case : Dict = s
__snake_case : List[str] = False
__snake_case : Optional[Any] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : Optional[Any] = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__snake_case : Optional[int] = len(a_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : Dict = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__snake_case : Tuple = True
if len(a_ ) != 0:
__snake_case : Optional[int] = stack[len(a_ ) - 1]
else:
__snake_case : Optional[Any] = False
indirect_parents.append(a_ )
__snake_case : Optional[Any] = s
__snake_case : List[str] = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return list(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = []
__snake_case : Any = []
__snake_case : Optional[int] = list(self.graph )[0]
stack.append(a_ )
visited.append(a_ )
__snake_case : List[Any] = -2
__snake_case : Optional[int] = []
__snake_case : Union[str, Any] = s
__snake_case : List[str] = False
__snake_case : Optional[int] = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__snake_case : Any = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__snake_case : Any = len(a_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__snake_case : Union[str, Any] = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__snake_case : List[str] = True
if len(a_ ) != 0:
__snake_case : Any = stack[len(a_ ) - 1]
else:
__snake_case : int = False
indirect_parents.append(a_ )
__snake_case : Union[str, Any] = s
__snake_case : str = ss
# check if se have reached the starting point
if len(a_ ) == 0:
return False
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return list(self.graph )
def SCREAMING_SNAKE_CASE (self , a_=-2 , a_=-1 ):
'''simple docstring'''
__snake_case : Tuple = time()
self.dfs(a_ , a_ )
__snake_case : Optional[Any] = time()
return end - begin
def SCREAMING_SNAKE_CASE (self , a_=-2 ):
'''simple docstring'''
__snake_case : List[Any] = time()
self.bfs(a_ )
__snake_case : List[Any] = time()
return end - begin
| 24 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__)
@dataclass
class _UpperCAmelCase ( datasets.BuilderConfig ):
'''simple docstring'''
lowerCamelCase__ =10000
lowerCamelCase__ =None
lowerCamelCase__ =None
class _UpperCAmelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
lowerCamelCase__ =ParquetConfig
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__snake_case : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a_ , (str, list, tuple) ):
__snake_case : Union[str, Any] = data_files
if isinstance(a_ , a_ ):
__snake_case : Union[str, Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__snake_case : int = []
for split_name, files in data_files.items():
if isinstance(a_ , a_ ):
__snake_case : List[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : int = [dl_manager.iter_files(a_ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(a_ ):
with open(a_ , '''rb''' ) as f:
__snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) )
break
splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) )
return splits
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
__snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ):
with open(a_ , '''rb''' ) as f:
__snake_case : int = pq.ParquetFile(a_ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
__snake_case : Dict = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ )
except ValueError as e:
logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" )
raise
| 24 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
SCREAMING_SNAKE_CASE : Dict = {"""configuration_beit""": ["""BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BeitConfig""", """BeitOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : int = ["""BeitFeatureExtractor"""]
SCREAMING_SNAKE_CASE : Any = ["""BeitImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Any = [
"""BEIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BeitForImageClassification""",
"""BeitForMaskedImageModeling""",
"""BeitForSemanticSegmentation""",
"""BeitModel""",
"""BeitPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : List[str] = [
"""FlaxBeitForImageClassification""",
"""FlaxBeitForMaskedImageModeling""",
"""FlaxBeitModel""",
"""FlaxBeitPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__snake_case : Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''sshleifer/tiny-gpt2'''
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = '''sgugger/tiny-distilbert-classification'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , )
__snake_case : Optional[Any] = TensorFlowBenchmark(a_ )
__snake_case : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Any = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ )
__snake_case : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''sshleifer/tiny-gpt2'''
__snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Dict = TensorFlowBenchmark(a_ , [config] )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : int = TensorFlowBenchmark(a_ )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Dict = AutoConfig.from_pretrained(a_ )
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random'''
__snake_case : Tuple = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] )
__snake_case : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , )
__snake_case : Union[str, Any] = TensorFlowBenchmark(a_ )
benchmark.run()
self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(a_ ):
self.assertTrue(hasattr(a_ , '''sequential''' ) )
self.assertTrue(hasattr(a_ , '''cumulative''' ) )
self.assertTrue(hasattr(a_ , '''current''' ) )
self.assertTrue(hasattr(a_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ )
__snake_case : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
| 24 | 1 |
"""simple docstring"""
from manim import *
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = Rectangle(height=0.5 , width=0.5 )
__snake_case : int = Rectangle(height=0.25 , width=0.25 )
__snake_case : Dict = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
__snake_case : Optional[int] = [mem.copy() for i in range(6 )]
__snake_case : str = [mem.copy() for i in range(6 )]
__snake_case : Optional[int] = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : Union[str, Any] = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : Union[str, Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 )
__snake_case : Tuple = Text('''CPU''' , font_size=24 )
__snake_case : Tuple = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ )
cpu.move_to([-2.5, -0.5, 0] )
self.add(a_ )
__snake_case : int = [mem.copy() for i in range(4 )]
__snake_case : List[str] = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : List[Any] = Text('''GPU''' , font_size=24 )
__snake_case : Any = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ )
gpu.move_to([-1, -1, 0] )
self.add(a_ )
__snake_case : List[str] = [mem.copy() for i in range(6 )]
__snake_case : Dict = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : Dict = Text('''Model''' , font_size=24 )
__snake_case : int = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ )
model.move_to([3, -1.0, 0] )
self.add(a_ )
__snake_case : List[str] = []
__snake_case : str = []
__snake_case : str = []
for i, rect in enumerate(a_ ):
rect.set_stroke(a_ )
__snake_case : str = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(a_ , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=a_ )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(model_cpu_arr[0] , direction=a_ , buff=0.0 )
else:
cpu_target.next_to(model_cpu_arr[i - 1] , direction=a_ , buff=0.0 )
self.add(a_ )
model_cpu_arr.append(a_ )
self.add(*a_ , *a_ , *a_ )
__snake_case : str = [mem.copy() for i in range(6 )]
__snake_case : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : Optional[Any] = Text('''Loaded Checkpoint''' , font_size=24 )
__snake_case : Optional[Any] = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ )
checkpoint.move_to([3, 0.5, 0] )
self.add(a_ )
__snake_case : Tuple = []
__snake_case : Optional[int] = []
for i, rect in enumerate(a_ ):
__snake_case : int = fill.copy().set_fill(a_ , opacity=0.7 )
target.move_to(a_ )
ckpt_arr.append(a_ )
__snake_case : Optional[Any] = target.copy()
if i < 5:
cpu_target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.move_to(cpu_right_col_base[i - 5] )
ckpt_cpu_arr.append(a_ )
self.add(*a_ , *a_ )
__snake_case : str = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
__snake_case : Optional[int] = MarkupText(
f"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(a_ , a_ )
__snake_case : List[str] = MarkupText(
f"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , )
blue_text.next_to(a_ , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(a_ )
__snake_case : Tuple = MarkupText(
f"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=24 , )
step_a.move_to([2, 2, 0] )
__snake_case : Dict = [meta_mem.copy() for i in range(6 )]
__snake_case : Optional[int] = [meta_mem.copy() for i in range(6 )]
__snake_case : Any = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : Optional[Any] = VGroup(*a_ ).arrange(a_ , buff=0 )
__snake_case : Optional[Any] = VGroup(a_ , a_ ).arrange(a_ , buff=0 )
__snake_case : List[Any] = Text('''Disk''' , font_size=24 )
__snake_case : str = Group(a_ , a_ ).arrange(a_ , buff=0.5 , aligned_edge=a_ )
disk.move_to([-4.0, -1.25, 0] )
self.play(Write(a_ , run_time=3 ) , Write(a_ , run_time=1 ) , Create(a_ , run_time=1 ) )
__snake_case : int = []
for i, rect in enumerate(a_ ):
__snake_case : Optional[Any] = rect.copy()
target.generate_target()
target.target.move_to(disk_left_col_base[i] ).scale(0.5 )
animations.append(MoveToTarget(a_ , run_time=1.5 ) )
self.play(*a_ )
self.play(FadeOut(a_ ) )
__snake_case : List[str] = MarkupText(f"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(a_ , run_time=3 ) )
self.play(
FadeOut(a_ , a_ , *a_ , *a_ ) , )
self.wait()
| 24 |
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
try:
import msvcrt
except ImportError:
SCREAMING_SNAKE_CASE : List[str] = None
try:
import fcntl
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
SCREAMING_SNAKE_CASE : List[str] = OSError
# Data
# ------------------------------------------------
SCREAMING_SNAKE_CASE : List[Any] = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
SCREAMING_SNAKE_CASE : List[Any] = """3.0.12"""
SCREAMING_SNAKE_CASE : int = None
def lowercase ( ) ->str:
"""simple docstring"""
global _logger
__snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ )
return _logger
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = lock_file
return None
def __str__(self ):
'''simple docstring'''
__snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = lock
return None
def __enter__(self ):
'''simple docstring'''
return self.lock
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.lock.release()
return None
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
__snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ )
# The path to the lock file.
__snake_case : str = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__snake_case : Dict = None
# The default timeout value.
__snake_case : List[Any] = timeout
# We use this lock primarily for the lock counter.
__snake_case : Tuple = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__snake_case : Optional[Any] = 0
return None
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Dict = float(a_ )
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ):
'''simple docstring'''
if timeout is None:
__snake_case : List[str] = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__snake_case : Optional[int] = id(self )
__snake_case : str = self._lock_file
__snake_case : Optional[int] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(a_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__snake_case : Optional[int] = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE (self , a_=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__snake_case : Tuple = id(self )
__snake_case : str = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
__snake_case : Dict = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__(self ):
'''simple docstring'''
self.acquire()
return self
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.release()
return None
def __del__(self ):
'''simple docstring'''
self.release(force=a_ )
return None
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = os.path.basename(a_ )
if len(a_ ) > max_length and max_length > 0:
__snake_case : List[Any] = os.path.dirname(a_ )
__snake_case : Any = str(hash(a_ ) )
__snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(a_ , a_ )
else:
return path
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
__snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__snake_case : Any = os.open(self._lock_file , a_ )
except OSError:
pass
else:
try:
msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(a_ )
else:
__snake_case : Dict = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Dict = None
msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 )
os.close(a_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__snake_case : List[str] = os.open(self._lock_file , a_ )
try:
fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(a_ )
else:
__snake_case : Optional[int] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Tuple = None
fcntl.flock(a_ , fcntl.LOCK_UN )
os.close(a_ )
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__snake_case : Tuple = os.open(self._lock_file , a_ )
except OSError:
pass
else:
__snake_case : List[Any] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
os.close(self._lock_file_fd )
__snake_case : int = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
SCREAMING_SNAKE_CASE : Dict = None
if msvcrt:
SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock
elif fcntl:
SCREAMING_SNAKE_CASE : List[str] = UnixFileLock
else:
SCREAMING_SNAKE_CASE : str = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 24 | 1 |
"""simple docstring"""
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=3 , a_=None , ):
'''simple docstring'''
__snake_case : List[Any] = parent
__snake_case : Tuple = batch_size
__snake_case : Any = image_size
__snake_case : List[Any] = num_channels
__snake_case : Union[str, Any] = num_stages
__snake_case : Any = hidden_sizes
__snake_case : Dict = depths
__snake_case : Optional[Any] = is_training
__snake_case : Dict = use_labels
__snake_case : Tuple = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : List[str] = type_sequence_label_size
__snake_case : Tuple = initializer_range
__snake_case : int = out_features
__snake_case : Tuple = num_labels
__snake_case : Optional[Any] = scope
__snake_case : Optional[Any] = num_stages
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Any = None
if self.use_labels:
__snake_case : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : str = self.get_config()
return config, pixel_values, labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=a_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=a_ , loss_ignore_index=2_55 , num_labels=self.num_labels , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = UperNetForSemanticSegmentation(config=a_ )
model.to(a_ )
model.eval()
__snake_case : List[Any] = model(a_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = config_and_inputs
__snake_case : Dict = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCamelCase__ ={'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = UperNetModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = model_class(a_ )
__snake_case : Tuple = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : Tuple = [*signature.parameters.keys()]
__snake_case : int = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*a_ )
@unittest.skip(reason='''UperNet does not use inputs_embeds''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip(reason='''UperNet does not support input and output embeddings''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip(reason='''UperNet does not have a base model''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
def check_hidden_states_output(a_ , a_ , a_ ):
__snake_case : Optional[int] = model_class(a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
__snake_case : List[str] = model(**self._prepare_for_class(a_ , a_ ) )
__snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case : Any = self.model_tester.num_stages
self.assertEqual(len(a_ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Optional[Any] = True
check_hidden_states_output(a_ , a_ , a_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case : Optional[Any] = True
check_hidden_states_output(a_ , a_ , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : List[str] = _config_zero_init(a_ )
__snake_case : int = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
__snake_case : Tuple = model_class(config=a_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason='''UperNet does not have tied weights''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : int = UperNetForSemanticSegmentation.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def lowercase ( ) ->Any:
"""simple docstring"""
__snake_case : Dict = hf_hub_download(
repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' )
__snake_case : Union[str, Any] = Image.open(_snake_case ).convert('''RGB''' )
return image
@require_torch
@require_vision
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' )
__snake_case : int = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(a_ )
__snake_case : str = prepare_img()
__snake_case : Union[str, Any] = processor(images=a_ , return_tensors='''pt''' ).to(a_ )
with torch.no_grad():
__snake_case : Any = model(**a_ )
__snake_case : int = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , a_ )
__snake_case : List[str] = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' )
__snake_case : Any = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(a_ )
__snake_case : Dict = prepare_img()
__snake_case : Optional[Any] = processor(images=a_ , return_tensors='''pt''' ).to(a_ )
with torch.no_grad():
__snake_case : Optional[int] = model(**a_ )
__snake_case : List[Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , a_ )
__snake_case : Dict = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , a_ , atol=1E-4 ) )
| 24 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ):
'''simple docstring'''
__snake_case : Any = parent
__snake_case : int = batch_size
__snake_case : Dict = seq_length
__snake_case : List[str] = is_training
__snake_case : List[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Any = scope
__snake_case : Any = range_bbox
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : List[str] = bbox[i, j, 3]
__snake_case : Any = bbox[i, j, 1]
__snake_case : Tuple = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : List[str] = bbox[i, j, 2]
__snake_case : Union[str, Any] = bbox[i, j, 0]
__snake_case : Dict = t
__snake_case : Optional[int] = None
if self.use_input_mask:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__snake_case : Dict = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[Any] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ )
__snake_case : List[str] = model(a_ , bbox=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = self.num_labels
__snake_case : List[str] = LiltForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Dict = config_and_inputs
__snake_case : Any = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Dict = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = LiltModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ )
__snake_case : Dict = torch.tensor([[1, 2]] , device=a_ )
__snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ )
__snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] )
__snake_case : str = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , )
self.assertTrue(outputs.last_hidden_state.shape , a_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
| 24 | 1 |
"""simple docstring"""
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = n
__snake_case : Dict = [None] * self.n
__snake_case : List[str] = 0 # index of the first element
__snake_case : Optional[int] = 0
__snake_case : Tuple = 0
def __len__(self ):
'''simple docstring'''
return self.size
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.size == 0
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return False if self.is_empty() else self.array[self.front]
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if self.size >= self.n:
raise Exception('''QUEUE IS FULL''' )
__snake_case : Tuple = data
__snake_case : Any = (self.rear + 1) % self.n
self.size += 1
return self
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if self.size == 0:
raise Exception('''UNDERFLOW''' )
__snake_case : int = self.array[self.front]
__snake_case : Union[str, Any] = None
__snake_case : Tuple = (self.front + 1) % self.n
self.size -= 1
return temp
| 24 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ):
'''simple docstring'''
__snake_case : List[Any] = parent
__snake_case : List[Any] = batch_size
__snake_case : str = seq_length
__snake_case : Any = is_training
__snake_case : Any = use_input_mask
__snake_case : str = use_token_type_ids
__snake_case : Dict = use_labels
__snake_case : int = vocab_size
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Dict = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : str = num_labels
__snake_case : Dict = num_choices
__snake_case : Optional[int] = scope
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Dict = None
if self.use_input_mask:
__snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Tuple = None
__snake_case : List[str] = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = DistilBertModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(a_ , a_ )
__snake_case : List[Any] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Optional[Any] = model(
a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = DistilBertForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.num_labels
__snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.num_choices
__snake_case : Any = DistilBertForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[int] = model(
a_ , attention_mask=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs
__snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
lowerCamelCase__ =(
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = DistilBertModelTester(self )
__snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Tuple = DistilBertModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__snake_case : List[str] = True
__snake_case : Tuple = model_class(config=a_ )
__snake_case : Any = self._prepare_for_class(a_ , a_ )
__snake_case : Dict = torch.jit.trace(
a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) )
__snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ )
loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__snake_case : List[Any] = model(a_ , attention_mask=a_ )[0]
__snake_case : Tuple = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , a_ )
__snake_case : Optional[int] = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
| 24 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='lxmert'
lowerCamelCase__ ={}
def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_attention_heads
__snake_case : int = hidden_act
__snake_case : int = intermediate_size
__snake_case : Any = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : List[Any] = num_qa_labels
__snake_case : int = num_object_labels
__snake_case : Optional[Any] = num_attr_labels
__snake_case : Union[str, Any] = l_layers
__snake_case : Optional[int] = x_layers
__snake_case : Optional[int] = r_layers
__snake_case : Tuple = visual_feat_dim
__snake_case : Optional[int] = visual_pos_dim
__snake_case : Dict = visual_loss_normalizer
__snake_case : str = task_matched
__snake_case : Optional[Any] = task_mask_lm
__snake_case : List[str] = task_obj_predict
__snake_case : Optional[Any] = task_qa
__snake_case : Any = visual_obj_loss
__snake_case : int = visual_attr_loss
__snake_case : List[Any] = visual_feat_loss
__snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**a_ )
| 24 |
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]:
"""simple docstring"""
def get_masked_lm_array(_snake_case : str ):
__snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : str = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Any = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_array(_snake_case : str ):
__snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_layer_array(_snake_case : int , _snake_case : str ):
__snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[Any] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ):
__snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case )
__snake_case : int = array.reshape(_snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
print(f"""Loading model based on config from {config_path}...""" )
__snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case )
__snake_case : Dict = BertForMaskedLM(_snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__snake_case : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
__snake_case : BertSelfAttention = layer.attention.self
__snake_case : int = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__snake_case : List[Any] = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__snake_case : Union[str, Any] = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__snake_case : BertSelfOutput = layer.attention.output
__snake_case : Dict = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' )
__snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
__snake_case : BertIntermediate = layer.intermediate
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' )
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' )
# Output
__snake_case : BertOutput = layer.output
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' )
__snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' )
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' )
__snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' )
# Embeddings
__snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' )
__snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' )
__snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' )
__snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__snake_case : Optional[Any] = model.cls.predictions.transform
__snake_case : Dict = get_masked_lm_array('''dense/kernel''' )
__snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' )
__snake_case : str = get_masked_lm_array('''layer_norm/gamma''' )
__snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' )
__snake_case : Tuple = get_masked_lm_array('''embedding_table''' )
# Pooling
__snake_case : Optional[Any] = BertPooler(config=_snake_case )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(_snake_case )
# Integration test - should load without any errors ;)
__snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 24 | 1 |
"""simple docstring"""
import math
SCREAMING_SNAKE_CASE : List[str] = 10
SCREAMING_SNAKE_CASE : Optional[int] = 7
SCREAMING_SNAKE_CASE : int = BALLS_PER_COLOUR * NUM_COLOURS
def lowercase ( _snake_case : int = 20 ) ->str:
"""simple docstring"""
__snake_case : Any = math.comb(_snake_case , _snake_case )
__snake_case : Dict = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _snake_case )
__snake_case : List[Any] = NUM_COLOURS * (1 - missing_colour / total)
return f"""{result:.9f}"""
if __name__ == "__main__":
print(solution(20))
| 24 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ):
'''simple docstring'''
super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ )
__snake_case : Union[str, Any] = Sql(
cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = None
__snake_case : Dict = None
__snake_case : Dict = None
__snake_case : List[str] = None
self.builder.download_and_prepare(
download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , )
# Build dataset for splits
__snake_case : Any = self.builder.as_dataset(
split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory )
return dataset
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
__snake_case : List[str] = dataset
__snake_case : Tuple = name
__snake_case : Optional[int] = con
__snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__snake_case : Dict = num_proc
__snake_case : Dict = to_sql_kwargs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ )
__snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ )
__snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ )
__snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Optional[Any] = args
__snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__snake_case : Dict = query_table(
table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__snake_case : Tuple = batch.to_pandas()
__snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ )
return num_rows or len(a_ )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : int = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 24 | 1 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ):
'''simple docstring'''
super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ )
__snake_case : Union[str, Any] = Sql(
cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = None
__snake_case : Dict = None
__snake_case : Dict = None
__snake_case : List[str] = None
self.builder.download_and_prepare(
download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , )
# Build dataset for splits
__snake_case : Any = self.builder.as_dataset(
split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory )
return dataset
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
__snake_case : List[str] = dataset
__snake_case : Tuple = name
__snake_case : Optional[int] = con
__snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__snake_case : Dict = num_proc
__snake_case : Dict = to_sql_kwargs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ )
__snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ )
__snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ )
__snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Optional[Any] = args
__snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__snake_case : Dict = query_table(
table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__snake_case : Tuple = batch.to_pandas()
__snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ )
return num_rows or len(a_ )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : int = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='lxmert'
lowerCamelCase__ ={}
def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_attention_heads
__snake_case : int = hidden_act
__snake_case : int = intermediate_size
__snake_case : Any = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : List[Any] = num_qa_labels
__snake_case : int = num_object_labels
__snake_case : Optional[Any] = num_attr_labels
__snake_case : Union[str, Any] = l_layers
__snake_case : Optional[int] = x_layers
__snake_case : Optional[int] = r_layers
__snake_case : Tuple = visual_feat_dim
__snake_case : Optional[int] = visual_pos_dim
__snake_case : Dict = visual_loss_normalizer
__snake_case : str = task_matched
__snake_case : Optional[Any] = task_mask_lm
__snake_case : List[str] = task_obj_predict
__snake_case : Optional[Any] = task_qa
__snake_case : Any = visual_obj_loss
__snake_case : int = visual_attr_loss
__snake_case : List[Any] = visual_feat_loss
__snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**a_ )
| 24 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = len(_snake_case )
__snake_case : str = sum(_snake_case )
__snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__snake_case : Optional[Any] = True
for i in range(1 , s + 1 ):
__snake_case : int = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__snake_case : Union[str, Any] = dp[i][j - 1]
if arr[i - 1] <= j:
__snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__snake_case : List[str] = s - 2 * j
break
return diff
| 24 | 1 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ):
'''simple docstring'''
__snake_case : Any = parent
__snake_case : int = batch_size
__snake_case : Dict = seq_length
__snake_case : List[str] = is_training
__snake_case : List[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Any = scope
__snake_case : Any = range_bbox
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : List[str] = bbox[i, j, 3]
__snake_case : Any = bbox[i, j, 1]
__snake_case : Tuple = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : List[str] = bbox[i, j, 2]
__snake_case : Union[str, Any] = bbox[i, j, 0]
__snake_case : Dict = t
__snake_case : Optional[int] = None
if self.use_input_mask:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__snake_case : Dict = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[Any] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ )
__snake_case : List[str] = model(a_ , bbox=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = self.num_labels
__snake_case : List[str] = LiltForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Dict = config_and_inputs
__snake_case : Any = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Dict = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = LiltModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ )
__snake_case : Dict = torch.tensor([[1, 2]] , device=a_ )
__snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ )
__snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] )
__snake_case : str = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , )
self.assertTrue(outputs.last_hidden_state.shape , a_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
| 24 |
"""simple docstring"""
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
__snake_case : List[str] = mid
else:
__snake_case : str = mid
__snake_case : str = start + (end - start) / 2.0
return mid
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
from __future__ import annotations
import math
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[int | float], int | float] , _snake_case : int | float , _snake_case : int | float , _snake_case : int = 100 , ) ->float:
"""simple docstring"""
__snake_case : Optional[int] = x_start
__snake_case : int = fnc(_snake_case )
__snake_case : List[str] = 0.0
for _ in range(_snake_case ):
# Approximates curve as a sequence of linear lines and sums their length
__snake_case : int = (x_end - x_start) / steps + xa
__snake_case : Dict = fnc(_snake_case )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
__snake_case : Tuple = xa
__snake_case : Dict = fxa
return length
if __name__ == "__main__":
def lowercase ( _snake_case : List[Any] ) ->Optional[int]:
"""simple docstring"""
return math.sin(10 * x )
print("""f(x) = sin(10 * x)""")
print("""The length of the curve from x = -10 to x = 10 is:""")
SCREAMING_SNAKE_CASE : Union[str, Any] = 10
while i <= 10_0000:
print(F'With {i} steps: {line_length(f, -10, 10, i)}')
i *= 10
| 24 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 | 1 |
"""simple docstring"""
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[Any] = TypeVar("""DatasetType""", Dataset, IterableDataset)
def lowercase ( _snake_case : List[DatasetType] , _snake_case : Optional[List[float]] = None , _snake_case : Optional[int] = None , _snake_case : Optional[DatasetInfo] = None , _snake_case : Optional[NamedSplit] = None , _snake_case : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) ->DatasetType:
"""simple docstring"""
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError('''Unable to interleave an empty list of datasets.''' )
for i, dataset in enumerate(_snake_case ):
if not isinstance(_snake_case , (Dataset, IterableDataset) ):
if isinstance(_snake_case , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'''is an empty dataset dictionary.''' )
raise ValueError(
f"""Dataset at position {i} has at least one split: {list(_snake_case )}\n"""
f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_snake_case ) )}']""" )
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_snake_case ).__name__}.""" )
if i == 0:
__snake_case , __snake_case : Union[str, Any] = (
(Dataset, IterableDataset) if isinstance(_snake_case , _snake_case ) else (IterableDataset, Dataset)
)
elif not isinstance(_snake_case , _snake_case ):
raise ValueError(
f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
_snake_case , _snake_case , _snake_case , info=_snake_case , split=_snake_case , stopping_strategy=_snake_case )
else:
return _interleave_iterable_datasets(
_snake_case , _snake_case , _snake_case , info=_snake_case , split=_snake_case , stopping_strategy=_snake_case )
def lowercase ( _snake_case : List[DatasetType] , _snake_case : Optional[DatasetInfo] = None , _snake_case : Optional[NamedSplit] = None , _snake_case : int = 0 , ) ->DatasetType:
"""simple docstring"""
if not dsets:
raise ValueError('''Unable to concatenate an empty list of datasets.''' )
for i, dataset in enumerate(_snake_case ):
if not isinstance(_snake_case , (Dataset, IterableDataset) ):
if isinstance(_snake_case , (DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
'''is an empty dataset dictionary.''' )
raise ValueError(
f"""Dataset at position {i} has at least one split: {list(_snake_case )}\n"""
f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_snake_case ) )}']""" )
raise ValueError(
f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_snake_case ).__name__}.""" )
if i == 0:
__snake_case , __snake_case : Dict = (
(Dataset, IterableDataset) if isinstance(_snake_case , _snake_case ) else (IterableDataset, Dataset)
)
elif not isinstance(_snake_case , _snake_case ):
raise ValueError(
f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(_snake_case , info=_snake_case , split=_snake_case , axis=_snake_case )
else:
return _concatenate_iterable_datasets(_snake_case , info=_snake_case , split=_snake_case , axis=_snake_case )
| 24 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' )
__snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 24 | 1 |
"""simple docstring"""
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=None , a_=None , a_=None , a_="resnet50" , a_=3 , a_=32 , a_=3 , a_=True , a_=True , ):
'''simple docstring'''
__snake_case : Optional[int] = parent
__snake_case : int = out_indices if out_indices is not None else [4]
__snake_case : int = stage_names
__snake_case : Union[str, Any] = out_features
__snake_case : List[str] = backbone
__snake_case : Union[str, Any] = batch_size
__snake_case : Optional[Any] = image_size
__snake_case : int = num_channels
__snake_case : Optional[int] = use_pretrained_backbone
__snake_case : Optional[Any] = is_training
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : Optional[Any] = self.get_config()
return config, pixel_values
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : int = TimmBackbone(config=a_ )
model.to(a_ )
model.eval()
with torch.no_grad():
__snake_case : Optional[Any] = model(a_ )
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
__snake_case , __snake_case : Union[str, Any] = config_and_inputs
__snake_case : Union[str, Any] = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(TimmBackbone,) if is_torch_available() else ()
lowerCamelCase__ ={'feature-extraction': TimmBackbone} if is_torch_available() else {}
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = TimmBackboneModelTester(self )
__snake_case : Optional[int] = ConfigTester(self , config_class=a_ , has_text_modality=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''resnet18'''
__snake_case : List[Any] = '''microsoft/resnet-18'''
__snake_case : List[str] = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ )
__snake_case : Optional[int] = AutoBackbone.from_pretrained(a_ )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,) )
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] )
__snake_case : List[Any] = AutoBackbone.from_pretrained(a_ , use_timm_backbone=a_ , out_indices=[1, 2, 3] )
__snake_case : Tuple = AutoBackbone.from_pretrained(a_ , out_indices=[1, 2, 3] )
self.assertEqual(timm_model.out_indices , transformers_model.out_indices )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
@unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone initialization is managed on the timm side''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''model weights aren\'t tied in TimmBackbone.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''model weights aren\'t tied in TimmBackbone.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''Safetensors is not supported by timm.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Dict = model_class(a_ )
__snake_case : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : int = [*signature.parameters.keys()]
__snake_case : Any = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : List[Any] = True
__snake_case : Optional[int] = self.has_attentions
# no need to test all models as different heads yield the same functionality
__snake_case : Tuple = self.all_model_classes[0]
__snake_case : Dict = model_class(a_ )
model.to(a_ )
__snake_case : Union[str, Any] = self._prepare_for_class(a_ , a_ )
__snake_case : int = model(**a_ )
__snake_case : Optional[int] = outputs[0][-1]
# Encoder-/Decoder-only models
__snake_case : int = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
__snake_case : Tuple = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=a_ )
self.assertIsNotNone(hidden_states.grad )
if self.has_attentions:
self.assertIsNotNone(attentions.grad )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case : Union[str, Any] = model_class(a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(**a_ )
self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) )
self.assertEqual(len(model.channels ) , len(config.out_indices ) )
# Check output of last stage is taken if out_features=None, out_indices=None
__snake_case : Dict = copy.deepcopy(a_ )
__snake_case : List[str] = None
__snake_case : List[str] = model_class(a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(**a_ )
self.assertEqual(len(result.feature_maps ) , 1 )
self.assertEqual(len(model.channels ) , 1 )
# Check backbone can be initialized with fresh weights
__snake_case : str = copy.deepcopy(a_ )
__snake_case : List[Any] = False
__snake_case : Optional[int] = model_class(a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(**a_ )
| 24 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : List[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Tuple = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =MBartTokenizer
lowerCamelCase__ =[]
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Tuple = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX'''
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__snake_case : Optional[int] = src_lang
__snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ )
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ )
__snake_case : int = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ):
'''simple docstring'''
__snake_case : int = src_lang
__snake_case : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
__snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : Optional[Any] = []
__snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24 | 1 |
"""simple docstring"""
SCREAMING_SNAKE_CASE : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1000,
"megajoule": 100_0000,
"gigajoule": 10_0000_0000,
"wattsecond": 1.0,
"watthour": 3600,
"kilowatthour": 360_0000,
"newtonmeter": 1.0,
"calorie_nutr": 4186.8,
"kilocalorie_nutr": 418_6800.00,
"electronvolt": 1.602176634E-19,
"britishthermalunit_it": 1055.0_5585,
"footpound": 1.355_818,
}
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : float ) ->float:
"""simple docstring"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
__snake_case : Optional[Any] = (
f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"""
f"""Valid values are: {', '.join(_snake_case )}"""
)
raise ValueError(_snake_case )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 | 1 |
"""simple docstring"""
from collections.abc import Sequence
from queue import Queue
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_=None , a_=None ):
'''simple docstring'''
__snake_case : Optional[Any] = start
__snake_case : Optional[int] = end
__snake_case : Optional[Any] = val
__snake_case : List[Any] = (start + end) // 2
__snake_case : Union[str, Any] = left
__snake_case : str = right
def __repr__(self ):
'''simple docstring'''
return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})"""
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = collection
__snake_case : Optional[Any] = function
if self.collection:
__snake_case : Optional[Any] = self._build_tree(0 , len(a_ ) - 1 )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
self._update_tree(self.root , a_ , a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
return self._query_range(self.root , a_ , a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
if start == end:
return SegmentTreeNode(a_ , a_ , self.collection[start] )
__snake_case : str = (start + end) // 2
__snake_case : Dict = self._build_tree(a_ , a_ )
__snake_case : Optional[int] = self._build_tree(mid + 1 , a_ )
return SegmentTreeNode(a_ , a_ , self.fn(left.val , right.val ) , a_ , a_ )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
if node.start == i and node.end == i:
__snake_case : str = val
return
if i <= node.mid:
self._update_tree(node.left , a_ , a_ )
else:
self._update_tree(node.right , a_ , a_ )
__snake_case : Optional[Any] = self.fn(node.left.val , node.right.val )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
if node.start == i and node.end == j:
return node.val
if i <= node.mid:
if j <= node.mid:
# range in left child tree
return self._query_range(node.left , a_ , a_ )
else:
# range in left child tree and right child tree
return self.fn(
self._query_range(node.left , a_ , node.mid ) , self._query_range(node.right , node.mid + 1 , a_ ) , )
else:
# range in right child tree
return self._query_range(node.right , a_ , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if self.root is not None:
__snake_case : str = Queue()
queue.put(self.root )
while not queue.empty():
__snake_case : List[Any] = queue.get()
yield node
if node.left is not None:
queue.put(node.left )
if node.right is not None:
queue.put(node.right )
if __name__ == "__main__":
import operator
for fn in [operator.add, max, min]:
print("""*""" * 50)
SCREAMING_SNAKE_CASE : Union[str, Any] = SegmentTree([2, 1, 5, 3, 4], fn)
for node in arr.traverse():
print(node)
print()
arr.update(1, 5)
for node in arr.traverse():
print(node)
print()
print(arr.query_range(3, 4)) # 7
print(arr.query_range(2, 2)) # 5
print(arr.query_range(1, 3)) # 13
print()
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"""tanreinama/GPTSAN-2.8B-spout_is_uniform""": (
"""https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"""
),
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='gptsan-japanese'
lowerCamelCase__ =[
'past_key_values',
]
lowerCamelCase__ ={
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ):
'''simple docstring'''
__snake_case : Any = vocab_size
__snake_case : str = max_position_embeddings
__snake_case : Any = d_model
__snake_case : List[str] = d_ff
__snake_case : Dict = d_ext
__snake_case : Optional[Any] = d_spout
__snake_case : int = num_switch_layers
__snake_case : List[Any] = num_ext_layers
__snake_case : Any = num_switch_layers + num_ext_layers
__snake_case : Optional[int] = num_heads
__snake_case : Tuple = num_experts
__snake_case : List[Any] = expert_capacity
__snake_case : Dict = dropout_rate
__snake_case : Optional[Any] = layer_norm_epsilon
__snake_case : Dict = router_bias
__snake_case : str = router_jitter_noise
__snake_case : List[str] = router_dtype
__snake_case : Union[str, Any] = router_ignore_padding_tokens
__snake_case : List[str] = output_hidden_states
__snake_case : Optional[Any] = output_attentions
__snake_case : Any = initializer_factor
__snake_case : int = output_router_logits
__snake_case : Union[str, Any] = use_cache
super().__init__(
separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
| 24 | 1 |
"""simple docstring"""
import unittest
from dataclasses import dataclass
import pytest
from accelerate.commands.config.config_args import SageMakerConfig
from accelerate.utils import ComputeEnvironment
from accelerate.utils.launch import _convert_nargs_to_dict
@dataclass
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =ComputeEnvironment.AMAZON_SAGEMAKER
lowerCamelCase__ =True
lowerCamelCase__ ='ml.p3.2xlarge'
lowerCamelCase__ ='accelerate_sagemaker_execution_role'
lowerCamelCase__ ='hf-sm'
lowerCamelCase__ ='us-east-1'
lowerCamelCase__ =1
lowerCamelCase__ ='accelerate-sagemaker-1'
lowerCamelCase__ ='1.6'
lowerCamelCase__ ='4.4'
lowerCamelCase__ ='train.py'
lowerCamelCase__ =[
'--model_name_or_path',
'bert',
'--do_train',
'False',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
lowerCamelCase__ =[
'--model_name_or_path',
'bert',
'--do_train',
'--do_test',
'False',
'--do_predict',
'--epochs',
'3',
'--learning_rate',
'5e-5',
'--max_steps',
'50.5',
]
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args )
assert isinstance(converted_args['''model_name_or_path'''] , a_ )
assert isinstance(converted_args['''do_train'''] , a_ )
assert isinstance(converted_args['''epochs'''] , a_ )
assert isinstance(converted_args['''learning_rate'''] , a_ )
assert isinstance(converted_args['''max_steps'''] , a_ )
with pytest.raises(a_ ):
_convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
| 24 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
SCREAMING_SNAKE_CASE : int = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
__snake_case : int = {}
with open(_snake_case , '''r''' ) as file:
for line_number, line in enumerate(_snake_case ):
__snake_case : Union[str, Any] = line.strip()
if line:
__snake_case : str = line.split()
__snake_case : Union[str, Any] = line_number
__snake_case : Dict = words[0]
__snake_case : str = value
return result
def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]:
"""simple docstring"""
for attribute in key.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : str = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape
elif weight_type is not None and weight_type == "param":
__snake_case : Optional[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : List[str] = shape_pointer.shape
# let's reduce dimension
__snake_case : int = value[0]
else:
__snake_case : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__snake_case : List[Any] = value
elif weight_type == "weight_g":
__snake_case : Tuple = value
elif weight_type == "weight_v":
__snake_case : str = value
elif weight_type == "bias":
__snake_case : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__snake_case : List[Any] = getattr(_snake_case , _snake_case )
__snake_case : int = value
else:
__snake_case : List[Any] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int:
"""simple docstring"""
__snake_case : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : List[str] = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : str = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__snake_case : Tuple = '''.'''.join([key, hf_param_name] )
else:
__snake_case : Optional[int] = key
__snake_case : List[Any] = value if '''lm_head''' in full_key else value[0]
SCREAMING_SNAKE_CASE : Tuple = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict:
"""simple docstring"""
__snake_case : Tuple = False
for key, mapped_key in MAPPING.items():
__snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__snake_case : int = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2]
__snake_case : Tuple = mapped_key.replace('''*''' , _snake_case )
if "weight_g" in name:
__snake_case : Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
__snake_case : List[str] = '''weight_v'''
elif "bias" in name:
__snake_case : Any = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case : List[Any] = '''weight'''
else:
__snake_case : Union[str, Any] = None
if hf_dict is not None:
rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
else:
set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
return is_used
return is_used
def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any:
"""simple docstring"""
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = fairseq_model.state_dict()
__snake_case : str = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : str = False
if "conv_layers" in name:
load_conv_layer(
_snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , )
__snake_case : Union[str, Any] = True
else:
__snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case )
if not is_used:
unused_weights.append(_snake_case )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
__snake_case : str = name.split('''.''' )
__snake_case : Optional[int] = int(items[0] )
__snake_case : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__snake_case : int = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__snake_case : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_snake_case )
@torch.no_grad()
def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict:
"""simple docstring"""
if config_path is not None:
__snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case )
else:
__snake_case : Tuple = WavaVecaConfig()
if is_seq_class:
__snake_case : Optional[int] = read_txt_into_dict(_snake_case )
__snake_case : List[Any] = idalabel
__snake_case : int = WavaVecaForSequenceClassification(_snake_case )
__snake_case : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
feature_extractor.save_pretrained(_snake_case )
elif is_finetuned:
if dict_path:
__snake_case : int = Dictionary.load(_snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Tuple = target_dict.pad_index
__snake_case : int = target_dict.bos_index
__snake_case : Tuple = target_dict.eos_index
__snake_case : Optional[Any] = len(target_dict.symbols )
__snake_case : Any = os.path.join(_snake_case , '''vocab.json''' )
if not os.path.isdir(_snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) )
return
os.makedirs(_snake_case , exist_ok=_snake_case )
__snake_case : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__snake_case : Dict = 0
__snake_case : List[Any] = 1
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_snake_case , _snake_case )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , )
__snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False
__snake_case : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
__snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case )
processor.save_pretrained(_snake_case )
__snake_case : Optional[int] = WavaVecaForCTC(_snake_case )
else:
__snake_case : Tuple = WavaVecaForPreTraining(_snake_case )
if is_finetuned or is_seq_class:
__snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' )
__snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case )
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case )
__snake_case : int = model[0].eval()
recursively_load_weights(_snake_case , _snake_case , not is_finetuned )
hf_wavavec.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 24 | 1 |
"""simple docstring"""
def lowercase ( _snake_case : Any ) ->Optional[Any]:
"""simple docstring"""
__snake_case : Any = [0] * len(_snake_case )
__snake_case : Dict = []
__snake_case : Union[str, Any] = []
__snake_case : Optional[int] = 0
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_snake_case ) ):
if indegree[i] == 0:
queue.append(_snake_case )
while queue:
__snake_case : Dict = queue.pop(0 )
cnt += 1
topo.append(_snake_case )
for x in graph[vertex]:
indegree[x] -= 1
if indegree[x] == 0:
queue.append(_snake_case )
if cnt != len(_snake_case ):
print('''Cycle exists''' )
else:
print(_snake_case )
# Adjacency List of Graph
SCREAMING_SNAKE_CASE : Optional[Any] = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
topological_sort(graph)
| 24 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=__snake_case ):
'''simple docstring'''
lowerCamelCase__ =['transformers', 'torch', 'note_seq']
def __init__(self , *a_ , **a_ ):
'''simple docstring'''
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
| 24 | 1 |
"""simple docstring"""
import copy
import unittest
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
MODEL_FOR_QUESTION_ANSWERING_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
LayoutLMvaForQuestionAnswering,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaModel,
)
from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=2 , a_=3 , a_=4 , a_=2 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=36 , a_=3 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=6 , a_=6 , a_=3 , a_=4 , a_=None , a_=10_00 , ):
'''simple docstring'''
__snake_case : int = parent
__snake_case : Union[str, Any] = batch_size
__snake_case : Optional[Any] = num_channels
__snake_case : str = image_size
__snake_case : Tuple = patch_size
__snake_case : str = text_seq_length
__snake_case : List[Any] = is_training
__snake_case : List[str] = use_input_mask
__snake_case : List[str] = use_token_type_ids
__snake_case : List[str] = use_labels
__snake_case : Any = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : int = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Union[str, Any] = intermediate_size
__snake_case : str = hidden_act
__snake_case : List[Any] = hidden_dropout_prob
__snake_case : Tuple = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Optional[int] = type_sequence_label_size
__snake_case : Optional[int] = initializer_range
__snake_case : List[Any] = coordinate_size
__snake_case : List[str] = shape_size
__snake_case : Optional[int] = num_labels
__snake_case : Dict = num_choices
__snake_case : Any = scope
__snake_case : List[Any] = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__snake_case : int = text_seq_length
__snake_case : Optional[Any] = (image_size // patch_size) ** 2 + 1
__snake_case : List[str] = self.text_seq_length + self.image_seq_length
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : Dict = bbox[i, j, 3]
__snake_case : List[str] = bbox[i, j, 1]
__snake_case : Optional[Any] = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : Any = bbox[i, j, 2]
__snake_case : Optional[Any] = bbox[i, j, 0]
__snake_case : List[str] = t
__snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case : int = None
if self.use_input_mask:
__snake_case : Optional[Any] = random_attention_mask([self.batch_size, self.text_seq_length] )
__snake_case : List[Any] = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__snake_case : Union[str, Any] = None
__snake_case : List[Any] = None
if self.use_labels:
__snake_case : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Tuple = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__snake_case : List[str] = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = LayoutLMvaModel(config=a_ )
model.to(a_ )
model.eval()
# text + image
__snake_case : Dict = model(a_ , pixel_values=a_ )
__snake_case : Union[str, Any] = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : Union[str, Any] = model(a_ , bbox=a_ , pixel_values=a_ , token_type_ids=a_ )
__snake_case : str = model(a_ , bbox=a_ , pixel_values=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__snake_case : List[str] = model(a_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__snake_case : Any = model(pixel_values=a_ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : int = self.num_labels
__snake_case : Optional[int] = LayoutLMvaForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : List[str] = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = self.num_labels
__snake_case : List[Any] = LayoutLMvaForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Any = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = LayoutLMvaForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(
a_ , bbox=a_ , pixel_values=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : List[Any] = config_and_inputs
__snake_case : List[Any] = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''pixel_values''': pixel_values,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =False
lowerCamelCase__ =(
(
LayoutLMvaModel,
LayoutLMvaForSequenceClassification,
LayoutLMvaForTokenClassification,
LayoutLMvaForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel}
if is_torch_available()
else {}
)
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = LayoutLMvaModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_=False ):
'''simple docstring'''
__snake_case : int = copy.deepcopy(a_ )
if model_class in get_values(a_ ):
__snake_case : Any = {
k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous()
if isinstance(a_ , torch.Tensor ) and v.ndim > 1
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(a_ ):
__snake_case : Tuple = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=a_ )
elif model_class in get_values(a_ ):
__snake_case : Dict = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a_ )
__snake_case : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a_ )
elif model_class in [
*get_values(a_ ),
]:
__snake_case : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=a_ )
elif model_class in [
*get_values(a_ ),
]:
__snake_case : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=a_ , )
return inputs_dict
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Optional[int] = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Optional[int] = LayoutLMvaModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
def lowercase ( ) ->List[Any]:
"""simple docstring"""
__snake_case : Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=a_ ) if is_vision_available() else None
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(a_ )
__snake_case : List[Any] = self.default_image_processor
__snake_case : List[Any] = prepare_img()
__snake_case : int = image_processor(images=a_ , return_tensors='''pt''' ).pixel_values.to(a_ )
__snake_case : Tuple = torch.tensor([[1, 2]] )
__snake_case : Union[str, Any] = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 )
# forward pass
__snake_case : Tuple = model(
input_ids=input_ids.to(a_ ) , bbox=bbox.to(a_ ) , pixel_values=pixel_values.to(a_ ) , )
# verify the logits
__snake_case : Union[str, Any] = torch.Size((1, 1_99, 7_68) )
self.assertEqual(outputs.last_hidden_state.shape , a_ )
__snake_case : List[str] = torch.tensor(
[[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(a_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , a_ , atol=1E-4 ) )
| 24 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ):
'''simple docstring'''
__snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20}
__snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : Tuple = num_channels
__snake_case : List[str] = image_size
__snake_case : Optional[Any] = min_resolution
__snake_case : List[Any] = max_resolution
__snake_case : List[Any] = do_resize
__snake_case : Dict = size
__snake_case : Dict = do_center_crop
__snake_case : Dict = crop_size
__snake_case : str = do_flip_channel_order
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(a_ , '''center_crop''' ) )
self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 24 | 1 |
"""simple docstring"""
import requests
def lowercase ( _snake_case : str , _snake_case : str ) ->None:
"""simple docstring"""
__snake_case : Dict = {'''Content-Type''': '''application/json'''}
__snake_case : Optional[Any] = requests.post(_snake_case , json={'''text''': message_body} , headers=_snake_case )
if response.status_code != 200:
__snake_case : Union[str, Any] = (
'''Request to slack returned an error '''
f"""{response.status_code}, the response is:\n{response.text}"""
)
raise ValueError(_snake_case )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 24 |
"""simple docstring"""
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : int = torch.nn.Linear(2 , 4 )
__snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
__snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
__snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def lowercase ( _snake_case : str ) ->Optional[Any]:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def lowercase ( _snake_case : Union[str, Any] ) ->Tuple:
"""simple docstring"""
__snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(_snake_case )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(a_ ):
__snake_case : Any = Accelerator(cpu=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case : Optional[int] = GradientState()
assert state.num_steps == 1
__snake_case : str = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__snake_case : List[Any] = False
assert state.sync_gradients is False
GradientState._reset_state()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*a_ , **a_ ):
pass
with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ):
__snake_case : List[Any] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : Any = get_signature(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# make sure loaded weights match
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : List[Any] = get_signature(a_ )
# saving hook
def save_config(a_ , a_ , a_ ):
__snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__}
with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f:
json.dump(a_ , a_ )
# loading hook
def load_config(a_ , a_ ):
with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f:
__snake_case : Any = json.load(a_ )
__snake_case : List[str] = config['''class_name''']
__snake_case : str = accelerator.register_save_state_pre_hook(a_ )
__snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Any = '''random'''
# make sure loaded weights match with hooks
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks removed
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Union[str, Any] = '''random'''
# make sure loaded weights match with hooks removed
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components()
__snake_case : Union[str, Any] = None
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertTrue(dummy_obj is None )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
__snake_case : Optional[int] = [1, 2, 3]
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , )
__snake_case : Optional[Any] = Accelerator()
# This should work
__snake_case : Any = accelerator.prepare(a_ )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Any = Accelerator()
with init_empty_weights():
__snake_case : List[str] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : Union[str, Any] = infer_auto_device_map(a_ )
__snake_case : str = '''cpu'''
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ )
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Dict = accelerator.prepare(a_ )
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU}
with init_empty_weights():
__snake_case : Any = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : List[Any] = infer_auto_device_map(a_ )
__snake_case : Dict = 1
__snake_case : str = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Any = Accelerator()
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Tuple = accelerator.prepare(a_ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
with init_empty_weights():
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
__snake_case : Tuple = infer_auto_device_map(a_ )
__snake_case : Tuple = 1
__snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Tuple = Accelerator()
# This should work
__snake_case : Dict = accelerator.prepare(a_ )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = torch.nn.Linear(10 , 10 )
__snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 )
__snake_case : Optional[Any] = Accelerator(cpu=a_ )
__snake_case : str = accelerator.prepare(a_ )
| 24 | 1 |
"""simple docstring"""
import math
def lowercase ( _snake_case : int ) ->bool:
"""simple docstring"""
assert isinstance(_snake_case , _snake_case ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__snake_case : Optional[Any] = range(3 , int(math.sqrt(_snake_case ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def lowercase ( _snake_case : Dict , _snake_case : int=1 , **_snake_case : Optional[int] ) ->Optional[Any]:
"""simple docstring"""
__snake_case : Tuple = factor * value
__snake_case : int = value
while not is_prime(_snake_case ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **_snake_case )
return value
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int ) ->str:
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
__snake_case : Any = len(bin(_snake_case )[3:] )
__snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:]
__snake_case : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(_snake_case ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Optional[Any] = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = ["""XGLMTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Dict = ["""XGLMTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = [
"""XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XGLMForCausalLM""",
"""XGLMModel""",
"""XGLMPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : int = [
"""FlaxXGLMForCausalLM""",
"""FlaxXGLMModel""",
"""FlaxXGLMPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : int = [
"""TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXGLMForCausalLM""",
"""TFXGLMModel""",
"""TFXGLMPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 24 |
"""simple docstring"""
def lowercase ( ) ->int:
"""simple docstring"""
return [
a * b * (1_000 - a - b)
for a in range(1 , 999 )
for b in range(_snake_case , 999 )
if (a * a + b * b == (1_000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 1 |
"""simple docstring"""
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Any = {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/config.json""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/config.json""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/config.json""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/config.json""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='t5'
lowerCamelCase__ =['past_key_values']
lowerCamelCase__ ={'hidden_size': 'd_model', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__(self , a_=3_21_28 , a_=5_12 , a_=64 , a_=20_48 , a_=6 , a_=None , a_=8 , a_=32 , a_=1_28 , a_=0.1 , a_=1E-6 , a_=1.0 , a_="relu" , a_=True , a_=True , a_=0 , a_=1 , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : Dict = d_model
__snake_case : str = d_kv
__snake_case : Optional[int] = d_ff
__snake_case : Optional[Any] = num_layers
__snake_case : Optional[int] = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
__snake_case : List[str] = num_heads
__snake_case : Optional[Any] = relative_attention_num_buckets
__snake_case : str = relative_attention_max_distance
__snake_case : Optional[Any] = dropout_rate
__snake_case : List[str] = layer_norm_epsilon
__snake_case : Optional[Any] = initializer_factor
__snake_case : Tuple = feed_forward_proj
__snake_case : Tuple = use_cache
__snake_case : str = self.feed_forward_proj.split('''-''' )
__snake_case : Optional[Any] = act_info[-1]
__snake_case : Any = act_info[0] == '''gated'''
if len(a_ ) > 1 and act_info[0] != "gated" or len(a_ ) > 2:
raise ValueError(
f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."""
'''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. '''
'''\'gated-gelu\' or \'relu\'''' )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
__snake_case : List[Any] = '''gelu_new'''
super().__init__(
pad_token_id=a_ , eos_token_id=a_ , is_encoder_decoder=a_ , **a_ , )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = {
'''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''},
'''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''},
}
if self.use_past:
__snake_case : Optional[Any] = '''past_encoder_sequence + sequence'''
__snake_case : List[str] = {0: '''batch'''}
__snake_case : str = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''}
else:
__snake_case : int = {0: '''batch''', 1: '''decoder_sequence'''}
__snake_case : Tuple = {0: '''batch''', 1: '''decoder_sequence'''}
if self.use_past:
self.fill_with_past_key_values_(a_ , direction='''inputs''' )
return common_inputs
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return 13
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int = 100 ) ->int:
"""simple docstring"""
__snake_case : str = n * (n + 1) * (2 * n + 1) / 6
__snake_case : Dict = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float ) ->dict[str, float]:
"""simple docstring"""
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance < 0:
raise ValueError('''Resistance cannot be negative''' )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__)
@dataclass
class _UpperCAmelCase ( datasets.BuilderConfig ):
'''simple docstring'''
lowerCamelCase__ =10000
lowerCamelCase__ =None
lowerCamelCase__ =None
class _UpperCAmelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
lowerCamelCase__ =ParquetConfig
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__snake_case : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a_ , (str, list, tuple) ):
__snake_case : Union[str, Any] = data_files
if isinstance(a_ , a_ ):
__snake_case : Union[str, Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__snake_case : int = []
for split_name, files in data_files.items():
if isinstance(a_ , a_ ):
__snake_case : List[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : int = [dl_manager.iter_files(a_ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(a_ ):
with open(a_ , '''rb''' ) as f:
__snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) )
break
splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) )
return splits
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
__snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ):
with open(a_ , '''rb''' ) as f:
__snake_case : int = pq.ParquetFile(a_ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
__snake_case : Dict = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ )
except ValueError as e:
logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" )
raise
| 24 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =GPTaTokenizer
lowerCamelCase__ =GPTaTokenizerFast
lowerCamelCase__ =True
lowerCamelCase__ ={'add_prefix_space': True}
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__snake_case : Optional[int] = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
'''<|endoftext|>''',
]
__snake_case : int = dict(zip(a_ , range(len(a_ ) ) ) )
__snake_case : Optional[Any] = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
__snake_case : int = {'''unk_token''': '''<unk>'''}
__snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
__snake_case : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(a_ ) )
def SCREAMING_SNAKE_CASE (self , **a_ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizer.from_pretrained(self.tmpdirname , **a_ )
def SCREAMING_SNAKE_CASE (self , **a_ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = '''lower newer'''
__snake_case : Tuple = '''lower newer'''
return input_text, output_text
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
__snake_case : Optional[Any] = '''lower newer'''
__snake_case : int = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
__snake_case : Tuple = tokenizer.tokenize(a_ , add_prefix_space=a_ )
self.assertListEqual(a_ , a_ )
__snake_case : str = tokens + [tokenizer.unk_token]
__snake_case : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
__snake_case : Optional[Any] = self.get_tokenizer()
__snake_case : Optional[int] = self.get_rust_tokenizer(add_prefix_space=a_ )
__snake_case : List[Any] = '''lower newer'''
# Testing tokenization
__snake_case : Any = tokenizer.tokenize(a_ , add_prefix_space=a_ )
__snake_case : Optional[Any] = rust_tokenizer.tokenize(a_ )
self.assertListEqual(a_ , a_ )
# Testing conversion to ids without special tokens
__snake_case : Dict = tokenizer.encode(a_ , add_special_tokens=a_ , add_prefix_space=a_ )
__snake_case : int = rust_tokenizer.encode(a_ , add_special_tokens=a_ )
self.assertListEqual(a_ , a_ )
# Testing conversion to ids with special tokens
__snake_case : Optional[Any] = self.get_rust_tokenizer(add_prefix_space=a_ )
__snake_case : Dict = tokenizer.encode(a_ , add_prefix_space=a_ )
__snake_case : List[Any] = rust_tokenizer.encode(a_ )
self.assertListEqual(a_ , a_ )
# Testing the unknown token
__snake_case : Dict = tokens + [rust_tokenizer.unk_token]
__snake_case : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(a_ ) , a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self , a_=15 ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(a_ , **a_ )
# Simple input
__snake_case : Optional[Any] = '''This is a simple input'''
__snake_case : int = ['''This is a simple input 1''', '''This is a simple input 2''']
__snake_case : List[Any] = ('''This is a simple input''', '''This is a pair''')
__snake_case : List[Any] = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding='''max_length''' )
# Simple input
self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding='''max_length''' )
# Simple input
self.assertRaises(
a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding='''max_length''' , )
# Pair input
self.assertRaises(a_ , tokenizer_r.encode , a_ , max_length=a_ , padding='''max_length''' )
# Pair input
self.assertRaises(a_ , tokenizer_r.encode_plus , a_ , max_length=a_ , padding='''max_length''' )
# Pair input
self.assertRaises(
a_ , tokenizer_r.batch_encode_plus , a_ , max_length=a_ , padding='''max_length''' , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' )
# Simple input
__snake_case : Dict = '''This is a simple input'''
__snake_case : List[Any] = ['''This is a simple input looooooooong''', '''This is a simple input''']
__snake_case : Optional[Any] = ('''This is a simple input''', '''This is a pair''')
__snake_case : List[str] = [
('''This is a simple input loooooong''', '''This is a simple input'''),
('''This is a simple pair loooooong''', '''This is a simple pair'''),
]
__snake_case : Optional[int] = tokenizer.pad_token_id
__snake_case : Tuple = tokenizer(a_ , padding='''max_length''' , max_length=30 , return_tensors='''np''' )
__snake_case : Union[str, Any] = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors='''np''' )
__snake_case : List[Any] = tokenizer(*a_ , padding='''max_length''' , max_length=60 , return_tensors='''np''' )
__snake_case : Dict = tokenizer(a_ , padding=a_ , truncate=a_ , return_tensors='''np''' )
# s
# test single string max_length padding
self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s['''input_ids'''] )
self.assertTrue(0 in out_s['''attention_mask'''] )
# s2
# test automatic padding
self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] )
self.assertFalse(0 in out_sa['''attention_mask'''][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] )
self.assertTrue(0 in out_sa['''attention_mask'''][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p['''input_ids'''] )
self.assertTrue(0 in out_p['''attention_mask'''] )
# p2
# test automatic padding pair
self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] )
self.assertFalse(0 in out_pa['''attention_mask'''][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] )
self.assertTrue(0 in out_pa['''attention_mask'''][1] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = '''$$$'''
__snake_case : Tuple = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=a_ , add_bos_token=a_ )
__snake_case : Any = '''This is a simple input'''
__snake_case : List[Any] = ['''This is a simple input 1''', '''This is a simple input 2''']
__snake_case : List[Any] = tokenizer.bos_token_id
__snake_case : Optional[int] = tokenizer(a_ )
__snake_case : List[Any] = tokenizer(a_ )
self.assertEqual(out_s.input_ids[0] , a_ )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
__snake_case : Optional[int] = tokenizer.decode(out_s.input_ids )
__snake_case : Optional[int] = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , a_ )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = [self.get_tokenizer(do_lower_case=a_ , add_bos_token=a_ )]
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
__snake_case : str = '''Encode this.'''
__snake_case : Optional[int] = '''This one too please.'''
__snake_case : List[str] = tokenizer.encode(a_ , add_special_tokens=a_ )
encoded_sequence += tokenizer.encode(a_ , add_special_tokens=a_ )
__snake_case : int = tokenizer.encode_plus(
a_ , a_ , add_special_tokens=a_ , return_special_tokens_mask=a_ , )
__snake_case : List[str] = encoded_sequence_dict['''input_ids''']
__snake_case : Optional[Any] = encoded_sequence_dict['''special_tokens_mask''']
self.assertEqual(len(a_ ) , len(a_ ) )
__snake_case : Optional[int] = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(a_ )
]
__snake_case : List[str] = [x for x in filtered_sequence if x is not None]
self.assertEqual(a_ , a_ )
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=a_ )
__snake_case : List[Any] = '''A photo of a cat'''
__snake_case : Union[str, Any] = tokenizer.encode(
a_ , )
self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained('''test_opt''' )
__snake_case : Tuple = AutoTokenizer.from_pretrained('''./test_opt''' )
__snake_case : int = tokenizer.encode(
a_ , )
self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , use_slow=a_ )
__snake_case : int = '''A photo of a cat'''
__snake_case : Tuple = tokenizer.encode(
a_ , )
# Same as above
self.assertEqual(a_ , [2, 2_50, 13_45, 9, 10, 47_58] )
@unittest.skip('''This test is failing because of a bug in the fast tokenizer''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = AutoTokenizer.from_pretrained('''facebook/opt-350m''' , from_slow=a_ )
__snake_case : Any = '''bos'''
__snake_case : List[Any] = tokenizer.get_vocab()['''bos''']
__snake_case : Any = '''A photo of a cat'''
__snake_case : Tuple = tokenizer.encode(
a_ , )
# We changed the bos token
self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
tokenizer.save_pretrained('''./tok''' )
__snake_case : Tuple = AutoTokenizer.from_pretrained('''./tok''' )
self.assertTrue(tokenizer.is_fast )
__snake_case : List[Any] = tokenizer.encode(
a_ , )
self.assertEqual(a_ , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
| 24 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__snake_case : Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''sshleifer/tiny-gpt2'''
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = '''sgugger/tiny-distilbert-classification'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , )
__snake_case : Optional[Any] = TensorFlowBenchmark(a_ )
__snake_case : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Any = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ )
__snake_case : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''sshleifer/tiny-gpt2'''
__snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Dict = TensorFlowBenchmark(a_ , [config] )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : int = TensorFlowBenchmark(a_ )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Dict = AutoConfig.from_pretrained(a_ )
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random'''
__snake_case : Tuple = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] )
__snake_case : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , )
__snake_case : Union[str, Any] = TensorFlowBenchmark(a_ )
benchmark.run()
self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(a_ ):
self.assertTrue(hasattr(a_ , '''sequential''' ) )
self.assertTrue(hasattr(a_ , '''cumulative''' ) )
self.assertTrue(hasattr(a_ , '''current''' ) )
self.assertTrue(hasattr(a_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ )
__snake_case : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
| 24 | 1 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__snake_case : Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''sshleifer/tiny-gpt2'''
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = '''sgugger/tiny-distilbert-classification'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , )
__snake_case : Optional[Any] = TensorFlowBenchmark(a_ )
__snake_case : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Any = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ )
__snake_case : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''sshleifer/tiny-gpt2'''
__snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Dict = TensorFlowBenchmark(a_ , [config] )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : int = TensorFlowBenchmark(a_ )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Dict = AutoConfig.from_pretrained(a_ )
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random'''
__snake_case : Tuple = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] )
__snake_case : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , )
__snake_case : Union[str, Any] = TensorFlowBenchmark(a_ )
benchmark.run()
self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(a_ ):
self.assertTrue(hasattr(a_ , '''sequential''' ) )
self.assertTrue(hasattr(a_ , '''cumulative''' ) )
self.assertTrue(hasattr(a_ , '''current''' ) )
self.assertTrue(hasattr(a_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ )
__snake_case : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
| 24 |
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
try:
import msvcrt
except ImportError:
SCREAMING_SNAKE_CASE : List[str] = None
try:
import fcntl
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
SCREAMING_SNAKE_CASE : List[str] = OSError
# Data
# ------------------------------------------------
SCREAMING_SNAKE_CASE : List[Any] = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
SCREAMING_SNAKE_CASE : List[Any] = """3.0.12"""
SCREAMING_SNAKE_CASE : int = None
def lowercase ( ) ->str:
"""simple docstring"""
global _logger
__snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ )
return _logger
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = lock_file
return None
def __str__(self ):
'''simple docstring'''
__snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = lock
return None
def __enter__(self ):
'''simple docstring'''
return self.lock
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.lock.release()
return None
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
__snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ )
# The path to the lock file.
__snake_case : str = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__snake_case : Dict = None
# The default timeout value.
__snake_case : List[Any] = timeout
# We use this lock primarily for the lock counter.
__snake_case : Tuple = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__snake_case : Optional[Any] = 0
return None
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Dict = float(a_ )
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ):
'''simple docstring'''
if timeout is None:
__snake_case : List[str] = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__snake_case : Optional[int] = id(self )
__snake_case : str = self._lock_file
__snake_case : Optional[int] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(a_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__snake_case : Optional[int] = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE (self , a_=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__snake_case : Tuple = id(self )
__snake_case : str = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
__snake_case : Dict = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__(self ):
'''simple docstring'''
self.acquire()
return self
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.release()
return None
def __del__(self ):
'''simple docstring'''
self.release(force=a_ )
return None
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = os.path.basename(a_ )
if len(a_ ) > max_length and max_length > 0:
__snake_case : List[Any] = os.path.dirname(a_ )
__snake_case : Any = str(hash(a_ ) )
__snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(a_ , a_ )
else:
return path
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
__snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__snake_case : Any = os.open(self._lock_file , a_ )
except OSError:
pass
else:
try:
msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(a_ )
else:
__snake_case : Dict = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Dict = None
msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 )
os.close(a_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__snake_case : List[str] = os.open(self._lock_file , a_ )
try:
fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(a_ )
else:
__snake_case : Optional[int] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Tuple = None
fcntl.flock(a_ , fcntl.LOCK_UN )
os.close(a_ )
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__snake_case : Tuple = os.open(self._lock_file , a_ )
except OSError:
pass
else:
__snake_case : List[Any] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
os.close(self._lock_file_fd )
__snake_case : int = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
SCREAMING_SNAKE_CASE : Dict = None
if msvcrt:
SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock
elif fcntl:
SCREAMING_SNAKE_CASE : List[str] = UnixFileLock
else:
SCREAMING_SNAKE_CASE : str = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 24 | 1 |
"""simple docstring"""
SCREAMING_SNAKE_CASE : Dict = [
(1000, """M"""),
(900, """CM"""),
(500, """D"""),
(400, """CD"""),
(100, """C"""),
(90, """XC"""),
(50, """L"""),
(40, """XL"""),
(10, """X"""),
(9, """IX"""),
(5, """V"""),
(4, """IV"""),
(1, """I"""),
]
def lowercase ( _snake_case : str ) ->int:
"""simple docstring"""
__snake_case : Optional[int] = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000}
__snake_case : Optional[Any] = 0
__snake_case : List[Any] = 0
while place < len(_snake_case ):
if (place + 1 < len(_snake_case )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def lowercase ( _snake_case : int ) ->str:
"""simple docstring"""
__snake_case : Union[str, Any] = []
for arabic, roman in ROMAN:
((__snake_case) , (__snake_case)) : List[str] = divmod(_snake_case , _snake_case )
result.append(roman * factor )
if number == 0:
break
return "".join(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ):
'''simple docstring'''
__snake_case : Any = parent
__snake_case : int = batch_size
__snake_case : Dict = seq_length
__snake_case : List[str] = is_training
__snake_case : List[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Any = scope
__snake_case : Any = range_bbox
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : List[str] = bbox[i, j, 3]
__snake_case : Any = bbox[i, j, 1]
__snake_case : Tuple = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : List[str] = bbox[i, j, 2]
__snake_case : Union[str, Any] = bbox[i, j, 0]
__snake_case : Dict = t
__snake_case : Optional[int] = None
if self.use_input_mask:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__snake_case : Dict = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[Any] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ )
__snake_case : List[str] = model(a_ , bbox=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = self.num_labels
__snake_case : List[str] = LiltForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Dict = config_and_inputs
__snake_case : Any = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Dict = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = LiltModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ )
__snake_case : Dict = torch.tensor([[1, 2]] , device=a_ )
__snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ )
__snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] )
__snake_case : str = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , )
self.assertTrue(outputs.last_hidden_state.shape , a_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
| 24 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
SCREAMING_SNAKE_CASE : Optional[Any] = logging.getLogger(__name__)
torch.set_grad_enabled(False)
SCREAMING_SNAKE_CASE : Optional[int] = """cuda""" if torch.cuda.is_available() else """cpu"""
def lowercase ( _snake_case : str , _snake_case : str=100 , _snake_case : List[str]=" " ) ->List[str]:
"""simple docstring"""
__snake_case : Dict = text.split(_snake_case )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_snake_case ) , _snake_case )]
def lowercase ( _snake_case : dict ) ->dict:
"""simple docstring"""
__snake_case , __snake_case : Optional[Any] = [], []
for title, text in zip(documents['''title'''] , documents['''text'''] ):
if text is not None:
for passage in split_text(_snake_case ):
titles.append(title if title is not None else '''''' )
texts.append(_snake_case )
return {"title": titles, "text": texts}
def lowercase ( _snake_case : dict , _snake_case : DPRContextEncoder , _snake_case : DPRContextEncoderTokenizerFast ) ->dict:
"""simple docstring"""
__snake_case : Tuple = ctx_tokenizer(
documents['''title'''] , documents['''text'''] , truncation=_snake_case , padding='''longest''' , return_tensors='''pt''' )['''input_ids''']
__snake_case : Tuple = ctx_encoder(input_ids.to(device=_snake_case ) , return_dict=_snake_case ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def lowercase ( _snake_case : "RagExampleArguments" , _snake_case : "ProcessingArguments" , _snake_case : "IndexHnswArguments" , ) ->int:
"""simple docstring"""
logger.info('''Step 1 - Create the dataset''' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
__snake_case : Dict = load_dataset(
'''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
__snake_case : List[Any] = dataset.map(_snake_case , batched=_snake_case , num_proc=processing_args.num_proc )
# And compute the embeddings
__snake_case : Dict = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_snake_case )
__snake_case : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
__snake_case : int = Features(
{'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space
__snake_case : int = dataset.map(
partial(_snake_case , ctx_encoder=_snake_case , ctx_tokenizer=_snake_case ) , batched=_snake_case , batch_size=processing_args.batch_size , features=_snake_case , )
# And finally save your dataset
__snake_case : Tuple = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' )
dataset.save_to_disk(_snake_case )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('''Step 2 - Index the dataset''' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
__snake_case : Optional[int] = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('''embeddings''' , custom_index=_snake_case )
# And save the index
__snake_case : str = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' )
dataset.get_index('''embeddings''' ).save(_snake_case )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =field(
default=str(Path(__snake_case ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ), metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''}, )
lowerCamelCase__ =field(
default=__snake_case, metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'}, )
lowerCamelCase__ =field(
default='facebook/rag-sequence-nq', metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''}, )
lowerCamelCase__ =field(
default='facebook/dpr-ctx_encoder-multiset-base', metadata={
'help': (
'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or'
' \'facebook/dpr-ctx_encoder-multiset-base\''
)
}, )
lowerCamelCase__ =field(
default=str(Path(__snake_case ).parent / 'test_run' / 'dummy-kb' ), metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'}, )
@dataclass
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =field(
default=__snake_case, metadata={
'help': 'The number of processes to use to split the documents into passages. Default is single process.'
}, )
lowerCamelCase__ =field(
default=16, metadata={
'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.'
}, )
@dataclass
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =field(
default=768, metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'}, )
lowerCamelCase__ =field(
default=128, metadata={
'help': (
'The number of bi-directional links created for every new element during the HNSW index construction.'
)
}, )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
SCREAMING_SNAKE_CASE : str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE : Optional[int] = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 24 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ):
'''simple docstring'''
__snake_case : List[Any] = parent
__snake_case : List[Any] = batch_size
__snake_case : str = seq_length
__snake_case : Any = is_training
__snake_case : Any = use_input_mask
__snake_case : str = use_token_type_ids
__snake_case : Dict = use_labels
__snake_case : int = vocab_size
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Dict = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : str = num_labels
__snake_case : Dict = num_choices
__snake_case : Optional[int] = scope
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Dict = None
if self.use_input_mask:
__snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Tuple = None
__snake_case : List[str] = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = DistilBertModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(a_ , a_ )
__snake_case : List[Any] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Optional[Any] = model(
a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = DistilBertForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.num_labels
__snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.num_choices
__snake_case : Any = DistilBertForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[int] = model(
a_ , attention_mask=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs
__snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
lowerCamelCase__ =(
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = DistilBertModelTester(self )
__snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Tuple = DistilBertModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__snake_case : List[str] = True
__snake_case : Tuple = model_class(config=a_ )
__snake_case : Any = self._prepare_for_class(a_ , a_ )
__snake_case : Dict = torch.jit.trace(
a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) )
__snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ )
loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__snake_case : List[Any] = model(a_ , attention_mask=a_ )[0]
__snake_case : Tuple = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , a_ )
__snake_case : Optional[int] = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
| 24 | 1 |
"""simple docstring"""
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowercase ( _snake_case : Dataset , _snake_case : Dict[str, str] ) ->List[Any]:
"""simple docstring"""
__snake_case : int = args.log_outputs
__snake_case : Union[str, Any] = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
__snake_case : Union[str, Any] = load_metric('''wer''' )
__snake_case : Tuple = load_metric('''cer''' )
# compute metrics
__snake_case : Union[str, Any] = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
__snake_case : List[Any] = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] )
# print & log results
__snake_case : Union[str, Any] = f"""WER: {wer_result}\nCER: {cer_result}"""
print(_snake_case )
with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f:
f.write(_snake_case )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
__snake_case : List[Any] = f"""log_{dataset_id}_predictions.txt"""
__snake_case : List[Any] = f"""log_{dataset_id}_targets.txt"""
with open(_snake_case , '''w''' ) as p, open(_snake_case , '''w''' ) as t:
# mapping function to write output
def write_to_file(_snake_case : str , _snake_case : Optional[int] ):
p.write(f"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(f"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(_snake_case , with_indices=_snake_case )
def lowercase ( _snake_case : str ) ->str:
"""simple docstring"""
__snake_case : Optional[Any] = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
__snake_case : Optional[Any] = re.sub(_snake_case , '''''' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
__snake_case : Optional[Any] = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
__snake_case : int = ''' '''.join(text.split(_snake_case ) )
return text
def lowercase ( _snake_case : Optional[Any] ) ->Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_snake_case )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
__snake_case : Tuple = AutoFeatureExtractor.from_pretrained(args.model_id )
__snake_case : str = feature_extractor.sampling_rate
# resample audio
__snake_case : Tuple = dataset.cast_column('''audio''' , Audio(sampling_rate=_snake_case ) )
# load eval pipeline
if args.device is None:
__snake_case : Dict = 0 if torch.cuda.is_available() else -1
__snake_case : Optional[int] = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(_snake_case : List[Any] ):
__snake_case : Tuple = asr(
batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
__snake_case : Union[str, Any] = prediction['''text''']
__snake_case : Any = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
__snake_case : Optional[int] = dataset.map(_snake_case , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(_snake_case , _snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
SCREAMING_SNAKE_CASE : int = parser.parse_args()
main(args)
| 24 |
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]:
"""simple docstring"""
def get_masked_lm_array(_snake_case : str ):
__snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : str = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Any = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_array(_snake_case : str ):
__snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_layer_array(_snake_case : int , _snake_case : str ):
__snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[Any] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ):
__snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case )
__snake_case : int = array.reshape(_snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
print(f"""Loading model based on config from {config_path}...""" )
__snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case )
__snake_case : Dict = BertForMaskedLM(_snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__snake_case : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
__snake_case : BertSelfAttention = layer.attention.self
__snake_case : int = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__snake_case : List[Any] = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__snake_case : Union[str, Any] = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__snake_case : BertSelfOutput = layer.attention.output
__snake_case : Dict = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' )
__snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
__snake_case : BertIntermediate = layer.intermediate
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' )
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' )
# Output
__snake_case : BertOutput = layer.output
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' )
__snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' )
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' )
__snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' )
# Embeddings
__snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' )
__snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' )
__snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' )
__snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__snake_case : Optional[Any] = model.cls.predictions.transform
__snake_case : Dict = get_masked_lm_array('''dense/kernel''' )
__snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' )
__snake_case : str = get_masked_lm_array('''layer_norm/gamma''' )
__snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' )
__snake_case : Tuple = get_masked_lm_array('''embedding_table''' )
# Pooling
__snake_case : Optional[Any] = BertPooler(config=_snake_case )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(_snake_case )
# Integration test - should load without any errors ;)
__snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 24 | 1 |
"""simple docstring"""
import os
import unittest
from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer
from transformers.testing_utils import get_tests_dir
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""")
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =BartphoTokenizer
lowerCamelCase__ =False
lowerCamelCase__ =True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().setUp()
__snake_case : Tuple = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']
__snake_case : Tuple = dict(zip(a_ , range(len(a_ ) ) ) )
__snake_case : Optional[Any] = {'''unk_token''': '''<unk>'''}
__snake_case : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] )
with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
for token in vocab_tokens:
fp.write(f"""{token} {vocab_tokens[token]}\n""" )
__snake_case : Optional[Any] = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE (self , **a_ ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BartphoTokenizer.from_pretrained(self.tmpdirname , **a_ )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Dict = '''This is a là test'''
__snake_case : Optional[Any] = '''This is a<unk><unk> test'''
return input_text, output_text
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = BartphoTokenizer(a_ , self.monolingual_vocab_file , **self.special_tokens_map )
__snake_case : Optional[Any] = '''This is a là test'''
__snake_case : int = '''▁This ▁is ▁a ▁l à ▁t est'''.split()
__snake_case : Dict = tokenizer.tokenize(a_ )
self.assertListEqual(a_ , a_ )
__snake_case : List[Any] = tokens + [tokenizer.unk_token]
__snake_case : Any = [4, 5, 6, 3, 3, 7, 8, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , a_ )
| 24 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ):
'''simple docstring'''
super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ )
__snake_case : Union[str, Any] = Sql(
cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = None
__snake_case : Dict = None
__snake_case : Dict = None
__snake_case : List[str] = None
self.builder.download_and_prepare(
download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , )
# Build dataset for splits
__snake_case : Any = self.builder.as_dataset(
split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory )
return dataset
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
__snake_case : List[str] = dataset
__snake_case : Tuple = name
__snake_case : Optional[int] = con
__snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__snake_case : Dict = num_proc
__snake_case : Dict = to_sql_kwargs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ )
__snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ )
__snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ )
__snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Optional[Any] = args
__snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__snake_case : Dict = query_table(
table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__snake_case : Tuple = batch.to_pandas()
__snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ )
return num_rows or len(a_ )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : int = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 24 | 1 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' )
__snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='lxmert'
lowerCamelCase__ ={}
def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_attention_heads
__snake_case : int = hidden_act
__snake_case : int = intermediate_size
__snake_case : Any = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : List[Any] = num_qa_labels
__snake_case : int = num_object_labels
__snake_case : Optional[Any] = num_attr_labels
__snake_case : Union[str, Any] = l_layers
__snake_case : Optional[int] = x_layers
__snake_case : Optional[int] = r_layers
__snake_case : Tuple = visual_feat_dim
__snake_case : Optional[int] = visual_pos_dim
__snake_case : Dict = visual_loss_normalizer
__snake_case : str = task_matched
__snake_case : Optional[Any] = task_mask_lm
__snake_case : List[str] = task_obj_predict
__snake_case : Optional[Any] = task_qa
__snake_case : Any = visual_obj_loss
__snake_case : int = visual_attr_loss
__snake_case : List[Any] = visual_feat_loss
__snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**a_ )
| 24 | 1 |
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]:
"""simple docstring"""
def get_masked_lm_array(_snake_case : str ):
__snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : str = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Any = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_array(_snake_case : str ):
__snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_layer_array(_snake_case : int , _snake_case : str ):
__snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[Any] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ):
__snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case )
__snake_case : int = array.reshape(_snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
print(f"""Loading model based on config from {config_path}...""" )
__snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case )
__snake_case : Dict = BertForMaskedLM(_snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__snake_case : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
__snake_case : BertSelfAttention = layer.attention.self
__snake_case : int = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__snake_case : List[Any] = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__snake_case : Union[str, Any] = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__snake_case : BertSelfOutput = layer.attention.output
__snake_case : Dict = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' )
__snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
__snake_case : BertIntermediate = layer.intermediate
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' )
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' )
# Output
__snake_case : BertOutput = layer.output
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' )
__snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' )
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' )
__snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' )
# Embeddings
__snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' )
__snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' )
__snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' )
__snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__snake_case : Optional[Any] = model.cls.predictions.transform
__snake_case : Dict = get_masked_lm_array('''dense/kernel''' )
__snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' )
__snake_case : str = get_masked_lm_array('''layer_norm/gamma''' )
__snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' )
__snake_case : Tuple = get_masked_lm_array('''embedding_table''' )
# Pooling
__snake_case : Optional[Any] = BertPooler(config=_snake_case )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(_snake_case )
# Integration test - should load without any errors ;)
__snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = len(_snake_case )
__snake_case : str = sum(_snake_case )
__snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__snake_case : Optional[Any] = True
for i in range(1 , s + 1 ):
__snake_case : int = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__snake_case : Union[str, Any] = dp[i][j - 1]
if arr[i - 1] <= j:
__snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__snake_case : List[str] = s - 2 * j
break
return diff
| 24 | 1 |
"""simple docstring"""
import os
import random
import sys
from . import cryptomath_module as cryptoMath # noqa: N812
from . import rabin_miller as rabinMiller # noqa: N812
def lowercase ( ) ->None:
"""simple docstring"""
print('''Making key files...''' )
make_key_files('''rsa''' , 1_024 )
print('''Key files generation successful.''' )
def lowercase ( _snake_case : int ) ->tuple[tuple[int, int], tuple[int, int]]:
"""simple docstring"""
print('''Generating prime p...''' )
__snake_case : Dict = rabinMiller.generate_large_prime(_snake_case )
print('''Generating prime q...''' )
__snake_case : Optional[int] = rabinMiller.generate_large_prime(_snake_case )
__snake_case : Dict = p * q
print('''Generating e that is relatively prime to (p - 1) * (q - 1)...''' )
while True:
__snake_case : Optional[int] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) )
if cryptoMath.gcd(_snake_case , (p - 1) * (q - 1) ) == 1:
break
print('''Calculating d that is mod inverse of e...''' )
__snake_case : Any = cryptoMath.find_mod_inverse(_snake_case , (p - 1) * (q - 1) )
__snake_case : Optional[Any] = (n, e)
__snake_case : Any = (n, d)
return (public_key, private_key)
def lowercase ( _snake_case : str , _snake_case : int ) ->None:
"""simple docstring"""
if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ):
print('''\nWARNING:''' )
print(
f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"""
'''Use a different name or delete these files and re-run this program.''' )
sys.exit()
__snake_case , __snake_case : Union[str, Any] = generate_key(_snake_case )
print(f"""\nWriting public key to file {name}_pubkey.txt...""" )
with open(f"""{name}_pubkey.txt""" , '''w''' ) as out_file:
out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" )
print(f"""Writing private key to file {name}_privkey.txt...""" )
with open(f"""{name}_privkey.txt""" , '''w''' ) as out_file:
out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" )
if __name__ == "__main__":
main()
| 24 |
"""simple docstring"""
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
__snake_case : List[str] = mid
else:
__snake_case : str = mid
__snake_case : str = start + (end - start) / 2.0
return mid
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=__snake_case ):
'''simple docstring'''
lowerCamelCase__ =['onnx']
def __init__(self , *a_ , **a_ ):
'''simple docstring'''
requires_backends(self , ['''onnx'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''onnx'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''onnx'''] )
| 24 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 | 1 |
"""simple docstring"""
import qiskit
def lowercase ( _snake_case : int , _snake_case : int ) ->qiskit.result.counts.Counts:
"""simple docstring"""
__snake_case : Any = qiskit.Aer.get_backend('''aer_simulator''' )
# Create a Quantum Circuit acting on the q register
__snake_case : List[Any] = qiskit.QuantumCircuit(_snake_case , _snake_case )
# Apply X (NOT) Gate to Qubits 0 & 1
circuit.x(0 )
circuit.x(1 )
# Map the quantum measurement to the classical bits
circuit.measure([0, 1] , [0, 1] )
# Execute the circuit on the qasm simulator
__snake_case : Optional[int] = qiskit.execute(_snake_case , _snake_case , shots=1_000 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = single_qubit_measure(2, 2)
print(F'Total count for various states are: {counts}')
| 24 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' )
__snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 24 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Optional[int] = ["""ReformerTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : List[str] = ["""ReformerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Dict = [
"""REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ReformerAttention""",
"""ReformerForMaskedLM""",
"""ReformerForQuestionAnswering""",
"""ReformerForSequenceClassification""",
"""ReformerLayer""",
"""ReformerModel""",
"""ReformerModelWithLMHead""",
"""ReformerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : List[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Tuple = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =MBartTokenizer
lowerCamelCase__ =[]
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Tuple = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX'''
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__snake_case : Optional[int] = src_lang
__snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ )
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ )
__snake_case : int = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ):
'''simple docstring'''
__snake_case : int = src_lang
__snake_case : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
__snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : Optional[Any] = []
__snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24 | 1 |
"""simple docstring"""
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
def lowercase ( _snake_case : bool , _snake_case : bool ) ->Optional[int]:
"""simple docstring"""
def run_func(_snake_case : Any ):
@wraps(_snake_case )
def run_in_eager_mode(*_snake_case : Union[str, Any] , **_snake_case : Optional[Any] ):
return func(*_snake_case , **_snake_case )
@wraps(_snake_case )
@tf.function(experimental_compile=_snake_case )
def run_in_graph_mode(*_snake_case : Optional[int] , **_snake_case : List[str] ):
return func(*_snake_case , **_snake_case )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int ) ->["tf.Tensor"]:
"""simple docstring"""
__snake_case : Any = random.Random()
__snake_case : Optional[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(_snake_case , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ ="TensorFlow"
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return tf.__version__
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
__snake_case : List[str] = self._prepare_inference_func(a_ , a_ , a_ )
return self._measure_speed(_inference )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
__snake_case : Optional[int] = self._prepare_train_func(a_ , a_ , a_ )
return self._measure_speed(_train )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a_ )
__snake_case : List[str] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
__snake_case : Tuple = self._prepare_inference_func(a_ , a_ , a_ )
return self._measure_memory(_inference )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , a_ )
__snake_case : str = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
__snake_case : str = self._prepare_train_func(a_ , a_ , a_ )
return self._measure_memory(_train )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : int = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
__snake_case : Dict = (
hasattr(a_ , '''architectures''' )
and isinstance(config.architectures , a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
__snake_case : List[str] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
__snake_case : str = __import__('''transformers''' , fromlist=[model_class] )
__snake_case : Optional[Any] = getattr(a_ , a_ )
__snake_case : Dict = model_cls(a_ )
except ImportError:
raise ImportError(
f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
__snake_case : Optional[Any] = TF_MODEL_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
__snake_case : Any = config.vocab_size if hasattr(a_ , '''vocab_size''' ) else config.encoder.vocab_size
__snake_case : Union[str, Any] = random_input_ids(a_ , a_ , a_ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(a_ , decoder_input_ids=a_ , training=a_ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(a_ , training=a_ )
__snake_case : List[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' )
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
__snake_case : Optional[Any] = (
hasattr(a_ , '''architectures''' )
and isinstance(config.architectures , a_ )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
__snake_case : Dict = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
__snake_case : Any = __import__('''transformers''' , fromlist=[model_class] )
__snake_case : List[str] = getattr(a_ , a_ )
__snake_case : int = model_cls(a_ )
except ImportError:
raise ImportError(
f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
__snake_case : Any = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](a_ )
# encoder-decoder has vocab size saved differently
__snake_case : Optional[Any] = config.vocab_size if hasattr(a_ , '''vocab_size''' ) else config.encoder.vocab_size
__snake_case : Union[str, Any] = random_input_ids(a_ , a_ , a_ )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
__snake_case : str = model(a_ , decoder_input_ids=a_ , labels=a_ , training=a_ )[0]
__snake_case : Any = tf.gradients(a_ , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
__snake_case : Union[str, Any] = model(a_ , labels=a_ , training=a_ )[0]
__snake_case : List[Any] = tf.gradients(a_ , model.trainable_variables )
return gradients
__snake_case : Tuple = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' )
timeit.repeat(a_ , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
__snake_case : Union[str, Any] = timeit.repeat(
a_ , repeat=self.args.repeat , number=10 , )
return min(a_ ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"""Doesn't fit on GPU. {e}""" )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
logger.info(
'''Note that TensorFlow allocates more memory than '''
'''it might need to speed up computation. '''
'''The memory reported here corresponds to the memory '''
'''reported by `nvidia-smi`, which can vary depending '''
'''on total available memory on the GPU that is used.''' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'''
''' consumption line by line.''' )
__snake_case : List[Any] = start_memory_tracing('''transformers''' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'''
''' with `args.memory=False`''' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'''py3nvml not installed, we won\'t log GPU memory usage. '''
'''Install py3nvml (pip install py3nvml) to log information about GPU.''' )
__snake_case : Any = '''N/A'''
else:
logger.info(
'''Measuring total GPU usage on GPU device. Make sure to not have additional processes'''
''' running on the same GPU.''' )
# init nvml
nvml.nvmlInit()
func()
__snake_case : int = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
__snake_case : Any = nvml.nvmlDeviceGetMemoryInfo(a_ )
__snake_case : List[str] = meminfo.used
__snake_case : Any = Memory(a_ )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'''When enabling line by line tracing, the max peak memory for CPU is inaccurate in'''
''' TensorFlow.''' )
__snake_case : int = None
else:
__snake_case : Optional[Any] = measure_peak_memory_cpu(a_ )
__snake_case : str = Memory(a_ ) if isinstance(a_ , a_ ) else memory_bytes
if self.args.trace_memory_line_by_line:
__snake_case : str = stop_memory_tracing(a_ )
if memory is None:
__snake_case : str = summary.total
else:
__snake_case : List[str] = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"""Doesn't fit on GPU. {e}""" )
return "N/A", None
| 24 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 | 1 |
"""simple docstring"""
from __future__ import annotations
import json
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
SCREAMING_SNAKE_CASE : List[str] = {"""UserAgent""": UserAgent().random}
def lowercase ( _snake_case : Dict ) ->dict:
"""simple docstring"""
__snake_case : int = script.contents[0]
__snake_case : Any = json.loads(data[data.find('''{"config"''' ) : -1] )
return info["entry_data"]["ProfilePage"][0]["graphql"]["user"]
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : List[Any] = f"""https://www.instagram.com/{username}/"""
__snake_case : Dict = self.get_json()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = requests.get(self.url , headers=a_ ).text
__snake_case : str = BeautifulSoup(a_ , '''html.parser''' ).find_all('''script''' )
try:
return extract_user_profile(scripts[4] )
except (json.decoder.JSONDecodeError, KeyError):
return extract_user_profile(scripts[3] )
def __repr__(self ):
'''simple docstring'''
return f"""{self.__class__.__name__}('{self.username}')"""
def __str__(self ):
'''simple docstring'''
return f"""{self.fullname} ({self.username}) is {self.biography}"""
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["username"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["full_name"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["biography"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["business_email"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["external_url"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["edge_followed_by"]["count"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["edge_follow"]["count"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["edge_owner_to_timeline_media"]["count"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["profile_pic_url_hd"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["is_verified"]
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.user_data["is_private"]
def lowercase ( _snake_case : str = "github" ) ->None:
"""simple docstring"""
import os
if os.environ.get('''CI''' ):
return # test failing on GitHub Actions
__snake_case : Dict = InstagramUser(_snake_case )
assert instagram_user.user_data
assert isinstance(instagram_user.user_data , _snake_case )
assert instagram_user.username == username
if username != "github":
return
assert instagram_user.fullname == "GitHub"
assert instagram_user.biography == "Built for developers."
assert instagram_user.number_of_posts > 150
assert instagram_user.number_of_followers > 120_000
assert instagram_user.number_of_followings > 15
assert instagram_user.email == "[email protected]"
assert instagram_user.website == "https://github.com/readme"
assert instagram_user.profile_picture_url.startswith('''https://instagram.''' )
assert instagram_user.is_verified is True
assert instagram_user.is_private is False
if __name__ == "__main__":
import doctest
doctest.testmod()
SCREAMING_SNAKE_CASE : Optional[int] = InstagramUser("""github""")
print(instagram_user)
print(F'{instagram_user.number_of_posts = }')
print(F'{instagram_user.number_of_followers = }')
print(F'{instagram_user.number_of_followings = }')
print(F'{instagram_user.email = }')
print(F'{instagram_user.website = }')
print(F'{instagram_user.profile_picture_url = }')
print(F'{instagram_user.is_verified = }')
print(F'{instagram_user.is_private = }')
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"""tanreinama/GPTSAN-2.8B-spout_is_uniform""": (
"""https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"""
),
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='gptsan-japanese'
lowerCamelCase__ =[
'past_key_values',
]
lowerCamelCase__ ={
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ):
'''simple docstring'''
__snake_case : Any = vocab_size
__snake_case : str = max_position_embeddings
__snake_case : Any = d_model
__snake_case : List[str] = d_ff
__snake_case : Dict = d_ext
__snake_case : Optional[Any] = d_spout
__snake_case : int = num_switch_layers
__snake_case : List[Any] = num_ext_layers
__snake_case : Any = num_switch_layers + num_ext_layers
__snake_case : Optional[int] = num_heads
__snake_case : Tuple = num_experts
__snake_case : List[Any] = expert_capacity
__snake_case : Dict = dropout_rate
__snake_case : Optional[Any] = layer_norm_epsilon
__snake_case : Dict = router_bias
__snake_case : str = router_jitter_noise
__snake_case : List[str] = router_dtype
__snake_case : Union[str, Any] = router_ignore_padding_tokens
__snake_case : List[str] = output_hidden_states
__snake_case : Optional[Any] = output_attentions
__snake_case : Any = initializer_factor
__snake_case : int = output_router_logits
__snake_case : Union[str, Any] = use_cache
super().__init__(
separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
| 24 | 1 |
"""simple docstring"""
def lowercase ( _snake_case : list , _snake_case : int = 0 ) ->list:
"""simple docstring"""
__snake_case : Optional[int] = length or len(_snake_case )
__snake_case : List[str] = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
__snake_case , __snake_case : str = list_data[i + 1], list_data[i]
__snake_case : Dict = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
SCREAMING_SNAKE_CASE : int = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
__snake_case : int = {}
with open(_snake_case , '''r''' ) as file:
for line_number, line in enumerate(_snake_case ):
__snake_case : Union[str, Any] = line.strip()
if line:
__snake_case : str = line.split()
__snake_case : Union[str, Any] = line_number
__snake_case : Dict = words[0]
__snake_case : str = value
return result
def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]:
"""simple docstring"""
for attribute in key.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : str = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape
elif weight_type is not None and weight_type == "param":
__snake_case : Optional[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : List[str] = shape_pointer.shape
# let's reduce dimension
__snake_case : int = value[0]
else:
__snake_case : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__snake_case : List[Any] = value
elif weight_type == "weight_g":
__snake_case : Tuple = value
elif weight_type == "weight_v":
__snake_case : str = value
elif weight_type == "bias":
__snake_case : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__snake_case : List[Any] = getattr(_snake_case , _snake_case )
__snake_case : int = value
else:
__snake_case : List[Any] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int:
"""simple docstring"""
__snake_case : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : List[str] = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : str = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__snake_case : Tuple = '''.'''.join([key, hf_param_name] )
else:
__snake_case : Optional[int] = key
__snake_case : List[Any] = value if '''lm_head''' in full_key else value[0]
SCREAMING_SNAKE_CASE : Tuple = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict:
"""simple docstring"""
__snake_case : Tuple = False
for key, mapped_key in MAPPING.items():
__snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__snake_case : int = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2]
__snake_case : Tuple = mapped_key.replace('''*''' , _snake_case )
if "weight_g" in name:
__snake_case : Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
__snake_case : List[str] = '''weight_v'''
elif "bias" in name:
__snake_case : Any = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case : List[Any] = '''weight'''
else:
__snake_case : Union[str, Any] = None
if hf_dict is not None:
rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
else:
set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
return is_used
return is_used
def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any:
"""simple docstring"""
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = fairseq_model.state_dict()
__snake_case : str = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : str = False
if "conv_layers" in name:
load_conv_layer(
_snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , )
__snake_case : Union[str, Any] = True
else:
__snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case )
if not is_used:
unused_weights.append(_snake_case )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
__snake_case : str = name.split('''.''' )
__snake_case : Optional[int] = int(items[0] )
__snake_case : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__snake_case : int = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__snake_case : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_snake_case )
@torch.no_grad()
def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict:
"""simple docstring"""
if config_path is not None:
__snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case )
else:
__snake_case : Tuple = WavaVecaConfig()
if is_seq_class:
__snake_case : Optional[int] = read_txt_into_dict(_snake_case )
__snake_case : List[Any] = idalabel
__snake_case : int = WavaVecaForSequenceClassification(_snake_case )
__snake_case : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
feature_extractor.save_pretrained(_snake_case )
elif is_finetuned:
if dict_path:
__snake_case : int = Dictionary.load(_snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Tuple = target_dict.pad_index
__snake_case : int = target_dict.bos_index
__snake_case : Tuple = target_dict.eos_index
__snake_case : Optional[Any] = len(target_dict.symbols )
__snake_case : Any = os.path.join(_snake_case , '''vocab.json''' )
if not os.path.isdir(_snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) )
return
os.makedirs(_snake_case , exist_ok=_snake_case )
__snake_case : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__snake_case : Dict = 0
__snake_case : List[Any] = 1
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_snake_case , _snake_case )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , )
__snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False
__snake_case : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
__snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case )
processor.save_pretrained(_snake_case )
__snake_case : Optional[int] = WavaVecaForCTC(_snake_case )
else:
__snake_case : Tuple = WavaVecaForPreTraining(_snake_case )
if is_finetuned or is_seq_class:
__snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' )
__snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case )
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case )
__snake_case : int = model[0].eval()
recursively_load_weights(_snake_case , _snake_case , not is_finetuned )
hf_wavavec.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 24 | 1 |
"""simple docstring"""
import pprint
import requests
SCREAMING_SNAKE_CASE : Any = """https://zenquotes.io/api"""
def lowercase ( ) ->list:
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + '''/today''' ).json()
def lowercase ( ) ->list:
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + '''/random''' ).json()
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : List[str] = random_quotes()
pprint.pprint(response)
| 24 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=__snake_case ):
'''simple docstring'''
lowerCamelCase__ =['transformers', 'torch', 'note_seq']
def __init__(self , *a_ , **a_ ):
'''simple docstring'''
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
| 24 | 1 |
"""simple docstring"""
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def lowercase ( _snake_case : List[Any] ) ->Optional[Any]:
"""simple docstring"""
__snake_case : List[str] = checkpoints.load_tax_checkpoint(_snake_case )
__snake_case : Optional[int] = flatten_dict(_snake_case )
return flax_params
def lowercase ( _snake_case : Any ) ->Optional[int]:
"""simple docstring"""
__snake_case : str = {}
__snake_case : Dict = {
'''token_embedder''': '''embeddings''',
'''encoder_norm''': '''layernorm''',
'''kernel''': '''weight''',
'''.out''': '''.output''',
'''scale''': '''weight''',
'''embedders_0.pos_embedding''': '''row_embedder.weight''',
'''embedders_1.pos_embedding''': '''column_embedder.weight''',
}
__snake_case : List[Any] = {
'''query''': '''attention.query''',
'''key''': '''attention.key''',
'''value''': '''attention.value''',
'''output.dense''': '''output''',
'''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''',
'''pre_self_attention_layer_norm''': '''self_attention.layer_norm''',
'''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''',
'''mlp.''': '''mlp.DenseReluDense.''',
'''pre_mlp_layer_norm''': '''mlp.layer_norm''',
'''self_attention.o''': '''self_attention.attention.o''',
'''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''',
'''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''',
'''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''',
'''decoder.logits_dense.weight''': '''decoder.lm_head.weight''',
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
__snake_case : Tuple = '''.'''.join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
__snake_case : int = new_key.replace(_snake_case , _snake_case )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
__snake_case : Union[str, Any] = new_key.replace(_snake_case , _snake_case )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
__snake_case : Dict = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _snake_case )
__snake_case : str = new_key.replace('''encoder''' , '''encoder.encoder''' )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
__snake_case : Any = re.sub(r'''layers_(\d+)''' , r'''layer.\1''' , _snake_case )
__snake_case : List[str] = flax_dict[key]
__snake_case : int = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
__snake_case : Any = torch.from_numpy(converted_dict[key].T )
else:
__snake_case : int = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def lowercase ( _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : str=False , _snake_case : str=False ) ->List[Any]:
"""simple docstring"""
__snake_case : Optional[Any] = get_flax_param(_snake_case )
if not use_large:
__snake_case : Union[str, Any] = PixaStructVisionConfig()
__snake_case : Optional[int] = PixaStructTextConfig()
else:
__snake_case : List[str] = PixaStructVisionConfig(
hidden_size=1_536 , d_ff=3_968 , num_attention_heads=24 , num_hidden_layers=18 )
__snake_case : int = PixaStructTextConfig(hidden_size=1_536 , d_ff=3_968 , num_heads=24 , num_layers=18 )
__snake_case : Tuple = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=_snake_case )
__snake_case : Any = PixaStructForConditionalGeneration(_snake_case )
__snake_case : int = rename_and_convert_flax_params(_snake_case )
model.load_state_dict(_snake_case )
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' )
__snake_case : Tuple = PixaStructImageProcessor()
__snake_case : Optional[int] = PixaStructProcessor(image_processor=_snake_case , tokenizer=_snake_case )
if use_large:
__snake_case : Optional[Any] = 4_096
__snake_case : Dict = True
# mkdir if needed
os.makedirs(_snake_case , exist_ok=_snake_case )
model.save_pretrained(_snake_case )
processor.save_pretrained(_snake_case )
print('''Model saved in {}'''.format(_snake_case ) )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser()
parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""")
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""")
parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""")
SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| 24 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ):
'''simple docstring'''
__snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20}
__snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : Tuple = num_channels
__snake_case : List[str] = image_size
__snake_case : Optional[Any] = min_resolution
__snake_case : List[Any] = max_resolution
__snake_case : List[Any] = do_resize
__snake_case : Dict = size
__snake_case : Dict = do_center_crop
__snake_case : Dict = crop_size
__snake_case : str = do_flip_channel_order
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(a_ , '''center_crop''' ) )
self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 24 | 1 |
"""simple docstring"""
import argparse
from tax import checkpoints
from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM
def lowercase ( _snake_case : str , _snake_case : Tuple , _snake_case : List[Any] ) ->Dict:
"""simple docstring"""
__snake_case : Optional[Any] = AutoConfig.from_pretrained(_snake_case )
__snake_case : List[str] = FlaxAutoModelForSeqaSeqLM.from_config(config=_snake_case )
__snake_case : Dict = checkpoints.load_tax_checkpoint(_snake_case )
__snake_case : str = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp''']
if config.model_type == "t5":
__snake_case : Any = '''SelfAttention'''
if config.model_type == "longt5" and config.encoder_attention_type == "local":
__snake_case : Any = '''LocalSelfAttention'''
elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : List[Any] = '''TransientGlobalSelfAttention'''
else:
raise ValueError(
'''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`'''
''' attribute with a value from [\'local\', \'transient-global].''' )
# Encoder
for layer_index in range(config.num_layers ):
__snake_case : Optional[Any] = f"""layers_{str(_snake_case )}"""
# Self-Attention
__snake_case : str = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel''']
__snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel''']
__snake_case : int = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel''']
__snake_case : Any = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel''']
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale''']
# Layer Normalization
__snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale''']
if split_mlp_wi:
__snake_case : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
__snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
__snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
__snake_case : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
__snake_case : Dict = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
__snake_case : str = flax_model.params['''encoder''']['''block'''][str(_snake_case )]['''layer''']
__snake_case : Optional[int] = tax_attention_key
__snake_case : Any = tax_attention_out
__snake_case : Union[str, Any] = tax_attention_query
__snake_case : str = tax_attention_value
__snake_case : List[str] = tax_attention_layer_norm
# Global input layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : str = tax_global_layer_norm
if split_mlp_wi:
__snake_case : Dict = tax_mlp_wi_a
__snake_case : List[str] = tax_mlp_wi_a
else:
__snake_case : Optional[Any] = tax_mlp_wi
__snake_case : Any = tax_mlp_wo
__snake_case : Optional[int] = tax_mlp_layer_norm
__snake_case : Any = flax_model_encoder_layer_block
# Only for layer 0:
__snake_case : Optional[int] = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T
__snake_case : Dict = tax_encoder_rel_embedding
# Side/global relative position_bias + layer norm
if config.model_type == "longt5" and config.encoder_attention_type == "transient-global":
__snake_case : Union[str, Any] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T
__snake_case : Dict = tax_encoder_global_rel_embedding
# Assigning
__snake_case : Optional[int] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale''']
__snake_case : Dict = tax_encoder_norm
# Decoder
for layer_index in range(config.num_layers ):
__snake_case : Any = f"""layers_{str(_snake_case )}"""
# Self-Attention
__snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel''']
__snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel''']
__snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel''']
__snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel''']
# Layer Normalization
__snake_case : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][
'''scale'''
]
# Encoder-Decoder-Attention
__snake_case : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention''']
__snake_case : Tuple = tax_enc_dec_attention_module['''key''']['''kernel''']
__snake_case : Tuple = tax_enc_dec_attention_module['''out''']['''kernel''']
__snake_case : Tuple = tax_enc_dec_attention_module['''query''']['''kernel''']
__snake_case : List[str] = tax_enc_dec_attention_module['''value''']['''kernel''']
# Layer Normalization
__snake_case : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale''']
# MLP
if split_mlp_wi:
__snake_case : str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel''']
__snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel''']
else:
__snake_case : List[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel''']
__snake_case : int = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel''']
# Layer Normalization
__snake_case : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale''']
# Assigning
__snake_case : int = flax_model.params['''decoder''']['''block'''][str(_snake_case )]['''layer''']
__snake_case : List[str] = tax_attention_key
__snake_case : Optional[int] = tax_attention_out
__snake_case : str = tax_attention_query
__snake_case : Union[str, Any] = tax_attention_value
__snake_case : Dict = tax_pre_attention_layer_norm
__snake_case : List[Any] = tax_enc_dec_attention_key
__snake_case : Any = tax_enc_dec_attention_out
__snake_case : Union[str, Any] = tax_enc_dec_attention_query
__snake_case : Dict = tax_enc_dec_attention_value
__snake_case : str = tax_cross_layer_norm
if split_mlp_wi:
__snake_case : Optional[Any] = tax_mlp_wi_a
__snake_case : int = tax_mlp_wi_a
else:
__snake_case : Any = tax_mlp_wi
__snake_case : List[str] = tax_mlp_wo
__snake_case : str = txa_mlp_layer_norm
__snake_case : Dict = flax_model_decoder_layer_block
# Decoder Normalization
__snake_case : List[Any] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale''']
__snake_case : Any = txa_decoder_norm
# Only for layer 0:
__snake_case : List[str] = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T
__snake_case : Optional[int] = tax_decoder_rel_embedding
# Token Embeddings
__snake_case : str = tax_model['''target''']['''token_embedder''']['''embedding''']
__snake_case : List[str] = txa_token_embeddings
# LM Head (only in v1.1 and LongT5 checkpoints)
if "logits_dense" in tax_model["target"]["decoder"]:
__snake_case : int = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel''']
flax_model.save_pretrained(_snake_case )
print('''T5X Model was sucessfully converted!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint."""
)
parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""")
parser.add_argument(
"""--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model."""
)
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
| 24 |
"""simple docstring"""
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : int = torch.nn.Linear(2 , 4 )
__snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
__snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
__snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def lowercase ( _snake_case : str ) ->Optional[Any]:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def lowercase ( _snake_case : Union[str, Any] ) ->Tuple:
"""simple docstring"""
__snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(_snake_case )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(a_ ):
__snake_case : Any = Accelerator(cpu=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case : Optional[int] = GradientState()
assert state.num_steps == 1
__snake_case : str = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__snake_case : List[Any] = False
assert state.sync_gradients is False
GradientState._reset_state()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*a_ , **a_ ):
pass
with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ):
__snake_case : List[Any] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : Any = get_signature(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# make sure loaded weights match
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : List[Any] = get_signature(a_ )
# saving hook
def save_config(a_ , a_ , a_ ):
__snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__}
with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f:
json.dump(a_ , a_ )
# loading hook
def load_config(a_ , a_ ):
with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f:
__snake_case : Any = json.load(a_ )
__snake_case : List[str] = config['''class_name''']
__snake_case : str = accelerator.register_save_state_pre_hook(a_ )
__snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Any = '''random'''
# make sure loaded weights match with hooks
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks removed
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Union[str, Any] = '''random'''
# make sure loaded weights match with hooks removed
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components()
__snake_case : Union[str, Any] = None
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertTrue(dummy_obj is None )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
__snake_case : Optional[int] = [1, 2, 3]
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , )
__snake_case : Optional[Any] = Accelerator()
# This should work
__snake_case : Any = accelerator.prepare(a_ )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Any = Accelerator()
with init_empty_weights():
__snake_case : List[str] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : Union[str, Any] = infer_auto_device_map(a_ )
__snake_case : str = '''cpu'''
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ )
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Dict = accelerator.prepare(a_ )
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU}
with init_empty_weights():
__snake_case : Any = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : List[Any] = infer_auto_device_map(a_ )
__snake_case : Dict = 1
__snake_case : str = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Any = Accelerator()
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Tuple = accelerator.prepare(a_ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
with init_empty_weights():
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
__snake_case : Tuple = infer_auto_device_map(a_ )
__snake_case : Tuple = 1
__snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Tuple = Accelerator()
# This should work
__snake_case : Dict = accelerator.prepare(a_ )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = torch.nn.Linear(10 , 10 )
__snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 )
__snake_case : Optional[Any] = Accelerator(cpu=a_ )
__snake_case : str = accelerator.prepare(a_ )
| 24 | 1 |
"""simple docstring"""
import socket
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : int = socket.socket(socket.AF_INET , socket.SOCK_STREAM )
__snake_case : Union[str, Any] = socket.gethostname()
__snake_case : int = 12_312
sock.connect((host, port) )
sock.send(b'''Hello server!''' )
with open('''Received_file''' , '''wb''' ) as out_file:
print('''File opened''' )
print('''Receiving data...''' )
while True:
__snake_case : Tuple = sock.recv(1_024 )
if not data:
break
out_file.write(_snake_case )
print('''Successfully received the file''' )
sock.close()
print('''Connection closed''' )
if __name__ == "__main__":
main()
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int ) ->str:
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
__snake_case : Any = len(bin(_snake_case )[3:] )
__snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:]
__snake_case : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(_snake_case ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
from math import loga
def lowercase ( _snake_case : int ) ->int:
"""simple docstring"""
if a < 0:
raise ValueError('''Input value must be a positive integer''' )
elif isinstance(_snake_case , _snake_case ):
raise TypeError('''Input value must be a \'int\' type''' )
return 0 if (a == 0) else int(loga(a & -a ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
def lowercase ( ) ->int:
"""simple docstring"""
return [
a * b * (1_000 - a - b)
for a in range(1 , 999 )
for b in range(_snake_case , 999 )
if (a * a + b * b == (1_000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : List[Any] = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : Union[str, Any] = [
"""UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""UniSpeechForCTC""",
"""UniSpeechForPreTraining""",
"""UniSpeechForSequenceClassification""",
"""UniSpeechModel""",
"""UniSpeechPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_unispeech import (
UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST,
UniSpeechForCTC,
UniSpeechForPreTraining,
UniSpeechForSequenceClassification,
UniSpeechModel,
UniSpeechPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int = 100 ) ->int:
"""simple docstring"""
__snake_case : str = n * (n + 1) * (2 * n + 1) / 6
__snake_case : Dict = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 1 |
"""simple docstring"""
def lowercase ( _snake_case : Optional[int]=28_123 ) ->Dict:
"""simple docstring"""
__snake_case : int = [1] * (limit + 1)
for i in range(2 , int(limit**0.5 ) + 1 ):
sum_divs[i * i] += i
for k in range(i + 1 , limit // i + 1 ):
sum_divs[k * i] += k + i
__snake_case : Tuple = set()
__snake_case : Optional[int] = 0
for n in range(1 , limit + 1 ):
if sum_divs[n] > n:
abundants.add(_snake_case )
if not any((n - a in abundants) for a in abundants ):
res += n
return res
if __name__ == "__main__":
print(solution())
| 24 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__)
@dataclass
class _UpperCAmelCase ( datasets.BuilderConfig ):
'''simple docstring'''
lowerCamelCase__ =10000
lowerCamelCase__ =None
lowerCamelCase__ =None
class _UpperCAmelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
lowerCamelCase__ =ParquetConfig
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__snake_case : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a_ , (str, list, tuple) ):
__snake_case : Union[str, Any] = data_files
if isinstance(a_ , a_ ):
__snake_case : Union[str, Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__snake_case : int = []
for split_name, files in data_files.items():
if isinstance(a_ , a_ ):
__snake_case : List[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : int = [dl_manager.iter_files(a_ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(a_ ):
with open(a_ , '''rb''' ) as f:
__snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) )
break
splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) )
return splits
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
__snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ):
with open(a_ , '''rb''' ) as f:
__snake_case : int = pq.ParquetFile(a_ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
__snake_case : Dict = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ )
except ValueError as e:
logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" )
raise
| 24 | 1 |
"""simple docstring"""
def lowercase ( _snake_case : int ) ->str:
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
__snake_case : Any = len(bin(_snake_case )[3:] )
__snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:]
__snake_case : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(_snake_case ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__snake_case : Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''sshleifer/tiny-gpt2'''
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = '''sgugger/tiny-distilbert-classification'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , )
__snake_case : Optional[Any] = TensorFlowBenchmark(a_ )
__snake_case : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Any = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ )
__snake_case : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''sshleifer/tiny-gpt2'''
__snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Dict = TensorFlowBenchmark(a_ , [config] )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : int = TensorFlowBenchmark(a_ )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Dict = AutoConfig.from_pretrained(a_ )
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random'''
__snake_case : Tuple = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] )
__snake_case : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , )
__snake_case : Union[str, Any] = TensorFlowBenchmark(a_ )
benchmark.run()
self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(a_ ):
self.assertTrue(hasattr(a_ , '''sequential''' ) )
self.assertTrue(hasattr(a_ , '''cumulative''' ) )
self.assertTrue(hasattr(a_ , '''current''' ) )
self.assertTrue(hasattr(a_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ )
__snake_case : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
| 24 | 1 |
"""simple docstring"""
def lowercase ( ) ->int:
"""simple docstring"""
return [
a * b * (1_000 - a - b)
for a in range(1 , 999 )
for b in range(_snake_case , 999 )
if (a * a + b * b == (1_000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 24 |
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
try:
import msvcrt
except ImportError:
SCREAMING_SNAKE_CASE : List[str] = None
try:
import fcntl
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
SCREAMING_SNAKE_CASE : List[str] = OSError
# Data
# ------------------------------------------------
SCREAMING_SNAKE_CASE : List[Any] = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
SCREAMING_SNAKE_CASE : List[Any] = """3.0.12"""
SCREAMING_SNAKE_CASE : int = None
def lowercase ( ) ->str:
"""simple docstring"""
global _logger
__snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ )
return _logger
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = lock_file
return None
def __str__(self ):
'''simple docstring'''
__snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = lock
return None
def __enter__(self ):
'''simple docstring'''
return self.lock
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.lock.release()
return None
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
__snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ )
# The path to the lock file.
__snake_case : str = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__snake_case : Dict = None
# The default timeout value.
__snake_case : List[Any] = timeout
# We use this lock primarily for the lock counter.
__snake_case : Tuple = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__snake_case : Optional[Any] = 0
return None
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Dict = float(a_ )
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ):
'''simple docstring'''
if timeout is None:
__snake_case : List[str] = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__snake_case : Optional[int] = id(self )
__snake_case : str = self._lock_file
__snake_case : Optional[int] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(a_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__snake_case : Optional[int] = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE (self , a_=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__snake_case : Tuple = id(self )
__snake_case : str = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
__snake_case : Dict = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__(self ):
'''simple docstring'''
self.acquire()
return self
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.release()
return None
def __del__(self ):
'''simple docstring'''
self.release(force=a_ )
return None
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = os.path.basename(a_ )
if len(a_ ) > max_length and max_length > 0:
__snake_case : List[Any] = os.path.dirname(a_ )
__snake_case : Any = str(hash(a_ ) )
__snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(a_ , a_ )
else:
return path
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
__snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__snake_case : Any = os.open(self._lock_file , a_ )
except OSError:
pass
else:
try:
msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(a_ )
else:
__snake_case : Dict = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Dict = None
msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 )
os.close(a_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__snake_case : List[str] = os.open(self._lock_file , a_ )
try:
fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(a_ )
else:
__snake_case : Optional[int] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Tuple = None
fcntl.flock(a_ , fcntl.LOCK_UN )
os.close(a_ )
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__snake_case : Tuple = os.open(self._lock_file , a_ )
except OSError:
pass
else:
__snake_case : List[Any] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
os.close(self._lock_file_fd )
__snake_case : int = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
SCREAMING_SNAKE_CASE : Dict = None
if msvcrt:
SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock
elif fcntl:
SCREAMING_SNAKE_CASE : List[str] = UnixFileLock
else:
SCREAMING_SNAKE_CASE : str = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 24 | 1 |
"""simple docstring"""
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
SCREAMING_SNAKE_CASE : List[Any] = trt.Logger(trt.Logger.WARNING)
SCREAMING_SNAKE_CASE : Optional[Any] = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__)
SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--onnx_model_path""",
default=None,
type=str,
required=True,
help="""Path to ONNX model: """,
)
parser.add_argument(
"""--output_dir""",
default=None,
type=str,
required=True,
help="""The output directory where the model checkpoints and predictions will be written.""",
)
# Other parameters
parser.add_argument(
"""--tokenizer_name""",
default="""""",
type=str,
required=True,
help="""Pretrained tokenizer name or path if not the same as model_name""",
)
parser.add_argument(
"""--version_2_with_negative""",
action="""store_true""",
help="""If true, the SQuAD examples contain some that do not have an answer.""",
)
parser.add_argument(
"""--null_score_diff_threshold""",
type=float,
default=0.0,
help="""If null_score - best_non_null is greater than the threshold predict null.""",
)
parser.add_argument(
"""--max_seq_length""",
default=384,
type=int,
help=(
"""The maximum total input sequence length after WordPiece tokenization. Sequences """
"""longer than this will be truncated, and sequences shorter than this will be padded."""
),
)
parser.add_argument(
"""--doc_stride""",
default=128,
type=int,
help="""When splitting up a long document into chunks, how much stride to take between chunks.""",
)
parser.add_argument("""--per_device_eval_batch_size""", default=8, type=int, help="""Batch size per GPU/CPU for evaluation.""")
parser.add_argument(
"""--n_best_size""",
default=20,
type=int,
help="""The total number of n-best predictions to generate in the nbest_predictions.json output file.""",
)
parser.add_argument(
"""--max_answer_length""",
default=30,
type=int,
help=(
"""The maximum length of an answer that can be generated. This is needed because the start """
"""and end predictions are not conditioned on one another."""
),
)
parser.add_argument("""--seed""", type=int, default=42, help="""random seed for initialization""")
parser.add_argument(
"""--dataset_name""",
type=str,
default=None,
required=True,
help="""The name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--dataset_config_name""",
type=str,
default=None,
help="""The configuration name of the dataset to use (via the datasets library).""",
)
parser.add_argument(
"""--preprocessing_num_workers""", type=int, default=4, help="""A csv or a json file containing the training data."""
)
parser.add_argument("""--overwrite_cache""", action="""store_true""", help="""Overwrite the cached training and evaluation sets""")
parser.add_argument(
"""--fp16""",
action="""store_true""",
help="""Whether to use 16-bit (mixed) precision instead of 32-bit""",
)
parser.add_argument(
"""--int8""",
action="""store_true""",
help="""Whether to use INT8""",
)
SCREAMING_SNAKE_CASE : Tuple = parser.parse_args()
if args.tokenizer_name:
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
"""You are instantiating a new tokenizer from scratch. This is not supported by this script."""
"""You can do it from another script, save it, and load it from here, using --tokenizer_name."""
)
logger.info("""Training/evaluation parameters %s""", args)
SCREAMING_SNAKE_CASE : int = args.per_device_eval_batch_size
SCREAMING_SNAKE_CASE : Optional[int] = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : Optional[int] = """temp_engine/bert-fp32.engine"""
if args.fpaa:
SCREAMING_SNAKE_CASE : str = """temp_engine/bert-fp16.engine"""
if args.inta:
SCREAMING_SNAKE_CASE : List[str] = """temp_engine/bert-int8.engine"""
# import ONNX file
if not os.path.exists("""temp_engine"""):
os.makedirs("""temp_engine""")
SCREAMING_SNAKE_CASE : int = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, """rb""") as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
SCREAMING_SNAKE_CASE : Any = [network.get_input(i) for i in range(network.num_inputs)]
SCREAMING_SNAKE_CASE : Tuple = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
SCREAMING_SNAKE_CASE : int = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
SCREAMING_SNAKE_CASE : str = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
SCREAMING_SNAKE_CASE : str = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, """wb""") as f:
f.write(engine.serialize())
def lowercase ( _snake_case : Union[str, Any] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : List[Any] ) ->Any:
"""simple docstring"""
__snake_case : Optional[int] = np.asarray(inputs['''input_ids'''] , dtype=np.intaa )
__snake_case : Optional[int] = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa )
__snake_case : Tuple = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , _snake_case )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , _snake_case )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , _snake_case )
# start time
__snake_case : int = time.time()
# Run inference
context.execute_async(
bindings=[int(_snake_case ) for d_inp in d_inputs] + [int(_snake_case ), int(_snake_case )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(_snake_case , _snake_case , _snake_case )
cuda.memcpy_dtoh_async(_snake_case , _snake_case , _snake_case )
# Synchronize the stream and take time
stream.synchronize()
# end time
__snake_case : List[str] = time.time()
__snake_case : str = end_time - start_time
__snake_case : List[Any] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
SCREAMING_SNAKE_CASE : Dict = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""",
datefmt="""%m/%d/%Y %H:%M:%S""",
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
SCREAMING_SNAKE_CASE : int = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError("""Evaluation requires a dataset name""")
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
SCREAMING_SNAKE_CASE : Union[str, Any] = raw_datasets["""validation"""].column_names
SCREAMING_SNAKE_CASE : str = """question""" if """question""" in column_names else column_names[0]
SCREAMING_SNAKE_CASE : List[Any] = """context""" if """context""" in column_names else column_names[1]
SCREAMING_SNAKE_CASE : int = """answers""" if """answers""" in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.padding_side == """right"""
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'
F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'
)
SCREAMING_SNAKE_CASE : List[str] = min(args.max_seq_length, tokenizer.model_max_length)
def lowercase ( _snake_case : List[str] ) ->Tuple:
"""simple docstring"""
__snake_case : Optional[Any] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
__snake_case : Union[str, Any] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=_snake_case , stride=args.doc_stride , return_overflowing_tokens=_snake_case , return_offsets_mapping=_snake_case , padding='''max_length''' , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
__snake_case : Optional[Any] = tokenized_examples.pop('''overflow_to_sample_mapping''' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
__snake_case : Dict = []
for i in range(len(tokenized_examples['''input_ids'''] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
__snake_case : Tuple = tokenized_examples.sequence_ids(_snake_case )
__snake_case : int = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
__snake_case : List[str] = sample_mapping[i]
tokenized_examples["example_id"].append(examples['''id'''][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
__snake_case : Optional[Any] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] )
]
return tokenized_examples
SCREAMING_SNAKE_CASE : int = raw_datasets["""validation"""]
# Validation Feature Creation
SCREAMING_SNAKE_CASE : str = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc="""Running tokenizer on validation dataset""",
)
SCREAMING_SNAKE_CASE : Tuple = default_data_collator
SCREAMING_SNAKE_CASE : Tuple = eval_dataset.remove_columns(["""example_id""", """offset_mapping"""])
SCREAMING_SNAKE_CASE : List[str] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def lowercase ( _snake_case : List[Any] , _snake_case : Dict , _snake_case : Tuple , _snake_case : Tuple="eval" ) ->Any:
"""simple docstring"""
__snake_case : Optional[Any] = postprocess_qa_predictions(
examples=_snake_case , features=_snake_case , predictions=_snake_case , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=_snake_case , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
__snake_case : Tuple = [
{'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items()
]
else:
__snake_case : str = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()]
__snake_case : List[Any] = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=_snake_case , label_ids=_snake_case )
SCREAMING_SNAKE_CASE : int = load_metric("""squad_v2""" if args.version_2_with_negative else """squad""")
# Evaluation!
logger.info("""Loading ONNX model %s for evaluation""", args.onnx_model_path)
with open(engine_name, """rb""") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def lowercase ( _snake_case : str ) ->Dict:
"""simple docstring"""
return trt.volume(engine.get_binding_shape(_snake_case ) ) * engine.get_binding_dtype(_snake_case ).itemsize
# Allocate device memory for inputs and outputs.
SCREAMING_SNAKE_CASE : int = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
SCREAMING_SNAKE_CASE : Any = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
SCREAMING_SNAKE_CASE : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes)
SCREAMING_SNAKE_CASE : Any = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
SCREAMING_SNAKE_CASE : Optional[int] = cuda.Stream()
# Evaluation
logger.info("""***** Running Evaluation *****""")
logger.info(F' Num examples = {len(eval_dataset)}')
logger.info(F' Batch size = {args.per_device_eval_batch_size}')
SCREAMING_SNAKE_CASE : Tuple = 0.0
SCREAMING_SNAKE_CASE : Tuple = 0
SCREAMING_SNAKE_CASE : Union[str, Any] = timeit.default_timer()
SCREAMING_SNAKE_CASE : Union[str, Any] = None
for step, batch in enumerate(eval_dataloader):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = outputs
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(start_logits)
SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
SCREAMING_SNAKE_CASE : Any = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
SCREAMING_SNAKE_CASE : Optional[int] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
SCREAMING_SNAKE_CASE : List[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
SCREAMING_SNAKE_CASE : Optional[int] = nested_truncate(all_preds, len(eval_dataset))
SCREAMING_SNAKE_CASE : Union[str, Any] = timeit.default_timer() - start_time
logger.info(""" Evaluation done in total %f secs (%f sec per example)""", evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info("""Average Inference Time = {:.3f} ms""".format(total_time * 1000 / niter))
logger.info("""Total Inference Time = {:.3f} ms""".format(total_time * 1000))
logger.info("""Total Number of Inference = %d""", niter)
SCREAMING_SNAKE_CASE : Tuple = post_processing_function(eval_examples, eval_dataset, all_preds)
SCREAMING_SNAKE_CASE : Tuple = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(F'Evaluation metrics: {eval_metric}')
| 24 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ):
'''simple docstring'''
__snake_case : Any = parent
__snake_case : int = batch_size
__snake_case : Dict = seq_length
__snake_case : List[str] = is_training
__snake_case : List[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Any = scope
__snake_case : Any = range_bbox
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : List[str] = bbox[i, j, 3]
__snake_case : Any = bbox[i, j, 1]
__snake_case : Tuple = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : List[str] = bbox[i, j, 2]
__snake_case : Union[str, Any] = bbox[i, j, 0]
__snake_case : Dict = t
__snake_case : Optional[int] = None
if self.use_input_mask:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__snake_case : Dict = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[Any] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ )
__snake_case : List[str] = model(a_ , bbox=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = self.num_labels
__snake_case : List[str] = LiltForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Dict = config_and_inputs
__snake_case : Any = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Dict = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = LiltModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ )
__snake_case : Dict = torch.tensor([[1, 2]] , device=a_ )
__snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ )
__snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] )
__snake_case : str = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , )
self.assertTrue(outputs.last_hidden_state.shape , a_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
| 24 | 1 |
"""simple docstring"""
import flax.linen as nn
import jax
import jax.numpy as jnp
class _UpperCAmelCase ( nn.Module ):
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =jnp.floataa
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__(self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case , __snake_case : int = hidden_states.shape
__snake_case : int = jax.image.resize(
a_ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , )
__snake_case : List[Any] = self.conv(a_ )
return hidden_states
class _UpperCAmelCase ( nn.Module ):
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =jnp.floataa
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__(self , a_ ):
'''simple docstring'''
__snake_case : List[str] = self.conv(a_ )
return hidden_states
class _UpperCAmelCase ( nn.Module ):
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =0.0
lowerCamelCase__ =None
lowerCamelCase__ =jnp.floataa
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels
__snake_case : Any = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__snake_case : Any = nn.Conv(
a_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__snake_case : List[str] = nn.Dense(a_ , dtype=self.dtype )
__snake_case : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
__snake_case : List[str] = nn.Dropout(self.dropout_prob )
__snake_case : Union[str, Any] = nn.Conv(
a_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
__snake_case : Optional[int] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
__snake_case : Any = None
if use_nin_shortcut:
__snake_case : Optional[Any] = nn.Conv(
a_ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , )
def __call__(self , a_ , a_ , a_=True ):
'''simple docstring'''
__snake_case : Dict = hidden_states
__snake_case : int = self.norma(a_ )
__snake_case : Tuple = nn.swish(a_ )
__snake_case : Dict = self.conva(a_ )
__snake_case : Union[str, Any] = self.time_emb_proj(nn.swish(a_ ) )
__snake_case : Dict = jnp.expand_dims(jnp.expand_dims(a_ , 1 ) , 1 )
__snake_case : List[Any] = hidden_states + temb
__snake_case : int = self.norma(a_ )
__snake_case : Dict = nn.swish(a_ )
__snake_case : int = self.dropout(a_ , a_ )
__snake_case : Tuple = self.conva(a_ )
if self.conv_shortcut is not None:
__snake_case : List[Any] = self.conv_shortcut(a_ )
return hidden_states + residual
| 24 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ):
'''simple docstring'''
__snake_case : List[Any] = parent
__snake_case : List[Any] = batch_size
__snake_case : str = seq_length
__snake_case : Any = is_training
__snake_case : Any = use_input_mask
__snake_case : str = use_token_type_ids
__snake_case : Dict = use_labels
__snake_case : int = vocab_size
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Dict = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : str = num_labels
__snake_case : Dict = num_choices
__snake_case : Optional[int] = scope
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Dict = None
if self.use_input_mask:
__snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Tuple = None
__snake_case : List[str] = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = DistilBertModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(a_ , a_ )
__snake_case : List[Any] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Optional[Any] = model(
a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = DistilBertForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.num_labels
__snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.num_choices
__snake_case : Any = DistilBertForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[int] = model(
a_ , attention_mask=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs
__snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
lowerCamelCase__ =(
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = DistilBertModelTester(self )
__snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Tuple = DistilBertModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__snake_case : List[str] = True
__snake_case : Tuple = model_class(config=a_ )
__snake_case : Any = self._prepare_for_class(a_ , a_ )
__snake_case : Dict = torch.jit.trace(
a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) )
__snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ )
loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__snake_case : List[Any] = model(a_ , attention_mask=a_ )[0]
__snake_case : Tuple = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , a_ )
__snake_case : Optional[int] = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
| 24 | 1 |
"""simple docstring"""
def lowercase ( _snake_case : str , _snake_case : str ) ->bool:
"""simple docstring"""
__snake_case : Optional[int] = len(_snake_case ) + 1
__snake_case : Optional[int] = len(_snake_case ) + 1
# dp is a 2d matrix where dp[i][j] denotes whether prefix string of
# length i of input_string matches with prefix string of length j of
# given pattern.
# "dp" stands for dynamic programming.
__snake_case : Tuple = [[0 for i in range(_snake_case )] for j in range(_snake_case )]
# since string of zero length match pattern of zero length
__snake_case : Tuple = 1
# since pattern of zero length will never match with string of non-zero length
for i in range(1 , _snake_case ):
__snake_case : List[Any] = 0
# since string of zero length will match with pattern where there
# is at least one * alternatively
for j in range(1 , _snake_case ):
__snake_case : Optional[int] = dp[0][j - 2] if pattern[j - 1] == '''*''' else 0
# now using bottom-up approach to find for all remaining lengths
for i in range(1 , _snake_case ):
for j in range(1 , _snake_case ):
if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".":
__snake_case : List[str] = dp[i - 1][j - 1]
elif pattern[j - 1] == "*":
if dp[i][j - 2] == 1:
__snake_case : Union[str, Any] = 1
elif pattern[j - 2] in (input_string[i - 1], "."):
__snake_case : str = dp[i - 1][j]
else:
__snake_case : str = 0
else:
__snake_case : Tuple = 0
return bool(dp[-1][-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
# inputing the strings
# input_string = input("input a string :")
# pattern = input("input a pattern :")
SCREAMING_SNAKE_CASE : Any = """aab"""
SCREAMING_SNAKE_CASE : str = """c*a*b"""
# using function to check whether given string matches the given pattern
if match_pattern(input_string, pattern):
print(F'{input_string} matches the given pattern {pattern}')
else:
print(F'{input_string} does not match with the given pattern {pattern}')
| 24 |
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]:
"""simple docstring"""
def get_masked_lm_array(_snake_case : str ):
__snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : str = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Any = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_array(_snake_case : str ):
__snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_layer_array(_snake_case : int , _snake_case : str ):
__snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[Any] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ):
__snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case )
__snake_case : int = array.reshape(_snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
print(f"""Loading model based on config from {config_path}...""" )
__snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case )
__snake_case : Dict = BertForMaskedLM(_snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__snake_case : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
__snake_case : BertSelfAttention = layer.attention.self
__snake_case : int = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__snake_case : List[Any] = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__snake_case : Union[str, Any] = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__snake_case : BertSelfOutput = layer.attention.output
__snake_case : Dict = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' )
__snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
__snake_case : BertIntermediate = layer.intermediate
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' )
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' )
# Output
__snake_case : BertOutput = layer.output
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' )
__snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' )
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' )
__snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' )
# Embeddings
__snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' )
__snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' )
__snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' )
__snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__snake_case : Optional[Any] = model.cls.predictions.transform
__snake_case : Dict = get_masked_lm_array('''dense/kernel''' )
__snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' )
__snake_case : str = get_masked_lm_array('''layer_norm/gamma''' )
__snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' )
__snake_case : Tuple = get_masked_lm_array('''embedding_table''' )
# Pooling
__snake_case : Optional[Any] = BertPooler(config=_snake_case )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(_snake_case )
# Integration test - should load without any errors ;)
__snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 24 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , a_=[0.5, 0.5, 0.5] , a_=[0.5, 0.5, 0.5] , a_=False , ):
'''simple docstring'''
__snake_case : str = size if size is not None else {'''height''': 20, '''width''': 20}
__snake_case : Tuple = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__snake_case : List[Any] = parent
__snake_case : List[str] = batch_size
__snake_case : str = num_channels
__snake_case : List[Any] = image_size
__snake_case : List[str] = min_resolution
__snake_case : Optional[Any] = max_resolution
__snake_case : Dict = do_resize
__snake_case : List[str] = size
__snake_case : Dict = do_center_crop
__snake_case : int = crop_size
__snake_case : int = do_normalize
__snake_case : Dict = image_mean
__snake_case : List[str] = image_std
__snake_case : List[str] = do_reduce_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def lowercase ( ) ->Any:
"""simple docstring"""
__snake_case : List[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
__snake_case : Optional[Any] = Image.open(dataset[0]['''file'''] )
__snake_case : int = Image.open(dataset[1]['''file'''] )
return image, map
def lowercase ( ) ->Optional[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' )
__snake_case : Any = Image.open(ds[0]['''file'''] )
__snake_case : List[str] = Image.open(ds[1]['''file'''] )
__snake_case : Optional[int] = Image.open(ds[2]['''file'''] )
__snake_case : List[str] = Image.open(ds[3]['''file'''] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =BeitImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = BeitImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(a_ , '''center_crop''' ) )
self.assertTrue(hasattr(a_ , '''do_normalize''' ) )
self.assertTrue(hasattr(a_ , '''image_mean''' ) )
self.assertTrue(hasattr(a_ , '''image_std''' ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 20, '''width''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
self.assertEqual(image_processor.do_reduce_labels , a_ )
__snake_case : Optional[int] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=a_ )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
self.assertEqual(image_processor.do_reduce_labels , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Any = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__snake_case : int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Any = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
__snake_case : Dict = []
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__snake_case : Optional[Any] = image_processing(image_inputs[0] , maps[0] , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched
__snake_case : str = image_processing(a_ , a_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test not batched input (PIL images)
__snake_case , __snake_case : List[Any] = prepare_semantic_single_inputs()
__snake_case : List[str] = image_processing(a_ , a_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
1,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
# Test batched input (PIL images)
__snake_case , __snake_case : Any = prepare_semantic_batch_inputs()
__snake_case : Dict = image_processing(a_ , a_ , return_tensors='''pt''' )
self.assertEqual(
encoding['''pixel_values'''].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(
encoding['''labels'''].shape , (
2,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
self.assertEqual(encoding['''labels'''].dtype , torch.long )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__snake_case , __snake_case : Dict = prepare_semantic_single_inputs()
__snake_case : str = image_processing(a_ , a_ , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 1_50 )
__snake_case : int = True
__snake_case : Any = image_processing(a_ , a_ , return_tensors='''pt''' )
self.assertTrue(encoding['''labels'''].min().item() >= 0 )
self.assertTrue(encoding['''labels'''].max().item() <= 2_55 )
| 24 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ):
'''simple docstring'''
super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ )
__snake_case : Union[str, Any] = Sql(
cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = None
__snake_case : Dict = None
__snake_case : Dict = None
__snake_case : List[str] = None
self.builder.download_and_prepare(
download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , )
# Build dataset for splits
__snake_case : Any = self.builder.as_dataset(
split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory )
return dataset
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
__snake_case : List[str] = dataset
__snake_case : Tuple = name
__snake_case : Optional[int] = con
__snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__snake_case : Dict = num_proc
__snake_case : Dict = to_sql_kwargs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ )
__snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ )
__snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ )
__snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Optional[Any] = args
__snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__snake_case : Dict = query_table(
table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__snake_case : Tuple = batch.to_pandas()
__snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ )
return num_rows or len(a_ )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : int = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 24 | 1 |
"""simple docstring"""
from math import factorial
def lowercase ( _snake_case : int , _snake_case : int ) ->int:
"""simple docstring"""
if n < k or k < 0:
raise ValueError('''Please enter positive integers for n and k where n >= k''' )
return factorial(_snake_case ) // (factorial(_snake_case ) * factorial(n - k ))
if __name__ == "__main__":
print(
"""The number of five-card hands possible from a standard""",
F'fifty-two card deck is: {combinations(52, 5)}\n',
)
print(
"""If a class of 40 students must be arranged into groups of""",
F'4 for group projects, there are {combinations(40, 4)} ways',
"""to arrange them.\n""",
)
print(
"""If 10 teams are competing in a Formula One race, there""",
F'are {combinations(10, 3)} ways that first, second and',
"""third place can be awarded.""",
)
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='lxmert'
lowerCamelCase__ ={}
def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_attention_heads
__snake_case : int = hidden_act
__snake_case : int = intermediate_size
__snake_case : Any = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : List[Any] = num_qa_labels
__snake_case : int = num_object_labels
__snake_case : Optional[Any] = num_attr_labels
__snake_case : Union[str, Any] = l_layers
__snake_case : Optional[int] = x_layers
__snake_case : Optional[int] = r_layers
__snake_case : Tuple = visual_feat_dim
__snake_case : Optional[int] = visual_pos_dim
__snake_case : Dict = visual_loss_normalizer
__snake_case : str = task_matched
__snake_case : Optional[Any] = task_mask_lm
__snake_case : List[str] = task_obj_predict
__snake_case : Optional[Any] = task_qa
__snake_case : Any = visual_obj_loss
__snake_case : int = visual_attr_loss
__snake_case : List[Any] = visual_feat_loss
__snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**a_ )
| 24 | 1 |
"""simple docstring"""
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
SCREAMING_SNAKE_CASE : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
if is_torch_available():
from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right
SCREAMING_SNAKE_CASE : str = 25_6047
SCREAMING_SNAKE_CASE : Union[str, Any] = 25_6145
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =NllbTokenizer
lowerCamelCase__ =NllbTokenizerFast
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ ={}
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__snake_case : Dict = NllbTokenizer(a_ , keep_accents=a_ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = NllbTokenizer(a_ , keep_accents=a_ )
__snake_case : Any = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(a_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(a_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__snake_case : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__snake_case : List[str] = tokenizer.convert_tokens_to_ids(a_ )
self.assertListEqual(
a_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
__snake_case : str = tokenizer.convert_ids_to_tokens(a_ )
self.assertListEqual(
a_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-nllb''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__snake_case : Any = self.rust_tokenizer_class.from_pretrained(a_ , **a_ )
__snake_case : str = self.tokenizer_class.from_pretrained(a_ , **a_ )
__snake_case : List[Any] = tempfile.mkdtemp()
__snake_case : List[Any] = tokenizer_r.save_pretrained(a_ )
__snake_case : Any = tokenizer_p.save_pretrained(a_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
__snake_case : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(a_ , a_ )
# Checks everything loads correctly in the same way
__snake_case : int = tokenizer_r.from_pretrained(a_ )
__snake_case : Dict = tokenizer_p.from_pretrained(a_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a_ , a_ ) )
shutil.rmtree(a_ )
# Save tokenizer rust, legacy_format=True
__snake_case : str = tempfile.mkdtemp()
__snake_case : Any = tokenizer_r.save_pretrained(a_ , legacy_format=a_ )
__snake_case : Dict = tokenizer_p.save_pretrained(a_ )
# Checks it save with the same files
self.assertSequenceEqual(a_ , a_ )
# Checks everything loads correctly in the same way
__snake_case : List[Any] = tokenizer_r.from_pretrained(a_ )
__snake_case : Any = tokenizer_p.from_pretrained(a_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a_ , a_ ) )
shutil.rmtree(a_ )
# Save tokenizer rust, legacy_format=False
__snake_case : Dict = tempfile.mkdtemp()
__snake_case : Optional[Any] = tokenizer_r.save_pretrained(a_ , legacy_format=a_ )
__snake_case : str = tokenizer_p.save_pretrained(a_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__snake_case : Union[str, Any] = tokenizer_r.from_pretrained(a_ )
__snake_case : Union[str, Any] = tokenizer_p.from_pretrained(a_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(a_ , a_ ) )
shutil.rmtree(a_ )
@require_torch
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if not self.test_seqaseq:
return
__snake_case : Tuple = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
# Longer text that will definitely require truncation.
__snake_case : List[str] = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for'''
''' Syria is that \'there is no military solution\' to the nearly five-year conflict and more weapons'''
''' will only worsen the violence and misery for millions of people.''',
]
__snake_case : Optional[Any] = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al'''
''' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'''
''' că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
try:
__snake_case : Optional[int] = tokenizer.prepare_seqaseq_batch(
src_texts=a_ , tgt_texts=a_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' , )
except NotImplementedError:
return
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 10 )
# max_target_length will default to max_length if not specified
__snake_case : Tuple = tokenizer.prepare_seqaseq_batch(
a_ , tgt_texts=a_ , max_length=3 , return_tensors='''pt''' )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.labels.shape[1] , 3 )
__snake_case : Optional[Any] = tokenizer.prepare_seqaseq_batch(
src_texts=a_ , max_length=3 , max_target_length=10 , return_tensors='''pt''' )
self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 )
self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 )
self.assertNotIn('''decoder_input_ids''' , a_ )
@unittest.skip('''Unfortunately way too slow to build a BPE with SentencePiece.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
__snake_case : str = [AddedToken('''<special>''' , lstrip=a_ )]
__snake_case : str = self.rust_tokenizer_class.from_pretrained(
a_ , additional_special_tokens=a_ , **a_ )
__snake_case : Dict = tokenizer_r.encode('''Hey this is a <special> token''' )
__snake_case : List[Any] = tokenizer_r.encode('''<special>''' , add_special_tokens=a_ )[0]
self.assertTrue(special_token_id in r_output )
if self.test_slow_tokenizer:
__snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(
a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Union[str, Any] = self.tokenizer_class.from_pretrained(
a_ , additional_special_tokens=a_ , **a_ )
__snake_case : Optional[int] = tokenizer_p.encode('''Hey this is a <special> token''' )
__snake_case : List[Any] = tokenizer_cr.encode('''Hey this is a <special> token''' )
self.assertEqual(a_ , a_ )
self.assertEqual(a_ , a_ )
self.assertTrue(special_token_id in p_output )
self.assertTrue(special_token_id in cr_output )
@require_torch
@require_sentencepiece
@require_tokenizers
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ ='facebook/nllb-200-distilled-600M'
lowerCamelCase__ =[
' UN Chief Says There Is No Military Solution in Syria',
' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.',
]
lowerCamelCase__ =[
'Şeful ONU declară că nu există o soluţie militară în Siria',
'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.',
]
lowerCamelCase__ =[
256047,
16297,
134408,
8165,
248066,
14734,
950,
1135,
105721,
3573,
83,
27352,
108,
49486,
2,
]
@classmethod
def SCREAMING_SNAKE_CASE (cls ):
'''simple docstring'''
__snake_case : NllbTokenizer = NllbTokenizer.from_pretrained(
cls.checkpoint_name , src_lang='''eng_Latn''' , tgt_lang='''ron_Latn''' )
__snake_case : Union[str, Any] = 1
return cls
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Arab'''] , 25_60_01 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ace_Latn'''] , 25_60_02 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''fra_Latn'''] , 25_60_57 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.assertIn(a_ , self.tokenizer.all_special_ids )
# fmt: off
__snake_case : str = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47]
# fmt: on
__snake_case : List[Any] = self.tokenizer.decode(a_ , skip_special_tokens=a_ )
__snake_case : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=a_ )
self.assertEqual(a_ , a_ )
self.assertNotIn(self.tokenizer.eos_token , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = ['''this is gunna be a long sentence ''' * 20]
assert isinstance(src_text[0] , a_ )
__snake_case : Optional[int] = 10
__snake_case : Optional[int] = self.tokenizer(a_ , max_length=a_ , truncation=a_ ).input_ids[0]
self.assertEqual(ids[-1] , 2 )
self.assertEqual(ids[0] , a_ )
self.assertEqual(len(a_ ) , a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_62_03, 3] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = tempfile.mkdtemp()
__snake_case : Union[str, Any] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(a_ )
__snake_case : Tuple = NllbTokenizer.from_pretrained(a_ )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , a_ )
@require_torch
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , )
__snake_case : List[Any] = shift_tokens_right(
batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id['''ron_Latn'''] )
self.assertIsInstance(a_ , a_ )
self.assertEqual((2, 15) , batch.input_ids.shape )
self.assertEqual((2, 15) , batch.attention_mask.shape )
__snake_case : Union[str, Any] = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , a_ )
self.assertEqual(a_ , batch.decoder_input_ids[0, 0] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.tokenizer(self.src_text , padding=a_ , truncation=a_ , max_length=3 , return_tensors='''pt''' )
__snake_case : int = self.tokenizer(
text_target=self.tgt_text , padding=a_ , truncation=a_ , max_length=10 , return_tensors='''pt''' )
__snake_case : Any = targets['''input_ids''']
__snake_case : List[str] = shift_tokens_right(
a_ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.tokenizer._build_translation_inputs(
'''A test''' , return_tensors='''pt''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
nested_simplify(a_ ) , {
# A, test, EOS, en_XX
'''input_ids''': [[25_60_47, 70, 73_56, 2]],
'''attention_mask''': [[1, 1, 1, 1]],
# ar_AR
'''forced_bos_token_id''': 25_60_57,
} , )
@require_torch
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = True
__snake_case : Optional[int] = self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] )
__snake_case : Union[str, Any] = False
__snake_case : str = self.tokenizer(
'''UN Chief says there is no military solution in Syria''' , src_lang='''eng_Latn''' , tgt_lang='''fra_Latn''' )
self.assertEqual(
inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = len(_snake_case )
__snake_case : str = sum(_snake_case )
__snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__snake_case : Optional[Any] = True
for i in range(1 , s + 1 ):
__snake_case : int = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__snake_case : Union[str, Any] = dp[i][j - 1]
if arr[i - 1] <= j:
__snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__snake_case : List[str] = s - 2 * j
break
return diff
| 24 | 1 |
"""simple docstring"""
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
SCREAMING_SNAKE_CASE : Any = """src/transformers"""
SCREAMING_SNAKE_CASE : Dict = """docs/source/en"""
SCREAMING_SNAKE_CASE : List[str] = """."""
def lowercase ( _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Tuple ) ->Optional[Any]:
"""simple docstring"""
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__snake_case : List[Any] = f.readlines()
# Find the start prompt.
__snake_case : Dict = 0
while not lines[start_index].startswith(_snake_case ):
start_index += 1
start_index += 1
__snake_case : Optional[int] = start_index
while not lines[end_index].startswith(_snake_case ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
SCREAMING_SNAKE_CASE : Optional[int] = """Model|Encoder|Decoder|ForConditionalGeneration"""
# Regexes that match TF/Flax/PT model names.
SCREAMING_SNAKE_CASE : List[Any] = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
SCREAMING_SNAKE_CASE : Optional[int] = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# This is to make sure the transformers module imported is the one in the repo.
SCREAMING_SNAKE_CASE : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowercase ( _snake_case : Any ) ->Optional[int]:
"""simple docstring"""
__snake_case : str = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , _snake_case )
return [m.group(0 ) for m in matches]
def lowercase ( _snake_case : Dict , _snake_case : List[str] ) ->List[Any]:
"""simple docstring"""
__snake_case : Optional[int] = 2 if text == '''✅''' or text == '''❌''' else len(_snake_case )
__snake_case : str = (width - text_length) // 2
__snake_case : List[str] = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowercase ( ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__snake_case : Optional[int] = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
__snake_case : Union[str, Any] = {name: config.replace('''Config''' , '''''' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
__snake_case : List[Any] = collections.defaultdict(_snake_case )
__snake_case : List[Any] = collections.defaultdict(_snake_case )
__snake_case : Optional[Any] = collections.defaultdict(_snake_case )
__snake_case : Optional[int] = collections.defaultdict(_snake_case )
__snake_case : Any = collections.defaultdict(_snake_case )
# Let's lookup through all transformers object (once).
for attr_name in dir(_snake_case ):
__snake_case : List[str] = None
if attr_name.endswith('''Tokenizer''' ):
__snake_case : Tuple = slow_tokenizers
__snake_case : Union[str, Any] = attr_name[:-9]
elif attr_name.endswith('''TokenizerFast''' ):
__snake_case : List[Any] = fast_tokenizers
__snake_case : Optional[int] = attr_name[:-13]
elif _re_tf_models.match(_snake_case ) is not None:
__snake_case : List[Any] = tf_models
__snake_case : int = _re_tf_models.match(_snake_case ).groups()[0]
elif _re_flax_models.match(_snake_case ) is not None:
__snake_case : Tuple = flax_models
__snake_case : Optional[int] = _re_flax_models.match(_snake_case ).groups()[0]
elif _re_pt_models.match(_snake_case ) is not None:
__snake_case : Optional[Any] = pt_models
__snake_case : List[Any] = _re_pt_models.match(_snake_case ).groups()[0]
if lookup_dict is not None:
while len(_snake_case ) > 0:
if attr_name in model_name_to_prefix.values():
__snake_case : Optional[int] = True
break
# Try again after removing the last word in the name
__snake_case : Dict = ''''''.join(camel_case_split(_snake_case )[:-1] )
# Let's build that table!
__snake_case : int = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
__snake_case : List[Any] = ['''Model''', '''Tokenizer slow''', '''Tokenizer fast''', '''PyTorch support''', '''TensorFlow support''', '''Flax Support''']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
__snake_case : int = [len(_snake_case ) + 2 for c in columns]
__snake_case : List[Any] = max([len(_snake_case ) for name in model_names] ) + 2
# Build the table per se
__snake_case : Optional[int] = '''|''' + '''|'''.join([_center_text(_snake_case , _snake_case ) for c, w in zip(_snake_case , _snake_case )] ) + '''|\n'''
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([''':''' + '''-''' * (w - 2) + ''':''' for w in widths] ) + "|\n"
__snake_case : Optional[int] = {True: '''✅''', False: '''❌'''}
for name in model_names:
__snake_case : Optional[Any] = model_name_to_prefix[name]
__snake_case : Optional[Any] = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_snake_case , _snake_case ) for l, w in zip(_snake_case , _snake_case )] ) + "|\n"
return table
def lowercase ( _snake_case : List[str]=False ) ->Dict:
"""simple docstring"""
__snake_case , __snake_case , __snake_case , __snake_case : int = _find_text_in_file(
filename=os.path.join(_snake_case , '''index.md''' ) , start_prompt='''<!--This table is updated automatically from the auto modules''' , end_prompt='''<!-- End table-->''' , )
__snake_case : Optional[Any] = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_snake_case , '''index.md''' ) , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'''The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
SCREAMING_SNAKE_CASE : List[str] = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 24 |
"""simple docstring"""
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
__snake_case : List[str] = mid
else:
__snake_case : str = mid
__snake_case : str = start + (end - start) / 2.0
return mid
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def lowercase ( _snake_case : int = 3 ) ->qiskit.result.counts.Counts:
"""simple docstring"""
if isinstance(_snake_case , _snake_case ):
raise TypeError('''number of qubits must be a integer.''' )
if number_of_qubits <= 0:
raise ValueError('''number of qubits must be > 0.''' )
if math.floor(_snake_case ) != number_of_qubits:
raise ValueError('''number of qubits must be exact integer.''' )
if number_of_qubits > 10:
raise ValueError('''number of qubits too large to simulate(>10).''' )
__snake_case : List[str] = QuantumRegister(_snake_case , '''qr''' )
__snake_case : Tuple = ClassicalRegister(_snake_case , '''cr''' )
__snake_case : int = QuantumCircuit(_snake_case , _snake_case )
__snake_case : Tuple = number_of_qubits
for i in range(_snake_case ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(_snake_case ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , _snake_case , _snake_case )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(_snake_case , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(_snake_case , _snake_case )
# simulate with 10000 shots
__snake_case : Optional[int] = Aer.get_backend('''qasm_simulator''' )
__snake_case : Any = execute(_snake_case , _snake_case , shots=10_000 )
return job.result().get_counts(_snake_case )
if __name__ == "__main__":
print(
F'Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}'
)
| 24 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 | 1 |
"""simple docstring"""
from bisect import bisect
from itertools import accumulate
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : List[str] , _snake_case : int ) ->Tuple:
"""simple docstring"""
__snake_case : str = sorted(zip(_snake_case , _snake_case ) , key=lambda _snake_case : x[0] / x[1] , reverse=_snake_case )
__snake_case , __snake_case : Optional[int] = [i[0] for i in r], [i[1] for i in r]
__snake_case : str = list(accumulate(_snake_case ) )
__snake_case : Dict = bisect(_snake_case , _snake_case )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' )
__snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 24 | 1 |
"""simple docstring"""
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"""pipelines_utils""",
"""0.22.0""",
"""Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""",
standard_warn=False,
stacklevel=3,
)
| 24 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : List[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Tuple = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =MBartTokenizer
lowerCamelCase__ =[]
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Tuple = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX'''
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__snake_case : Optional[int] = src_lang
__snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ )
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ )
__snake_case : int = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ):
'''simple docstring'''
__snake_case : int = src_lang
__snake_case : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
__snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : Optional[Any] = []
__snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Union[str, Any] = {
"""shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""",
# See all Nat models at https://huggingface.co/models?filter=nat
}
class _UpperCAmelCase ( __snake_case, __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='nat'
lowerCamelCase__ ={
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self , a_=4 , a_=3 , a_=64 , a_=[3, 4, 6, 5] , a_=[2, 4, 8, 16] , a_=7 , a_=3.0 , a_=True , a_=0.0 , a_=0.0 , a_=0.1 , a_="gelu" , a_=0.02 , a_=1E-5 , a_=0.0 , a_=None , a_=None , **a_ , ):
'''simple docstring'''
super().__init__(**a_ )
__snake_case : List[str] = patch_size
__snake_case : str = num_channels
__snake_case : Tuple = embed_dim
__snake_case : Union[str, Any] = depths
__snake_case : Optional[Any] = len(a_ )
__snake_case : Tuple = num_heads
__snake_case : str = kernel_size
__snake_case : Optional[int] = mlp_ratio
__snake_case : int = qkv_bias
__snake_case : Any = hidden_dropout_prob
__snake_case : List[str] = attention_probs_dropout_prob
__snake_case : Dict = drop_path_rate
__snake_case : List[str] = hidden_act
__snake_case : Union[str, Any] = layer_norm_eps
__snake_case : Optional[Any] = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
__snake_case : Optional[int] = int(embed_dim * 2 ** (len(a_ ) - 1) )
__snake_case : Any = layer_scale_init_value
__snake_case : Tuple = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(a_ ) + 1 )]
__snake_case , __snake_case : int = get_aligned_output_features_output_indices(
out_features=a_ , out_indices=a_ , stage_names=self.stage_names )
| 24 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 | 1 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from .config import config_command_parser
from .config_args import default_config_file, load_config_from_file # noqa: F401
from .default import default_command_parser
from .update import update_command_parser
def lowercase ( _snake_case : Dict=None ) ->int:
"""simple docstring"""
__snake_case : str = argparse.ArgumentParser(add_help=_snake_case , allow_abbrev=_snake_case )
# The main config parser
__snake_case : Tuple = config_command_parser(_snake_case )
# The subparser to add commands to
__snake_case : List[str] = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' )
# Then add other parsers with the parent parser
default_command_parser(_snake_case , parents=[parent_parser] )
update_command_parser(_snake_case , parents=[parent_parser] )
return config_parser
def lowercase ( ) ->Tuple:
"""simple docstring"""
__snake_case : Dict = get_config_parser()
__snake_case : Any = config_parser.parse_args()
if not hasattr(_snake_case , '''func''' ):
config_parser.print_help()
exit(1 )
# Run
args.func(_snake_case )
if __name__ == "__main__":
main()
| 24 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"""tanreinama/GPTSAN-2.8B-spout_is_uniform""": (
"""https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"""
),
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='gptsan-japanese'
lowerCamelCase__ =[
'past_key_values',
]
lowerCamelCase__ ={
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ):
'''simple docstring'''
__snake_case : Any = vocab_size
__snake_case : str = max_position_embeddings
__snake_case : Any = d_model
__snake_case : List[str] = d_ff
__snake_case : Dict = d_ext
__snake_case : Optional[Any] = d_spout
__snake_case : int = num_switch_layers
__snake_case : List[Any] = num_ext_layers
__snake_case : Any = num_switch_layers + num_ext_layers
__snake_case : Optional[int] = num_heads
__snake_case : Tuple = num_experts
__snake_case : List[Any] = expert_capacity
__snake_case : Dict = dropout_rate
__snake_case : Optional[Any] = layer_norm_epsilon
__snake_case : Dict = router_bias
__snake_case : str = router_jitter_noise
__snake_case : List[str] = router_dtype
__snake_case : Union[str, Any] = router_ignore_padding_tokens
__snake_case : List[str] = output_hidden_states
__snake_case : Optional[Any] = output_attentions
__snake_case : Any = initializer_factor
__snake_case : int = output_router_logits
__snake_case : Union[str, Any] = use_cache
super().__init__(
separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
| 24 | 1 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ):
'''simple docstring'''
__snake_case : Tuple = parent
__snake_case : str = batch_size
__snake_case : Tuple = seq_length
__snake_case : List[str] = is_training
__snake_case : Optional[Any] = use_input_mask
__snake_case : Union[str, Any] = use_token_type_ids
__snake_case : List[Any] = use_labels
__snake_case : Tuple = vocab_size
__snake_case : List[Any] = hidden_size
__snake_case : Union[str, Any] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : Any = intermediate_size
__snake_case : str = hidden_act
__snake_case : List[str] = hidden_dropout_prob
__snake_case : Dict = attention_probs_dropout_prob
__snake_case : Union[str, Any] = max_position_embeddings
__snake_case : int = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Optional[int] = num_choices
__snake_case : str = scope
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Any = None
if self.use_input_mask:
__snake_case : str = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Optional[Any] = None
if self.use_token_type_ids:
__snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : str = None
__snake_case : str = None
if self.use_labels:
__snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : Tuple = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = LlamaModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(a_ , attention_mask=a_ )
__snake_case : Tuple = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : int = True
__snake_case : Any = LlamaModel(a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(
a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , )
__snake_case : Tuple = model(
a_ , attention_mask=a_ , encoder_hidden_states=a_ , )
__snake_case : int = model(a_ , attention_mask=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = LlamaForCausalLM(config=a_ )
model.to(a_ )
model.eval()
__snake_case : str = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = True
__snake_case : int = True
__snake_case : Optional[Any] = LlamaForCausalLM(config=a_ )
model.to(a_ )
model.eval()
# first forward pass
__snake_case : List[Any] = model(
a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , use_cache=a_ , )
__snake_case : Optional[int] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__snake_case : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
__snake_case : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__snake_case : int = torch.cat([input_ids, next_tokens] , dim=-1 )
__snake_case : int = torch.cat([input_mask, next_mask] , dim=-1 )
__snake_case : int = model(
a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , output_hidden_states=a_ , )['''hidden_states'''][0]
__snake_case : List[Any] = model(
a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , past_key_values=a_ , output_hidden_states=a_ , )['''hidden_states'''][0]
# select random slice
__snake_case : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__snake_case : Optional[int] = output_from_no_past[:, -3:, random_slice_idx].detach()
__snake_case : Optional[int] = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1E-3 ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Any = config_and_inputs
__snake_case : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
lowerCamelCase__ =(LlamaForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ =(
{
'feature-extraction': LlamaModel,
'text-classification': LlamaForSequenceClassification,
'text-generation': LlamaForCausalLM,
'zero-shot': LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LlamaModelTester(self )
__snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : List[str] = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Tuple = 3
__snake_case : Any = input_dict['''input_ids''']
__snake_case : List[Any] = input_ids.ne(1 ).to(a_ )
__snake_case : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__snake_case : List[Any] = LlamaForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(a_ , attention_mask=a_ , labels=a_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Optional[Any] = 3
__snake_case : Tuple = '''single_label_classification'''
__snake_case : Optional[int] = input_dict['''input_ids''']
__snake_case : int = input_ids.ne(1 ).to(a_ )
__snake_case : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__snake_case : Tuple = LlamaForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(a_ , attention_mask=a_ , labels=a_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Dict = 3
__snake_case : int = '''multi_label_classification'''
__snake_case : Union[str, Any] = input_dict['''input_ids''']
__snake_case : Any = input_ids.ne(1 ).to(a_ )
__snake_case : Optional[int] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__snake_case : List[Any] = LlamaForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('''LLaMA buffers include complex numbers, which breaks this test''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
@parameterized.expand([('''linear''',), ('''dynamic''',)] )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
__snake_case : Any = ids_tensor([1, 10] , config.vocab_size )
__snake_case : int = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__snake_case : Any = LlamaModel(a_ )
original_model.to(a_ )
original_model.eval()
__snake_case : List[Any] = original_model(a_ ).last_hidden_state
__snake_case : str = original_model(a_ ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__snake_case : str = {'''type''': scaling_type, '''factor''': 10.0}
__snake_case : Optional[int] = LlamaModel(a_ )
scaled_model.to(a_ )
scaled_model.eval()
__snake_case : Union[str, Any] = scaled_model(a_ ).last_hidden_state
__snake_case : List[Any] = scaled_model(a_ ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(a_ , a_ , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(a_ , a_ , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(a_ , a_ , atol=1E-5 ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
__snake_case : Any = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-7b-hf''' , device_map='''auto''' )
__snake_case : List[str] = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__snake_case : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] )
torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__snake_case : List[str] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 )
@unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
__snake_case : Tuple = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-hf''' , device_map='''auto''' )
__snake_case : Union[str, Any] = model(torch.tensor(a_ ) )
# Expected mean on dim = -1
__snake_case : Dict = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] )
torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__snake_case : Tuple = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 )
@unittest.skip('''Logits are not exactly the same, once we fix the instabalities somehow, will update!''' )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
__snake_case : int = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' , device_map='''auto''' )
__snake_case : Dict = model(torch.tensor(a_ ) )
# Expected mean on dim = -1
__snake_case : List[str] = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] )
torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__snake_case : Dict = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
'''Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test''' )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = [1, 3_06, 46_58, 2_78, 65_93, 3_10, 28_34, 3_38]
__snake_case : List[Any] = LlamaForCausalLM.from_pretrained('''meta-llama/Llama-2-70b-hf''' , device_map='''auto''' )
__snake_case : List[Any] = model(torch.tensor(a_ ) )
__snake_case : Dict = torch.tensor(
[[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , a_ , atol=1E-2 , rtol=1E-2 )
# fmt: off
__snake_case : Tuple = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , a_ , atol=1E-5 , rtol=1E-5 )
@unittest.skip('''Model is curently gated''' )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi'''
__snake_case : Dict = '''Simply put, the theory of relativity states that '''
__snake_case : Optional[int] = LlamaTokenizer.from_pretrained('''meta-llama/Llama-2-13b-chat-hf''' )
__snake_case : Tuple = tokenizer.encode(a_ , return_tensors='''pt''' )
__snake_case : Optional[Any] = LlamaForCausalLM.from_pretrained(
'''meta-llama/Llama-2-13b-chat-hf''' , device_map='''sequential''' , use_safetensors=a_ )
# greedy generation outputs
__snake_case : Union[str, Any] = model.generate(a_ , max_new_tokens=64 , top_p=a_ , temperature=1 , do_sample=a_ )
__snake_case : List[str] = tokenizer.decode(generated_ids[0] , skip_special_tokens=a_ )
self.assertEqual(a_ , a_ )
| 24 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
SCREAMING_SNAKE_CASE : int = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
__snake_case : int = {}
with open(_snake_case , '''r''' ) as file:
for line_number, line in enumerate(_snake_case ):
__snake_case : Union[str, Any] = line.strip()
if line:
__snake_case : str = line.split()
__snake_case : Union[str, Any] = line_number
__snake_case : Dict = words[0]
__snake_case : str = value
return result
def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]:
"""simple docstring"""
for attribute in key.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : str = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape
elif weight_type is not None and weight_type == "param":
__snake_case : Optional[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : List[str] = shape_pointer.shape
# let's reduce dimension
__snake_case : int = value[0]
else:
__snake_case : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__snake_case : List[Any] = value
elif weight_type == "weight_g":
__snake_case : Tuple = value
elif weight_type == "weight_v":
__snake_case : str = value
elif weight_type == "bias":
__snake_case : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__snake_case : List[Any] = getattr(_snake_case , _snake_case )
__snake_case : int = value
else:
__snake_case : List[Any] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int:
"""simple docstring"""
__snake_case : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : List[str] = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : str = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__snake_case : Tuple = '''.'''.join([key, hf_param_name] )
else:
__snake_case : Optional[int] = key
__snake_case : List[Any] = value if '''lm_head''' in full_key else value[0]
SCREAMING_SNAKE_CASE : Tuple = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict:
"""simple docstring"""
__snake_case : Tuple = False
for key, mapped_key in MAPPING.items():
__snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__snake_case : int = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2]
__snake_case : Tuple = mapped_key.replace('''*''' , _snake_case )
if "weight_g" in name:
__snake_case : Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
__snake_case : List[str] = '''weight_v'''
elif "bias" in name:
__snake_case : Any = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case : List[Any] = '''weight'''
else:
__snake_case : Union[str, Any] = None
if hf_dict is not None:
rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
else:
set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
return is_used
return is_used
def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any:
"""simple docstring"""
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = fairseq_model.state_dict()
__snake_case : str = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : str = False
if "conv_layers" in name:
load_conv_layer(
_snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , )
__snake_case : Union[str, Any] = True
else:
__snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case )
if not is_used:
unused_weights.append(_snake_case )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
__snake_case : str = name.split('''.''' )
__snake_case : Optional[int] = int(items[0] )
__snake_case : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__snake_case : int = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__snake_case : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_snake_case )
@torch.no_grad()
def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict:
"""simple docstring"""
if config_path is not None:
__snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case )
else:
__snake_case : Tuple = WavaVecaConfig()
if is_seq_class:
__snake_case : Optional[int] = read_txt_into_dict(_snake_case )
__snake_case : List[Any] = idalabel
__snake_case : int = WavaVecaForSequenceClassification(_snake_case )
__snake_case : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
feature_extractor.save_pretrained(_snake_case )
elif is_finetuned:
if dict_path:
__snake_case : int = Dictionary.load(_snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Tuple = target_dict.pad_index
__snake_case : int = target_dict.bos_index
__snake_case : Tuple = target_dict.eos_index
__snake_case : Optional[Any] = len(target_dict.symbols )
__snake_case : Any = os.path.join(_snake_case , '''vocab.json''' )
if not os.path.isdir(_snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) )
return
os.makedirs(_snake_case , exist_ok=_snake_case )
__snake_case : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__snake_case : Dict = 0
__snake_case : List[Any] = 1
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_snake_case , _snake_case )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , )
__snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False
__snake_case : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
__snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case )
processor.save_pretrained(_snake_case )
__snake_case : Optional[int] = WavaVecaForCTC(_snake_case )
else:
__snake_case : Tuple = WavaVecaForPreTraining(_snake_case )
if is_finetuned or is_seq_class:
__snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' )
__snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case )
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case )
__snake_case : int = model[0].eval()
recursively_load_weights(_snake_case , _snake_case , not is_finetuned )
hf_wavavec.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 24 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_camembert import CamembertTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Tuple = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : Optional[int] = {
"""vocab_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model""",
},
"""tokenizer_file""": {
"""camembert-base""": """https://huggingface.co/camembert-base/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Dict = {
"""camembert-base""": 512,
}
SCREAMING_SNAKE_CASE : Tuple = """▁"""
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =CamembertTokenizer
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=["<s>NOTUSED", "</s>NOTUSED"] , **a_ , ):
'''simple docstring'''
__snake_case : Any = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : List[str] = vocab_file
__snake_case : List[str] = False if not self.vocab_file else True
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
__snake_case : Union[str, Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Optional[int] = [self.sep_token_id]
__snake_case : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__snake_case : Any = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=__snake_case ):
'''simple docstring'''
lowerCamelCase__ =['transformers', 'torch', 'note_seq']
def __init__(self , *a_ , **a_ ):
'''simple docstring'''
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
| 24 | 1 |
"""simple docstring"""
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Audio, Features, Value
from .base import TaskTemplate
@dataclass(frozen=__snake_case )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =field(default='automatic-speech-recognition', metadata={'include_in_asdict_even_if_is_default': True} )
lowerCamelCase__ =Features({'audio': Audio()} )
lowerCamelCase__ =Features({'transcription': Value('string' )} )
lowerCamelCase__ ="audio"
lowerCamelCase__ ="transcription"
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if self.audio_column not in features:
raise ValueError(f"""Column {self.audio_column} is not present in features.""" )
if not isinstance(features[self.audio_column] , a_ ):
raise ValueError(f"""Column {self.audio_column} is not an Audio type.""" )
__snake_case : Optional[int] = copy.deepcopy(self )
__snake_case : str = self.input_schema.copy()
__snake_case : List[str] = features[self.audio_column]
__snake_case : Tuple = input_schema
return task_template
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {self.audio_column: "audio", self.transcription_column: "transcription"}
| 24 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ):
'''simple docstring'''
__snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20}
__snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : Tuple = num_channels
__snake_case : List[str] = image_size
__snake_case : Optional[Any] = min_resolution
__snake_case : List[Any] = max_resolution
__snake_case : List[Any] = do_resize
__snake_case : Dict = size
__snake_case : Dict = do_center_crop
__snake_case : Dict = crop_size
__snake_case : str = do_flip_channel_order
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(a_ , '''center_crop''' ) )
self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 24 | 1 |
"""simple docstring"""
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = logging.get_logger()
# the current default level is logging.WARNING
__snake_case : Any = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = logging.get_verbosity()
__snake_case : Optional[int] = logging.get_logger('''transformers.models.bart.tokenization_bart''' )
__snake_case : str = '''Testing 1, 2, 3'''
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(a_ ) as cl:
logger.warning(a_ )
self.assertEqual(cl.out , msg + '''\n''' )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(a_ ) as cl:
logger.warning(a_ )
self.assertEqual(cl.out , '''''' )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(a_ ) as cl:
logger.warning(a_ )
self.assertEqual(cl.out , msg + '''\n''' )
# restore to the original level
logging.set_verbosity(a_ )
@mockenv(TRANSFORMERS_VERBOSITY='''error''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
__snake_case : List[str] = logging.get_logger('''transformers.models.bart.tokenization_bart''' )
__snake_case : Any = os.getenv('''TRANSFORMERS_VERBOSITY''' , a_ )
__snake_case : Union[str, Any] = logging.log_levels[env_level_str]
__snake_case : Tuple = logging.get_verbosity()
self.assertEqual(
a_ , a_ , f"""TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}""" , )
# restore to the original level
__snake_case : Dict = ''''''
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY='''super-error''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
transformers.utils.logging._reset_library_root_logger()
__snake_case : Union[str, Any] = logging.logging.getLogger()
with CaptureLogger(a_ ) as cl:
# this action activates the env var
logging.get_logger('''transformers.models.bart.tokenization_bart''' )
self.assertIn('''Unknown option TRANSFORMERS_VERBOSITY=super-error''' , cl.out )
# no need to restore as nothing was changed
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
transformers.utils.logging._reset_library_root_logger()
__snake_case : Tuple = logging.get_logger('''transformers.models.bart.tokenization_bart''' )
__snake_case : Optional[Any] = '''Testing 1, 2, 3'''
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''1''' ):
# nothing should be logged as env var disables this method
with CaptureLogger(a_ ) as cl:
logger.warning_advice(a_ )
self.assertEqual(cl.out , '''''' )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='''''' ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(a_ ) as cl:
logger.warning_advice(a_ )
self.assertEqual(cl.out , msg + '''\n''' )
def lowercase ( ) ->Any:
"""simple docstring"""
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 24 |
"""simple docstring"""
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : int = torch.nn.Linear(2 , 4 )
__snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
__snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
__snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def lowercase ( _snake_case : str ) ->Optional[Any]:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def lowercase ( _snake_case : Union[str, Any] ) ->Tuple:
"""simple docstring"""
__snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(_snake_case )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(a_ ):
__snake_case : Any = Accelerator(cpu=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case : Optional[int] = GradientState()
assert state.num_steps == 1
__snake_case : str = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__snake_case : List[Any] = False
assert state.sync_gradients is False
GradientState._reset_state()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*a_ , **a_ ):
pass
with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ):
__snake_case : List[Any] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : Any = get_signature(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# make sure loaded weights match
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : List[Any] = get_signature(a_ )
# saving hook
def save_config(a_ , a_ , a_ ):
__snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__}
with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f:
json.dump(a_ , a_ )
# loading hook
def load_config(a_ , a_ ):
with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f:
__snake_case : Any = json.load(a_ )
__snake_case : List[str] = config['''class_name''']
__snake_case : str = accelerator.register_save_state_pre_hook(a_ )
__snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Any = '''random'''
# make sure loaded weights match with hooks
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks removed
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Union[str, Any] = '''random'''
# make sure loaded weights match with hooks removed
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components()
__snake_case : Union[str, Any] = None
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertTrue(dummy_obj is None )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
__snake_case : Optional[int] = [1, 2, 3]
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , )
__snake_case : Optional[Any] = Accelerator()
# This should work
__snake_case : Any = accelerator.prepare(a_ )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Any = Accelerator()
with init_empty_weights():
__snake_case : List[str] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : Union[str, Any] = infer_auto_device_map(a_ )
__snake_case : str = '''cpu'''
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ )
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Dict = accelerator.prepare(a_ )
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU}
with init_empty_weights():
__snake_case : Any = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : List[Any] = infer_auto_device_map(a_ )
__snake_case : Dict = 1
__snake_case : str = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Any = Accelerator()
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Tuple = accelerator.prepare(a_ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
with init_empty_weights():
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
__snake_case : Tuple = infer_auto_device_map(a_ )
__snake_case : Tuple = 1
__snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Tuple = Accelerator()
# This should work
__snake_case : Dict = accelerator.prepare(a_ )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = torch.nn.Linear(10 , 10 )
__snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 )
__snake_case : Optional[Any] = Accelerator(cpu=a_ )
__snake_case : str = accelerator.prepare(a_ )
| 24 | 1 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( _snake_case : list[int] , _snake_case : list[int] , _snake_case : int ) ->tuple[float, list[float]]:
"""simple docstring"""
__snake_case : int = list(range(len(_snake_case ) ) )
__snake_case : Dict = [v / w for v, w in zip(_snake_case , _snake_case )]
index.sort(key=lambda _snake_case : ratio[i] , reverse=_snake_case )
__snake_case : float = 0
__snake_case : list[float] = [0] * len(_snake_case )
for i in index:
if weight[i] <= capacity:
__snake_case : Optional[Any] = 1
max_value += value[i]
capacity -= weight[i]
else:
__snake_case : Union[str, Any] = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
def lowercase ( _snake_case : int ) ->str:
"""simple docstring"""
if number > 0:
raise ValueError('''input must be a negative integer''' )
__snake_case : Any = len(bin(_snake_case )[3:] )
__snake_case : List[Any] = bin(abs(_snake_case ) - (1 << binary_number_length) )[3:]
__snake_case : Dict = (
(
'''1'''
+ '''0''' * (binary_number_length - len(_snake_case ))
+ twos_complement_number
)
if number < 0
else '''0'''
)
return "0b" + twos_complement_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 | 1 |
"""simple docstring"""
import csv
import tweepy
# Twitter API credentials
SCREAMING_SNAKE_CASE : Optional[Any] = ''''''
SCREAMING_SNAKE_CASE : Optional[int] = ''''''
SCREAMING_SNAKE_CASE : List[str] = ''''''
SCREAMING_SNAKE_CASE : Union[str, Any] = ''''''
def lowercase ( _snake_case : str ) ->None:
"""simple docstring"""
__snake_case : Dict = tweepy.OAuthHandler(_UpperCAmelCase , _UpperCAmelCase )
auth.set_access_token(_UpperCAmelCase , _UpperCAmelCase )
__snake_case : List[Any] = tweepy.API(_UpperCAmelCase )
# initialize a list to hold all the tweepy Tweets
__snake_case : Optional[int] = []
# make initial request for most recent tweets (200 is the maximum allowed count)
__snake_case : Tuple = api.user_timeline(screen_name=_UpperCAmelCase , count=200 )
# save most recent tweets
alltweets.extend(_UpperCAmelCase )
# save the id of the oldest tweet less one
__snake_case : List[Any] = alltweets[-1].id - 1
# keep grabbing tweets until there are no tweets left to grab
while len(_UpperCAmelCase ) > 0:
print(f"""getting tweets before {oldest}""" )
# all subsequent requests use the max_id param to prevent duplicates
__snake_case : str = api.user_timeline(
screen_name=_UpperCAmelCase , count=200 , max_id=_UpperCAmelCase )
# save most recent tweets
alltweets.extend(_UpperCAmelCase )
# update the id of the oldest tweet less one
__snake_case : Union[str, Any] = alltweets[-1].id - 1
print(f"""...{len(_UpperCAmelCase )} tweets downloaded so far""" )
# transform the tweepy tweets into a 2D array that will populate the csv
__snake_case : Any = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets]
# write the csv
with open(f"""new_{screen_name}_tweets.csv""" , '''w''' ) as f:
__snake_case : int = csv.writer(_UpperCAmelCase )
writer.writerow(['''id''', '''created_at''', '''text'''] )
writer.writerows(_UpperCAmelCase )
if __name__ == "__main__":
# pass in the username of the account you want to download
get_all_tweets("""FirePing32""")
| 350 |
"""simple docstring"""
def lowercase ( ) ->int:
"""simple docstring"""
return [
a * b * (1_000 - a - b)
for a in range(1 , 999 )
for b in range(_snake_case , 999 )
if (a * a + b * b == (1_000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 0 |
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowercase ( _snake_case : Any , _snake_case : bool = True , _snake_case : float = math.inf , _snake_case : float = -math.inf , _snake_case : float = math.inf , _snake_case : float = -math.inf , _snake_case : bool = False , _snake_case : float = 100 , _snake_case : float = 0.01 , _snake_case : float = 1 , ) ->Any:
"""simple docstring"""
__snake_case : Any = False
__snake_case : Optional[Any] = search_prob
__snake_case : str = start_temperate
__snake_case : Tuple = []
__snake_case : Tuple = 0
__snake_case : List[str] = None
while not search_end:
__snake_case : Tuple = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case : Optional[Any] = current_state
scores.append(lowercase__ )
iterations += 1
__snake_case : Union[str, Any] = None
__snake_case : List[str] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case : List[Any] = random.randint(0 , len(lowercase__ ) - 1 ) # picking a random neighbor
__snake_case : Optional[int] = neighbors.pop(lowercase__ )
__snake_case : Any = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case : Optional[Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case : Optional[int] = picked_neighbor
else:
__snake_case : List[Any] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case : Union[str, Any] = picked_neighbor
__snake_case : List[Any] = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case : Any = True
else:
__snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(lowercase__ ) , lowercase__ )
plt.xlabel('''Iterations''' )
plt.ylabel('''Function values''' )
plt.show()
return best_state
if __name__ == "__main__":
def lowercase ( _snake_case : Tuple , _snake_case : Union[str, Any] ) ->List[str]:
"""simple docstring"""
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
SCREAMING_SNAKE_CASE : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE : Optional[int] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
# starting the problem with initial coordinates (12, 47)
SCREAMING_SNAKE_CASE : List[Any] = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE : List[Any] = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'and 50 > y > - 5 found via hill climbing: {local_min.score()}'
)
def lowercase ( _snake_case : List[str] , _snake_case : str ) ->List[str]:
"""simple docstring"""
return (3 * x**2) - (6 * y)
SCREAMING_SNAKE_CASE : List[Any] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE : List[str] = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'{local_min.score()}'
)
SCREAMING_SNAKE_CASE : int = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
SCREAMING_SNAKE_CASE : List[Any] = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'{local_min.score()}'
)
| 351 |
"""simple docstring"""
def lowercase ( _snake_case : int = 100 ) ->int:
"""simple docstring"""
__snake_case : str = n * (n + 1) * (2 * n + 1) / 6
__snake_case : Dict = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'{solution() = }')
| 24 | 0 |
"""simple docstring"""
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
SCREAMING_SNAKE_CASE : Dict = """<<<<<<< This should probably be modified because it mentions: """
SCREAMING_SNAKE_CASE : Optional[Any] = """=======\n>>>>>>>\n"""
SCREAMING_SNAKE_CASE : Tuple = [
"""TextEncoderConfig""",
"""ByteTextEncoder""",
"""SubwordTextEncoder""",
"""encoder_config""",
"""maybe_build_from_corpus""",
"""manual_dir""",
]
SCREAMING_SNAKE_CASE : List[Any] = [
# (pattern, replacement)
# Order is important here for some replacements
(r"""tfds\.core""", r"""datasets"""),
(r"""tf\.io\.gfile\.GFile""", r"""open"""),
(r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""),
(r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""),
(r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""),
(r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""),
(r"""tfds\.features\.FeaturesDict\(""", r"""dict("""),
(r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""),
(r"""tfds\.""", r"""datasets."""),
(r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""),
(r"""self\.builder_config""", r"""self.config"""),
]
def lowercase ( _snake_case : List[Any] ) ->Tuple:
"""simple docstring"""
return ConvertCommand(args.tfds_path , args.datasets_directory )
class _UpperCAmelCase ( _UpperCAmelCase ):
'''simple docstring'''
@staticmethod
def SCREAMING_SNAKE_CASE (a_ ):
'''simple docstring'''
__snake_case : int = parser.add_parser(
'''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , )
train_parser.add_argument(
'''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , )
train_parser.add_argument(
'''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' )
train_parser.set_defaults(func=_UpperCAmelCase )
def __init__(self , a_ , a_ , *a_ ):
'''simple docstring'''
__snake_case : List[str] = get_logger('''datasets-cli/converting''' )
__snake_case : Optional[Any] = tfds_path
__snake_case : Dict = datasets_directory
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if os.path.isdir(self._tfds_path ):
__snake_case : Optional[Any] = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
__snake_case : Optional[int] = os.path.dirname(self._tfds_path )
else:
raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' )
__snake_case : int = os.path.abspath(self._datasets_directory )
self._logger.info(f"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" )
__snake_case : Tuple = []
__snake_case : Dict = []
__snake_case : Any = {}
if os.path.isdir(self._tfds_path ):
__snake_case : Dict = os.listdir(_UpperCAmelCase )
else:
__snake_case : Dict = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(f"""Looking at file {f_name}""" )
__snake_case : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
__snake_case : Optional[int] = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('''Skipping file''' )
continue
with open(_UpperCAmelCase , encoding='''utf-8''' ) as f:
__snake_case : Tuple = f.readlines()
__snake_case : Optional[Any] = []
__snake_case : Dict = False
__snake_case : List[str] = False
__snake_case : List[Any] = []
for line in lines:
__snake_case : List[str] = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
__snake_case : Optional[int] = '''import datasets\n'''
elif "import tensorflow" in out_line:
# order is important here
__snake_case : Dict = ''''''
continue
elif "from absl import logging" in out_line:
__snake_case : Tuple = '''from datasets import logging\n'''
elif "getLogger" in out_line:
__snake_case : Optional[Any] = out_line.replace('''getLogger''' , '''get_logger''' )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
__snake_case : Any = True
__snake_case : str = list(filter(lambda a_ : e in out_line , _UpperCAmelCase ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' )
out_lines.append(_UpperCAmelCase )
out_lines.append(_UpperCAmelCase )
continue
else:
for pattern, replacement in TO_CONVERT:
__snake_case : List[Any] = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
__snake_case : Any = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) )
__snake_case : List[str] = '''from . import ''' + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(f"""Error converting {out_line.strip()}""" )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
__snake_case : Optional[Any] = True
out_lines.append(_UpperCAmelCase )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
__snake_case : Dict = f_name.replace('''.py''' , '''''' )
__snake_case : Dict = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
__snake_case : Optional[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
self._logger.info(f"""Adding directory {output_dir}""" )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(_UpperCAmelCase )
if needs_manual_update:
with_manual_update.append(_UpperCAmelCase )
with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f:
f.writelines(_UpperCAmelCase )
self._logger.info(f"""Converted in {output_file}""" )
for utils_file in utils_files:
try:
__snake_case : str = os.path.basename(_UpperCAmelCase )
__snake_case : Union[str, Any] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )]
self._logger.info(f"""Moving {dest_folder} to {utils_file}""" )
shutil.copy(_UpperCAmelCase , _UpperCAmelCase )
except KeyError:
self._logger.error(f"""Cannot find destination folder for {utils_file}. Please copy manually.""" )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
f"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
| 352 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
SCREAMING_SNAKE_CASE : int = datasets.utils.logging.get_logger(__name__)
@dataclass
class _UpperCAmelCase ( datasets.BuilderConfig ):
'''simple docstring'''
lowerCamelCase__ =10000
lowerCamelCase__ =None
lowerCamelCase__ =None
class _UpperCAmelCase ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
lowerCamelCase__ =ParquetConfig
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if not self.config.data_files:
raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" )
__snake_case : int = dl_manager.download_and_extract(self.config.data_files )
if isinstance(a_ , (str, list, tuple) ):
__snake_case : Union[str, Any] = data_files
if isinstance(a_ , a_ ):
__snake_case : Union[str, Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : List[Any] = [dl_manager.iter_files(a_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )]
__snake_case : int = []
for split_name, files in data_files.items():
if isinstance(a_ , a_ ):
__snake_case : List[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
__snake_case : int = [dl_manager.iter_files(a_ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(a_ ):
with open(a_ , '''rb''' ) as f:
__snake_case : Any = datasets.Features.from_arrow_schema(pq.read_schema(a_ ) )
break
splits.append(datasets.SplitGenerator(name=a_ , gen_kwargs={'''files''': files} ) )
return splits
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
__snake_case : List[Any] = table_cast(a_ , self.info.features.arrow_schema )
return pa_table
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
f"""Tried to load parquet data with columns '{self.config.columns}' with mismatching features '{self.info.features}'""" )
for file_idx, file in enumerate(itertools.chain.from_iterable(a_ ) ):
with open(a_ , '''rb''' ) as f:
__snake_case : int = pq.ParquetFile(a_ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
__snake_case : Dict = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield f"""{file_idx}_{batch_idx}""", self._cast_table(a_ )
except ValueError as e:
logger.error(f"""Failed to read file '{file}' with error {type(a_ )}: {e}""" )
raise
| 24 | 0 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class _UpperCAmelCase ( A__ ):
'''simple docstring'''
lowerCamelCase__ : str =['image_processor', 'tokenizer']
lowerCamelCase__ : List[Any] ='OwlViTImageProcessor'
lowerCamelCase__ : Optional[int] =('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : str = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __snake_case , )
__snake_case : Optional[int] = kwargs.pop('''feature_extractor''' )
__snake_case : Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(__snake_case , __snake_case )
def __call__(self , a_=None , a_=None , a_=None , a_="max_length" , a_="np" , **a_ ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'''You have to specify at least one text or query image or image. All three cannot be none.''' )
if text is not None:
if isinstance(__snake_case , __snake_case ) or (isinstance(__snake_case , __snake_case ) and not isinstance(text[0] , __snake_case )):
__snake_case : List[Any] = [self.tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case , **__snake_case )]
elif isinstance(__snake_case , __snake_case ) and isinstance(text[0] , __snake_case ):
__snake_case : Optional[Any] = []
# Maximum number of queries across batch
__snake_case : Optional[Any] = max([len(__snake_case ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__snake_case ) != max_num_queries:
__snake_case : int = t + [''' '''] * (max_num_queries - len(__snake_case ))
__snake_case : Any = self.tokenizer(__snake_case , padding=__snake_case , return_tensors=__snake_case , **__snake_case )
encodings.append(__snake_case )
else:
raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' )
if return_tensors == "np":
__snake_case : str = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
__snake_case : Optional[int] = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__snake_case : Optional[Any] = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
__snake_case : Tuple = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__snake_case : Any = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 )
__snake_case : Tuple = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__snake_case : str = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 )
__snake_case : Optional[Any] = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 )
else:
raise ValueError('''Target return tensor type could not be returned''' )
__snake_case : str = BatchEncoding()
__snake_case : Optional[Any] = input_ids
__snake_case : int = attention_mask
if query_images is not None:
__snake_case : Dict = BatchEncoding()
__snake_case : Dict = self.image_processor(
__snake_case , return_tensors=__snake_case , **__snake_case ).pixel_values
__snake_case : List[Any] = query_pixel_values
if images is not None:
__snake_case : Union[str, Any] = self.image_processor(__snake_case , return_tensors=__snake_case , **__snake_case )
if text is not None and images is not None:
__snake_case : Any = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__snake_case : Any = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__snake_case ) , tensor_type=__snake_case )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.image_processor.post_process(*__snake_case , **__snake_case )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*__snake_case , **__snake_case )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*__snake_case , **__snake_case )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__snake_case , **__snake_case )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*__snake_case , **__snake_case )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __snake_case , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __snake_case , )
return self.image_processor
| 353 |
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__snake_case : Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''sshleifer/tiny-gpt2'''
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = '''sgugger/tiny-distilbert-classification'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , )
__snake_case : Optional[Any] = TensorFlowBenchmark(a_ )
__snake_case : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Any = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ )
__snake_case : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''sshleifer/tiny-gpt2'''
__snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Dict = TensorFlowBenchmark(a_ , [config] )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : int = TensorFlowBenchmark(a_ )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Dict = AutoConfig.from_pretrained(a_ )
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random'''
__snake_case : Tuple = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] )
__snake_case : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , )
__snake_case : Union[str, Any] = TensorFlowBenchmark(a_ )
benchmark.run()
self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(a_ ):
self.assertTrue(hasattr(a_ , '''sequential''' ) )
self.assertTrue(hasattr(a_ , '''cumulative''' ) )
self.assertTrue(hasattr(a_ , '''current''' ) )
self.assertTrue(hasattr(a_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ )
__snake_case : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
| 24 | 0 |
"""simple docstring"""
from graphs.minimum_spanning_tree_kruskal import kruskal
def lowercase ( ) ->Optional[Any]:
"""simple docstring"""
__snake_case : Optional[int] = 9
__snake_case : str = [
[0, 1, 4],
[0, 7, 8],
[1, 2, 8],
[7, 8, 7],
[7, 6, 1],
[2, 8, 2],
[8, 6, 6],
[2, 3, 7],
[2, 5, 4],
[6, 5, 2],
[3, 5, 14],
[3, 4, 9],
[5, 4, 10],
[1, 7, 11],
]
__snake_case : List[Any] = kruskal(lowerCamelCase__ , lowerCamelCase__ )
__snake_case : Optional[int] = [
[7, 6, 1],
[2, 8, 2],
[6, 5, 2],
[0, 1, 4],
[2, 5, 4],
[2, 3, 7],
[0, 7, 8],
[3, 4, 9],
]
assert sorted(lowerCamelCase__ ) == sorted(lowerCamelCase__ )
| 354 |
"""simple docstring"""
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
try:
import msvcrt
except ImportError:
SCREAMING_SNAKE_CASE : List[str] = None
try:
import fcntl
except ImportError:
SCREAMING_SNAKE_CASE : Tuple = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
SCREAMING_SNAKE_CASE : List[str] = OSError
# Data
# ------------------------------------------------
SCREAMING_SNAKE_CASE : List[Any] = [
"""Timeout""",
"""BaseFileLock""",
"""WindowsFileLock""",
"""UnixFileLock""",
"""SoftFileLock""",
"""FileLock""",
]
SCREAMING_SNAKE_CASE : List[Any] = """3.0.12"""
SCREAMING_SNAKE_CASE : int = None
def lowercase ( ) ->str:
"""simple docstring"""
global _logger
__snake_case : Union[str, Any] = _logger or logging.getLogger(__name__ )
return _logger
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = lock_file
return None
def __str__(self ):
'''simple docstring'''
__snake_case : Tuple = f"""The file lock '{self.lock_file}' could not be acquired."""
return temp
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = lock
return None
def __enter__(self ):
'''simple docstring'''
return self.lock
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.lock.release()
return None
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : List[Any] = max_filename_length if max_filename_length is not None else 2_55
# Hash the filename if it's too long
__snake_case : Dict = self.hash_filename_if_too_long(a_ , a_ )
# The path to the lock file.
__snake_case : str = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
__snake_case : Dict = None
# The default timeout value.
__snake_case : List[Any] = timeout
# We use this lock primarily for the lock counter.
__snake_case : Tuple = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
__snake_case : Optional[Any] = 0
return None
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._timeout
@timeout.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Dict = float(a_ )
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
raise NotImplementedError()
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._lock_file_fd is not None
def SCREAMING_SNAKE_CASE (self , a_=None , a_=0.05 ):
'''simple docstring'''
if timeout is None:
__snake_case : List[str] = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
__snake_case : Optional[int] = id(self )
__snake_case : str = self._lock_file
__snake_case : Optional[int] = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f"""Attempting to acquire lock {lock_id} on {lock_filename}""" )
self._acquire()
if self.is_locked:
logger().debug(f"""Lock {lock_id} acquired on {lock_filename}""" )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f"""Timeout on acquiring lock {lock_id} on {lock_filename}""" )
raise Timeout(self._lock_file )
else:
logger().debug(
f"""Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...""" )
time.sleep(a_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
__snake_case : Optional[int] = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def SCREAMING_SNAKE_CASE (self , a_=False ):
'''simple docstring'''
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
__snake_case : Tuple = id(self )
__snake_case : str = self._lock_file
logger().debug(f"""Attempting to release lock {lock_id} on {lock_filename}""" )
self._release()
__snake_case : Dict = 0
logger().debug(f"""Lock {lock_id} released on {lock_filename}""" )
return None
def __enter__(self ):
'''simple docstring'''
self.acquire()
return self
def __exit__(self , a_ , a_ , a_ ):
'''simple docstring'''
self.release()
return None
def __del__(self ):
'''simple docstring'''
self.release(force=a_ )
return None
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = os.path.basename(a_ )
if len(a_ ) > max_length and max_length > 0:
__snake_case : List[Any] = os.path.dirname(a_ )
__snake_case : Any = str(hash(a_ ) )
__snake_case : List[Any] = filename[: max_length - len(a_ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(a_ , a_ )
else:
return path
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
from .file_utils import relative_to_absolute_path
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
__snake_case : List[str] = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
__snake_case : Any = os.open(self._lock_file , a_ )
except OSError:
pass
else:
try:
msvcrt.locking(a_ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(a_ )
else:
__snake_case : Dict = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Dict = None
msvcrt.locking(a_ , msvcrt.LK_UNLCK , 1 )
os.close(a_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=-1 , a_=None ):
'''simple docstring'''
__snake_case : Optional[Any] = os.statvfs(os.path.dirname(a_ ) ).f_namemax
super().__init__(a_ , timeout=a_ , max_filename_length=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC
__snake_case : List[str] = os.open(self._lock_file , a_ )
try:
fcntl.flock(a_ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(a_ )
else:
__snake_case : Optional[int] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self._lock_file_fd
__snake_case : Tuple = None
fcntl.flock(a_ , fcntl.LOCK_UN )
os.close(a_ )
return None
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
__snake_case : Tuple = os.open(self._lock_file , a_ )
except OSError:
pass
else:
__snake_case : List[Any] = fd
return None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
os.close(self._lock_file_fd )
__snake_case : int = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
SCREAMING_SNAKE_CASE : Dict = None
if msvcrt:
SCREAMING_SNAKE_CASE : List[Any] = WindowsFileLock
elif fcntl:
SCREAMING_SNAKE_CASE : List[str] = UnixFileLock
else:
SCREAMING_SNAKE_CASE : str = SoftFileLock
if warnings is not None:
warnings.warn("""only soft file lock is available""")
| 24 | 0 |
import dataclasses
import json
import sys
import types
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError
from copy import copy
from enum import Enum
from inspect import isclass
from pathlib import Path
from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints
import yaml
SCREAMING_SNAKE_CASE : Optional[int] = NewType("""DataClass""", Any)
SCREAMING_SNAKE_CASE : Optional[int] = NewType("""DataClassType""", Any)
def lowercase ( _snake_case : Any ) ->Optional[int]:
"""simple docstring"""
if isinstance(__a , __a ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise ArgumentTypeError(
f"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" )
def lowercase ( _snake_case : list ) ->Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = {str(__a ): choice for choice in choices}
return lambda _snake_case : str_to_choice.get(__a , __a )
def lowercase ( *,
_snake_case : Union[str, List[str]] = None , _snake_case : str = None , _snake_case : Any = dataclasses.MISSING , _snake_case : Callable[[], Any] = dataclasses.MISSING , _snake_case : dict = None , **_snake_case : str , ) ->Optional[int]:
"""simple docstring"""
if metadata is None:
# Important, don't use as default param in function signature because dict is mutable and shared across function calls
__snake_case : str = {}
if aliases is not None:
__snake_case : Optional[Any] = aliases
if help is not None:
__snake_case : Union[str, Any] = help
return dataclasses.field(metadata=__a , default=__a , default_factory=__a , **__a )
class _UpperCAmelCase ( lowercase__ ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , **a_ ):
'''simple docstring'''
if "formatter_class" not in kwargs:
__snake_case : List[str] = ArgumentDefaultsHelpFormatter
super().__init__(**_a )
if dataclasses.is_dataclass(_a ):
__snake_case : Optional[int] = [dataclass_types]
__snake_case : Any = list(_a )
for dtype in self.dataclass_types:
self._add_dataclass_arguments(_a )
@staticmethod
def SCREAMING_SNAKE_CASE (a_ , a_ ):
'''simple docstring'''
__snake_case : str = f"""--{field.name}"""
__snake_case : int = field.metadata.copy()
# field.metadata is not used at all by Data Classes,
# it is provided as a third-party extension mechanism.
if isinstance(field.type , _a ):
raise RuntimeError(
'''Unresolved type detected, which should have been done with the help of '''
'''`typing.get_type_hints` method by default''' )
__snake_case : Union[str, Any] = kwargs.pop('''aliases''' , [] )
if isinstance(_a , _a ):
__snake_case : Union[str, Any] = [aliases]
__snake_case : str = getattr(field.type , '''__origin__''' , field.type )
if origin_type is Union or (hasattr(_a , '''UnionType''' ) and isinstance(_a , types.UnionType )):
if str not in field.type.__args__ and (
len(field.type.__args__ ) != 2 or type(_a ) not in field.type.__args__
):
raise ValueError(
'''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because'''
''' the argument parser only supports one type per argument.'''
f""" Problem encountered in field '{field.name}'.""" )
if type(_a ) not in field.type.__args__:
# filter `str` in Union
__snake_case : List[str] = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1]
__snake_case : List[Any] = getattr(field.type , '''__origin__''' , field.type )
elif bool not in field.type.__args__:
# filter `NoneType` in Union (except for `Union[bool, NoneType]`)
__snake_case : Tuple = (
field.type.__args__[0] if isinstance(_a , field.type.__args__[1] ) else field.type.__args__[1]
)
__snake_case : Dict = getattr(field.type , '''__origin__''' , field.type )
# A variable to store kwargs for a boolean field, if needed
# so that we can init a `no_*` complement argument (see below)
__snake_case : Any = {}
if origin_type is Literal or (isinstance(field.type , _a ) and issubclass(field.type , _a )):
if origin_type is Literal:
__snake_case : Optional[Any] = field.type.__args__
else:
__snake_case : List[str] = [x.value for x in field.type]
__snake_case : int = make_choice_type_function(kwargs['''choices'''] )
if field.default is not dataclasses.MISSING:
__snake_case : List[Any] = field.default
else:
__snake_case : Optional[int] = True
elif field.type is bool or field.type == Optional[bool]:
# Copy the currect kwargs to use to instantiate a `no_*` complement argument below.
# We do not initialize it here because the `no_*` alternative must be instantiated after the real argument
__snake_case : List[str] = copy(_a )
# Hack because type=bool in argparse does not behave as we want.
__snake_case : List[Any] = string_to_bool
if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING):
# Default value is False if we have no default when of type bool.
__snake_case : List[Any] = False if field.default is dataclasses.MISSING else field.default
# This is the value that will get picked if we don't include --field_name in any way
__snake_case : int = default
# This tells argparse we accept 0 or 1 value after --field_name
__snake_case : Dict = '?'
# This is the value that will get picked if we do --field_name (without value)
__snake_case : str = True
elif isclass(_a ) and issubclass(_a , _a ):
__snake_case : Any = field.type.__args__[0]
__snake_case : Optional[int] = '+'
if field.default_factory is not dataclasses.MISSING:
__snake_case : Union[str, Any] = field.default_factory()
elif field.default is dataclasses.MISSING:
__snake_case : Optional[Any] = True
else:
__snake_case : Union[str, Any] = field.type
if field.default is not dataclasses.MISSING:
__snake_case : Tuple = field.default
elif field.default_factory is not dataclasses.MISSING:
__snake_case : Union[str, Any] = field.default_factory()
else:
__snake_case : int = True
parser.add_argument(_a , *_a , **_a )
# Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added.
# Order is important for arguments with the same destination!
# We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down
# here and we do not need those changes/additional keys.
if field.default is True and (field.type is bool or field.type == Optional[bool]):
__snake_case : Optional[Any] = False
parser.add_argument(f"""--no_{field.name}""" , action='''store_false''' , dest=field.name , **_a )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if hasattr(_a , '''_argument_group_name''' ):
__snake_case : Union[str, Any] = self.add_argument_group(dtype._argument_group_name )
else:
__snake_case : Optional[Any] = self
try:
__snake_case : Dict[str, type] = get_type_hints(_a )
except NameError:
raise RuntimeError(
f"""Type resolution failed for {dtype}. Try declaring the class in global scope or """
'''removing line of `from __future__ import annotations` which opts in Postponed '''
'''Evaluation of Annotations (PEP 563)''' )
except TypeError as ex:
# Remove this block when we drop Python 3.9 support
if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(_a ):
__snake_case : Union[str, Any] = '.'.join(map(_a , sys.version_info[:3] ) )
raise RuntimeError(
f"""Type resolution failed for {dtype} on Python {python_version}. Try removing """
'''line of `from __future__ import annotations` which opts in union types as '''
'''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To '''
'''support Python versions that lower than 3.10, you need to use '''
'''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of '''
'''`X | None`.''' ) from ex
raise
for field in dataclasses.fields(_a ):
if not field.init:
continue
__snake_case : Any = type_hints[field.name]
self._parse_dataclass_field(_a , _a )
def SCREAMING_SNAKE_CASE (self , a_=None , a_=False , a_=True , a_=None , a_=None , ):
'''simple docstring'''
if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )):
__snake_case : Optional[Any] = []
if args_filename:
args_files.append(Path(_a ) )
elif look_for_args_file and len(sys.argv ):
args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) )
# args files specified via command line flag should overwrite default args files so we add them last
if args_file_flag:
# Create special parser just to extract the args_file_flag values
__snake_case : int = ArgumentParser()
args_file_parser.add_argument(_a , type=_a , action='''append''' )
# Use only remaining args for further parsing (remove the args_file_flag)
__snake_case : Dict = args_file_parser.parse_known_args(args=_a )
__snake_case : str = vars(_a ).get(args_file_flag.lstrip('''-''' ) , _a )
if cmd_args_file_paths:
args_files.extend([Path(_a ) for p in cmd_args_file_paths] )
__snake_case : Optional[Any] = []
for args_file in args_files:
if args_file.exists():
file_args += args_file.read_text().split()
# in case of duplicate arguments the last one has precedence
# args specified via the command line should overwrite args from files, so we add them last
__snake_case : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:]
__snake_case : str = self.parse_known_args(args=_a )
__snake_case : str = []
for dtype in self.dataclass_types:
__snake_case : int = {f.name for f in dataclasses.fields(_a ) if f.init}
__snake_case : Optional[int] = {k: v for k, v in vars(_a ).items() if k in keys}
for k in keys:
delattr(_a , _a )
__snake_case : Dict = dtype(**_a )
outputs.append(_a )
if len(namespace.__dict__ ) > 0:
# additional namespace.
outputs.append(_a )
if return_remaining_strings:
return (*outputs, remaining_args)
else:
if remaining_args:
raise ValueError(f"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" )
return (*outputs,)
def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ):
'''simple docstring'''
__snake_case : Optional[int] = set(args.keys() )
__snake_case : Optional[int] = []
for dtype in self.dataclass_types:
__snake_case : List[Any] = {f.name for f in dataclasses.fields(_a ) if f.init}
__snake_case : Dict = {k: v for k, v in args.items() if k in keys}
unused_keys.difference_update(inputs.keys() )
__snake_case : Optional[Any] = dtype(**_a )
outputs.append(_a )
if not allow_extra_keys and unused_keys:
raise ValueError(f"""Some keys are not used by the HfArgumentParser: {sorted(_a )}""" )
return tuple(_a )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ):
'''simple docstring'''
with open(Path(_a ) , encoding='''utf-8''' ) as open_json_file:
__snake_case : Dict = json.loads(open_json_file.read() )
__snake_case : Union[str, Any] = self.parse_dict(_a , allow_extra_keys=_a )
return tuple(_a )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = False ):
'''simple docstring'''
__snake_case : List[Any] = self.parse_dict(yaml.safe_load(Path(_a ).read_text() ) , allow_extra_keys=_a )
return tuple(_a )
| 355 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=99 , a_=24 , a_=2 , a_=6 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=None , a_=10_00 , ):
'''simple docstring'''
__snake_case : Any = parent
__snake_case : int = batch_size
__snake_case : Dict = seq_length
__snake_case : List[str] = is_training
__snake_case : List[Any] = use_input_mask
__snake_case : int = use_token_type_ids
__snake_case : Union[str, Any] = use_labels
__snake_case : str = vocab_size
__snake_case : int = hidden_size
__snake_case : Optional[int] = num_hidden_layers
__snake_case : int = num_attention_heads
__snake_case : str = intermediate_size
__snake_case : Union[str, Any] = hidden_act
__snake_case : int = hidden_dropout_prob
__snake_case : Union[str, Any] = attention_probs_dropout_prob
__snake_case : List[Any] = max_position_embeddings
__snake_case : Any = type_vocab_size
__snake_case : Dict = type_sequence_label_size
__snake_case : Optional[Any] = initializer_range
__snake_case : Union[str, Any] = num_labels
__snake_case : Any = scope
__snake_case : Any = range_bbox
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__snake_case : List[str] = bbox[i, j, 3]
__snake_case : Any = bbox[i, j, 1]
__snake_case : Tuple = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__snake_case : List[str] = bbox[i, j, 2]
__snake_case : Union[str, Any] = bbox[i, j, 0]
__snake_case : Dict = t
__snake_case : Optional[int] = None
if self.use_input_mask:
__snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
__snake_case : Dict = None
if self.use_token_type_ids:
__snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__snake_case : List[str] = None
__snake_case : Union[str, Any] = None
if self.use_labels:
__snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : List[Any] = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Any = model(a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ )
__snake_case : str = model(a_ , bbox=a_ , token_type_ids=a_ )
__snake_case : List[str] = model(a_ , bbox=a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = self.num_labels
__snake_case : List[str] = LiltForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Tuple = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
__snake_case : Optional[Any] = LiltForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(
a_ , bbox=a_ , attention_mask=a_ , token_type_ids=a_ , start_positions=a_ , end_positions=a_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.prepare_config_and_inputs()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Dict = config_and_inputs
__snake_case : Any = {
'''input_ids''': input_ids,
'''bbox''': bbox,
'''token_type_ids''': token_type_ids,
'''attention_mask''': input_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
lowerCamelCase__ =(
{
'feature-extraction': LiltModel,
'question-answering': LiltForQuestionAnswering,
'text-classification': LiltForSequenceClassification,
'token-classification': LiltForTokenClassification,
'zero-shot': LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =False
lowerCamelCase__ =False
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
return True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModelTester(self )
__snake_case : Optional[Any] = ConfigTester(self , config_class=a_ , hidden_size=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__snake_case : Dict = type
self.model_tester.create_and_check_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Any = LiltModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@require_torch
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(a_ )
__snake_case : Dict = torch.tensor([[1, 2]] , device=a_ )
__snake_case : str = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=a_ )
# forward pass
with torch.no_grad():
__snake_case : Union[str, Any] = model(input_ids=a_ , bbox=a_ )
__snake_case : Union[str, Any] = torch.Size([1, 2, 7_68] )
__snake_case : str = torch.tensor(
[[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=a_ , )
self.assertTrue(outputs.last_hidden_state.shape , a_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , a_ , atol=1E-3 ) )
| 24 | 0 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( _snake_case : int , _snake_case : int ) ->list[list[int]]:
"""simple docstring"""
__snake_case : List[Any] = []
create_all_state(1 , __snake_case , __snake_case , [] , __snake_case )
return result
def lowercase ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) ->None:
"""simple docstring"""
if level == 0:
total_list.append(current_list[:] )
return
for i in range(__snake_case , total_number - level + 2 ):
current_list.append(__snake_case )
create_all_state(i + 1 , __snake_case , level - 1 , __snake_case , __snake_case )
current_list.pop()
def lowercase ( _snake_case : list[list[int]] ) ->None:
"""simple docstring"""
for i in total_list:
print(*__snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Tuple = 4
SCREAMING_SNAKE_CASE : Union[str, Any] = 2
SCREAMING_SNAKE_CASE : Tuple = generate_all_combinations(n, k)
print_all_state(total_list)
| 356 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers import DistilBertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
)
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_=13 , a_=7 , a_=True , a_=True , a_=False , a_=True , a_=99 , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=16 , a_=2 , a_=0.02 , a_=3 , a_=4 , a_=None , ):
'''simple docstring'''
__snake_case : List[Any] = parent
__snake_case : List[Any] = batch_size
__snake_case : str = seq_length
__snake_case : Any = is_training
__snake_case : Any = use_input_mask
__snake_case : str = use_token_type_ids
__snake_case : Dict = use_labels
__snake_case : int = vocab_size
__snake_case : Union[str, Any] = hidden_size
__snake_case : List[str] = num_hidden_layers
__snake_case : str = num_attention_heads
__snake_case : Optional[int] = intermediate_size
__snake_case : str = hidden_act
__snake_case : Union[str, Any] = hidden_dropout_prob
__snake_case : Optional[Any] = attention_probs_dropout_prob
__snake_case : str = max_position_embeddings
__snake_case : Dict = type_vocab_size
__snake_case : List[Any] = type_sequence_label_size
__snake_case : Union[str, Any] = initializer_range
__snake_case : str = num_labels
__snake_case : Dict = num_choices
__snake_case : Optional[int] = scope
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__snake_case : Dict = None
if self.use_input_mask:
__snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__snake_case : Tuple = None
__snake_case : List[str] = None
__snake_case : Dict = None
if self.use_labels:
__snake_case : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__snake_case : List[Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return DistilBertConfig(
vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[str] = DistilBertModel(config=a_ )
model.to(a_ )
model.eval()
__snake_case : int = model(a_ , a_ )
__snake_case : List[Any] = model(a_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = DistilBertForMaskedLM(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Tuple = DistilBertForQuestionAnswering(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Optional[Any] = model(
a_ , attention_mask=a_ , start_positions=a_ , end_positions=a_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Any = self.num_labels
__snake_case : Optional[int] = DistilBertForSequenceClassification(a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : Union[str, Any] = self.num_labels
__snake_case : Optional[int] = DistilBertForTokenClassification(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Dict = model(a_ , attention_mask=a_ , labels=a_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = self.num_choices
__snake_case : Any = DistilBertForMultipleChoice(config=a_ )
model.to(a_ )
model.eval()
__snake_case : Union[str, Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__snake_case : Optional[int] = model(
a_ , attention_mask=a_ , labels=a_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.prepare_config_and_inputs()
((__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case) , (__snake_case)) : str = config_and_inputs
__snake_case : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =(
(
DistilBertModel,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
)
if is_torch_available()
else None
)
lowerCamelCase__ =(
{
'feature-extraction': DistilBertModel,
'fill-mask': DistilBertForMaskedLM,
'question-answering': DistilBertForQuestionAnswering,
'text-classification': DistilBertForSequenceClassification,
'token-classification': DistilBertForTokenClassification,
'zero-shot': DistilBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
lowerCamelCase__ =True
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = DistilBertModelTester(self )
__snake_case : List[str] = ConfigTester(self , config_class=a_ , dim=37 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_model(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_question_answering(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_token_classification(*a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ )
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case : Tuple = DistilBertModel.from_pretrained(a_ )
self.assertIsNotNone(a_ )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# BertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == DistilBertForMultipleChoice:
return
__snake_case : List[str] = True
__snake_case : Tuple = model_class(config=a_ )
__snake_case : Any = self._prepare_for_class(a_ , a_ )
__snake_case : Dict = torch.jit.trace(
a_ , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(a_ , os.path.join(a_ , '''traced_model.pt''' ) )
__snake_case : int = torch.jit.load(os.path.join(a_ , '''traced_model.pt''' ) , map_location=a_ )
loaded(inputs_dict['''input_ids'''].to(a_ ) , inputs_dict['''attention_mask'''].to(a_ ) )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = DistilBertModel.from_pretrained('''distilbert-base-uncased''' )
__snake_case : List[Any] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
__snake_case : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
__snake_case : List[Any] = model(a_ , attention_mask=a_ )[0]
__snake_case : Tuple = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , a_ )
__snake_case : Optional[int] = torch.tensor(
[[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , a_ , atol=1E-4 ) )
| 24 | 0 |
"""simple docstring"""
from __future__ import annotations
from scipy.special import comb # type: ignore
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[int] = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
__snake_case : str = len(_snake_case ) - 1
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__snake_case : Tuple = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , _snake_case ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(_snake_case ) , 5 ) == 1
return output_values
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
__snake_case : List[str] = self.basis_function(_snake_case )
__snake_case : Optional[int] = 0.0
__snake_case : Optional[int] = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def SCREAMING_SNAKE_CASE (self , a_ = 0.01 ):
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
__snake_case : List[Any] = [] # x coordinates of points to plot
__snake_case : List[str] = [] # y coordinates of points to plot
__snake_case : Any = 0.0
while t <= 1:
__snake_case : int = self.bezier_curve_function(_snake_case )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
__snake_case : List[Any] = [i[0] for i in self.list_of_points]
__snake_case : Tuple = [i[1] for i in self.list_of_points]
plt.plot(
_snake_case , _snake_case , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , )
plt.scatter(_snake_case , _snake_case , color='''red''' , label='''Control Points''' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 357 |
"""simple docstring"""
import argparse
import tensorflow as tf
import torch
from transformers import BertConfig, BertForMaskedLM
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertPooler,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( _snake_case : str , _snake_case : str , _snake_case : str ) ->List[Any]:
"""simple docstring"""
def get_masked_lm_array(_snake_case : str ):
__snake_case : int = f"""masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : str = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Any = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_array(_snake_case : str ):
__snake_case : List[str] = f"""encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Union[str, Any] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_layer_array(_snake_case : int , _snake_case : str ):
__snake_case : str = f"""encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Optional[int] = tf.train.load_variable(_snake_case , _snake_case )
if "kernel" in name:
__snake_case : Optional[Any] = array.transpose()
return torch.from_numpy(_snake_case )
def get_encoder_attention_layer_array(_snake_case : int , _snake_case : str , _snake_case : str ):
__snake_case : Any = f"""encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE"""
__snake_case : Dict = tf.train.load_variable(_snake_case , _snake_case )
__snake_case : int = array.reshape(_snake_case )
if "kernel" in name:
__snake_case : Optional[int] = array.transpose()
return torch.from_numpy(_snake_case )
print(f"""Loading model based on config from {config_path}...""" )
__snake_case : Optional[Any] = BertConfig.from_json_file(_snake_case )
__snake_case : Dict = BertForMaskedLM(_snake_case )
# Layers
for layer_index in range(0 , config.num_hidden_layers ):
__snake_case : BertLayer = model.bert.encoder.layer[layer_index]
# Self-attention
__snake_case : BertSelfAttention = layer.attention.self
__snake_case : int = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/kernel''' , self_attn.query.weight.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_query_dense/bias''' , self_attn.query.bias.data.shape )
__snake_case : str = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/kernel''' , self_attn.key.weight.data.shape )
__snake_case : List[Any] = get_encoder_attention_layer_array(
_snake_case , '''_key_dense/bias''' , self_attn.key.bias.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/kernel''' , self_attn.value.weight.data.shape )
__snake_case : Union[str, Any] = get_encoder_attention_layer_array(
_snake_case , '''_value_dense/bias''' , self_attn.value.bias.data.shape )
# Self-attention Output
__snake_case : BertSelfOutput = layer.attention.output
__snake_case : Dict = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/kernel''' , self_output.dense.weight.data.shape )
__snake_case : Tuple = get_encoder_attention_layer_array(
_snake_case , '''_output_dense/bias''' , self_output.dense.bias.data.shape )
__snake_case : str = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/gamma''' )
__snake_case : Any = get_encoder_layer_array(_snake_case , '''_attention_layer_norm/beta''' )
# Intermediate
__snake_case : BertIntermediate = layer.intermediate
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/kernel''' )
__snake_case : int = get_encoder_layer_array(_snake_case , '''_intermediate_dense/bias''' )
# Output
__snake_case : BertOutput = layer.output
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_dense/kernel''' )
__snake_case : Dict = get_encoder_layer_array(_snake_case , '''_output_dense/bias''' )
__snake_case : List[str] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/gamma''' )
__snake_case : Union[str, Any] = get_encoder_layer_array(_snake_case , '''_output_layer_norm/beta''' )
# Embeddings
__snake_case : Optional[int] = get_encoder_array('''_position_embedding_layer/embeddings''' )
__snake_case : str = get_encoder_array('''_type_embedding_layer/embeddings''' )
__snake_case : int = get_encoder_array('''_embedding_norm_layer/gamma''' )
__snake_case : Tuple = get_encoder_array('''_embedding_norm_layer/beta''' )
# LM Head
__snake_case : Optional[Any] = model.cls.predictions.transform
__snake_case : Dict = get_masked_lm_array('''dense/kernel''' )
__snake_case : Union[str, Any] = get_masked_lm_array('''dense/bias''' )
__snake_case : str = get_masked_lm_array('''layer_norm/gamma''' )
__snake_case : Tuple = get_masked_lm_array('''layer_norm/beta''' )
__snake_case : Tuple = get_masked_lm_array('''embedding_table''' )
# Pooling
__snake_case : Optional[Any] = BertPooler(config=_snake_case )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/kernel''' )
__snake_case : BertPooler = get_encoder_array('''_pooler_layer/bias''' )
# Export final model
model.save_pretrained(_snake_case )
# Integration test - should load without any errors ;)
__snake_case : Dict = BertForMaskedLM.from_pretrained(_snake_case )
print(new_model.eval() )
print('''Model conversion was done sucessfully!''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument(
"""--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow Token Dropping checkpoint path."""
)
parser.add_argument(
"""--bert_config_file""",
type=str,
required=True,
help="""The config json file corresponding to the BERT model. This specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""",
type=str,
required=True,
help="""Path to the output PyTorch model.""",
)
SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 24 | 0 |
"""simple docstring"""
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = 'hf-internal-testing/tiny-random-bert'
SCREAMING_SNAKE_CASE : Tuple = os.path.join(TRANSFORMERS_CACHE, """models--hf-internal-testing--tiny-random-bert""")
SCREAMING_SNAKE_CASE : Optional[int] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = cached_file(_UpperCamelCase , _UpperCamelCase )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(_UpperCamelCase ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) )
with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f:
__snake_case : Union[str, Any] = f.read()
self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) )
self.assertTrue(os.path.isfile(_UpperCamelCase ) )
# File is cached at the same place the second time.
__snake_case : int = cached_file(_UpperCamelCase , _UpperCamelCase )
self.assertEqual(_UpperCamelCase , _UpperCamelCase )
# Using a specific revision to test the full commit hash.
__snake_case : Union[str, Any] = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''9b8c223''' )
self.assertEqual(_UpperCamelCase , os.path.join(_UpperCamelCase , '''snapshots''' , _UpperCamelCase , _UpperCamelCase ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ):
__snake_case : Optional[int] = cached_file('''tiny-random-bert''' , _UpperCamelCase )
with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ):
__snake_case : Tuple = cached_file(_UpperCamelCase , _UpperCamelCase , revision='''aaaa''' )
with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ):
__snake_case : Dict = cached_file(_UpperCamelCase , '''conf''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with self.assertRaisesRegex(_UpperCamelCase , '''does not appear to have a file named''' ):
__snake_case : List[str] = cached_file(_UpperCamelCase , '''conf''' )
with open(os.path.join(_UpperCamelCase , '''refs''' , '''main''' ) ) as f:
__snake_case : str = f.read()
self.assertTrue(os.path.isfile(os.path.join(_UpperCamelCase , '''.no_exist''' , _UpperCamelCase , '''conf''' ) ) )
__snake_case : Dict = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_missing_entries=_UpperCamelCase )
self.assertIsNone(_UpperCamelCase )
__snake_case : List[Any] = cached_file(_UpperCamelCase , '''conf''' , local_files_only=_UpperCamelCase , _raise_exceptions_for_missing_entries=_UpperCamelCase )
self.assertIsNone(_UpperCamelCase )
__snake_case : Union[str, Any] = mock.Mock()
__snake_case : List[Any] = 5_00
__snake_case : List[Any] = {}
__snake_case : Union[str, Any] = HTTPError
__snake_case : Optional[Any] = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=_UpperCamelCase ) as mock_head:
__snake_case : Tuple = cached_file(_UpperCamelCase , '''conf''' , _raise_exceptions_for_connection_errors=_UpperCamelCase )
self.assertIsNone(_UpperCamelCase )
# This check we did call the fake head request
mock_head.assert_called()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , _UpperCamelCase ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''' , _UpperCamelCase )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(_UpperCamelCase , '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''' , _UpperCamelCase , revision='''ahaha''' )
__snake_case : Dict = get_file_from_repo('''bert-base-cased''' , _UpperCamelCase )
# The name is the cached name which is not very easy to test, so instead we load the content.
__snake_case : int = json.loads(open(_UpperCamelCase , '''r''' ).read() )
self.assertEqual(config['''hidden_size'''] , 7_68 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[int] = Path(_UpperCamelCase ) / """a.txt"""
filename.touch()
self.assertEqual(get_file_from_repo(_UpperCamelCase , '''a.txt''' ) , str(_UpperCamelCase ) )
self.assertIsNone(get_file_from_repo(_UpperCamelCase , '''b.txt''' ) )
| 358 |
"""simple docstring"""
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ = None , a_ = None , a_ = False , **a_ , ):
'''simple docstring'''
super().__init__(features=a_ , cache_dir=a_ , keep_in_memory=a_ , **a_ )
__snake_case : Union[str, Any] = Sql(
cache_dir=a_ , features=a_ , sql=a_ , con=a_ , **a_ , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = None
__snake_case : Dict = None
__snake_case : Dict = None
__snake_case : List[str] = None
self.builder.download_and_prepare(
download_config=a_ , download_mode=a_ , verification_mode=a_ , base_path=a_ , )
# Build dataset for splits
__snake_case : Any = self.builder.as_dataset(
split='''train''' , verification_mode=a_ , in_memory=self.keep_in_memory )
return dataset
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ = None , a_ = None , **a_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" )
__snake_case : List[str] = dataset
__snake_case : Tuple = name
__snake_case : Optional[int] = con
__snake_case : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__snake_case : Dict = num_proc
__snake_case : Dict = to_sql_kwargs
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.to_sql_kwargs.pop('''sql''' , a_ )
__snake_case : Union[str, Any] = self.to_sql_kwargs.pop('''con''' , a_ )
__snake_case : Any = self.to_sql_kwargs.pop('''index''' , a_ )
__snake_case : Optional[Any] = self._write(index=a_ , **self.to_sql_kwargs )
return written
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case , __snake_case , __snake_case : Optional[Any] = args
__snake_case : List[Any] = {**to_sql_kwargs, '''if_exists''': '''append'''} if offset > 0 else to_sql_kwargs
__snake_case : Dict = query_table(
table=self.dataset.data , key=slice(a_ , offset + self.batch_size ) , indices=self.dataset._indices , )
__snake_case : Tuple = batch.to_pandas()
__snake_case : str = df.to_sql(self.name , self.con , index=a_ , **a_ )
return num_rows or len(a_ )
def SCREAMING_SNAKE_CASE (self , a_ , **a_ ):
'''simple docstring'''
__snake_case : int = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__snake_case , __snake_case : Union[str, Any] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , a_ , a_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating SQL from Arrow format''' , ):
written += num_rows
return written
| 24 | 0 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
SCREAMING_SNAKE_CASE : Any = """src/diffusers"""
# Matches is_xxx_available()
SCREAMING_SNAKE_CASE : Dict = re.compile(r"""is\_([a-z_]*)_available\(\)""")
# Matches from xxx import bla
SCREAMING_SNAKE_CASE : List[str] = re.compile(r"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""")
SCREAMING_SNAKE_CASE : Tuple = """
{0} = None
"""
SCREAMING_SNAKE_CASE : Optional[Any] = """
class {0}(metaclass=DummyObject):
_backends = {1}
def __init__(self, *args, **kwargs):
requires_backends(self, {1})
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, {1})
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, {1})
"""
SCREAMING_SNAKE_CASE : Optional[int] = """
def {0}(*args, **kwargs):
requires_backends({0}, {1})
"""
def lowercase ( _snake_case : str ) ->Any:
"""simple docstring"""
__snake_case : Optional[int] = _re_backend.findall(_snake_case )
if len(_snake_case ) == 0:
return None
return "_and_".join(_snake_case )
def lowercase ( ) ->Dict:
"""simple docstring"""
with open(os.path.join(_snake_case , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__snake_case : Tuple = f.readlines()
# Get to the point we do the actual imports for type checking
__snake_case : int = 0
__snake_case : Any = {}
# Go through the end of the file
while line_index < len(_snake_case ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__snake_case : Dict = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
__snake_case : List[str] = []
# Until we unindent, add backend objects to the list
while line_index < len(_snake_case ) and len(lines[line_index] ) > 1:
__snake_case : Optional[int] = lines[line_index]
__snake_case : Optional[int] = _re_single_line_import.search(_snake_case )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(_snake_case ) > 0:
__snake_case : Dict = objects
else:
line_index += 1
return backend_specific_objects
def lowercase ( _snake_case : Any , _snake_case : int ) ->List[Any]:
"""simple docstring"""
if name.isupper():
return DUMMY_CONSTANT.format(_snake_case )
elif name.islower():
return DUMMY_FUNCTION.format(_snake_case , _snake_case )
else:
return DUMMY_CLASS.format(_snake_case , _snake_case )
def lowercase ( _snake_case : Union[str, Any]=None ) ->Optional[int]:
"""simple docstring"""
if backend_specific_objects is None:
__snake_case : Optional[int] = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__snake_case : Optional[Any] = {}
for backend, objects in backend_specific_objects.items():
__snake_case : Tuple = '''[''' + ''', '''.join(f"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']'''
__snake_case : Dict = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(_snake_case , _snake_case ) for o in objects] )
__snake_case : Dict = dummy_file
return dummy_files
def lowercase ( _snake_case : Optional[Any]=False ) ->str:
"""simple docstring"""
__snake_case : int = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__snake_case : Any = {'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
__snake_case : str = os.path.join(_snake_case , '''utils''' )
__snake_case : int = {
backend: os.path.join(_snake_case , f"""dummy_{short_names.get(_snake_case , _snake_case )}_objects.py""" )
for backend in dummy_files.keys()
}
__snake_case : Tuple = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(_snake_case ):
with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__snake_case : List[Any] = f.read()
else:
__snake_case : Optional[Any] = ''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f"""Updating diffusers.utils.dummy_{short_names.get(_snake_case , _snake_case )}_objects.py as the main """
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
f"""diffusers.utils.dummy_{short_names.get(_snake_case , _snake_case )}_objects.py. Run `make fix-copies` """
'''to fix this.''' )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
SCREAMING_SNAKE_CASE : str = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 359 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[int] = {
"""unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""",
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='lxmert'
lowerCamelCase__ ={}
def __init__(self , a_=3_05_22 , a_=7_68 , a_=12 , a_=95_00 , a_=16_00 , a_=4_00 , a_=30_72 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_12 , a_=2 , a_=0.02 , a_=1E-12 , a_=9 , a_=5 , a_=5 , a_=20_48 , a_=4 , a_=6.67 , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = vocab_size
__snake_case : List[str] = hidden_size
__snake_case : List[Any] = num_attention_heads
__snake_case : int = hidden_act
__snake_case : int = intermediate_size
__snake_case : Any = hidden_dropout_prob
__snake_case : List[Any] = attention_probs_dropout_prob
__snake_case : Tuple = max_position_embeddings
__snake_case : List[str] = type_vocab_size
__snake_case : str = initializer_range
__snake_case : Tuple = layer_norm_eps
__snake_case : List[Any] = num_qa_labels
__snake_case : int = num_object_labels
__snake_case : Optional[Any] = num_attr_labels
__snake_case : Union[str, Any] = l_layers
__snake_case : Optional[int] = x_layers
__snake_case : Optional[int] = r_layers
__snake_case : Tuple = visual_feat_dim
__snake_case : Optional[int] = visual_pos_dim
__snake_case : Dict = visual_loss_normalizer
__snake_case : str = task_matched
__snake_case : Optional[Any] = task_mask_lm
__snake_case : List[str] = task_obj_predict
__snake_case : Optional[Any] = task_qa
__snake_case : Any = visual_obj_loss
__snake_case : int = visual_attr_loss
__snake_case : List[Any] = visual_feat_loss
__snake_case : Optional[Any] = {'''vision''': r_layers, '''cross_encoder''': x_layers, '''language''': l_layers}
super().__init__(**a_ )
| 24 | 0 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = value
__snake_case : Node | None = None
__snake_case : Node | None = None
class _UpperCAmelCase :
'''simple docstring'''
def __init__(self , a_ ):
'''simple docstring'''
__snake_case : int = tree
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
if node is None:
return 0
return node.value + (
self.depth_first_search(node.left ) + self.depth_first_search(node.right )
)
def __iter__(self ):
'''simple docstring'''
yield self.depth_first_search(self.tree )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 360 |
"""simple docstring"""
def lowercase ( _snake_case : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
__snake_case : Tuple = len(_snake_case )
__snake_case : str = sum(_snake_case )
__snake_case : Dict = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
__snake_case : Optional[Any] = True
for i in range(1 , s + 1 ):
__snake_case : int = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
__snake_case : Union[str, Any] = dp[i][j - 1]
if arr[i - 1] <= j:
__snake_case : Tuple = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
__snake_case : List[str] = s - 2 * j
break
return diff
| 24 | 0 |
"""simple docstring"""
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
SCREAMING_SNAKE_CASE : Union[str, Any] = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
SCREAMING_SNAKE_CASE : Optional[Any] = typing.Union[np.floataa, int, float] # noqa: UP007
def lowercase ( _snake_case : Vector , _snake_case : Vector ) ->VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowerCAmelCase__ ) - np.asarray(lowerCAmelCase__ )) ** 2 ) )
def lowercase ( _snake_case : Vector , _snake_case : Vector ) ->VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ) ** (1 / 2)
if __name__ == "__main__":
def lowercase ( ) ->None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 361 |
"""simple docstring"""
from collections.abc import Callable
def lowercase ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) ->float:
"""simple docstring"""
__snake_case : float = a
__snake_case : float = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
__snake_case : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
__snake_case : List[str] = mid
else:
__snake_case : str = mid
__snake_case : str = start + (end - start) / 2.0
return mid
def lowercase ( _snake_case : float ) ->float:
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 24 | 0 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('CLIPTokenizer', 'CLIPTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : int = kwargs.pop('''feature_extractor''' )
__snake_case : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Any = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[Any] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = self.tokenizer.model_input_names
__snake_case : List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , a_ , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , a_ , )
return self.image_processor
| 362 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE : List[str] = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : str = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 24 | 0 |
"""simple docstring"""
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
SCREAMING_SNAKE_CASE : Any = abspath(join(dirname(__file__), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def lowercase ( _snake_case : str ) ->List[str]:
"""simple docstring"""
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def lowercase ( _snake_case : Union[str, Any] ) ->List[Any]:
"""simple docstring"""
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(_lowerCamelCase )
def lowercase ( _snake_case : Dict ) ->List[str]:
"""simple docstring"""
from transformers.testing_utils import pytest_terminal_summary_main
__snake_case : Dict = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase )
def lowercase ( _snake_case : Dict , _snake_case : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
if exitstatus == 5:
__snake_case : List[Any] = 0
# Doctest custom flag to ignore output.
SCREAMING_SNAKE_CASE : Optional[int] = doctest.register_optionflag("""IGNORE_RESULT""")
SCREAMING_SNAKE_CASE : Tuple = doctest.OutputChecker
class _UpperCAmelCase ( __lowercase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ):
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , a_ , a_ , a_ )
SCREAMING_SNAKE_CASE : str = CustomOutputChecker
SCREAMING_SNAKE_CASE : Optional[Any] = HfDoctestModule
SCREAMING_SNAKE_CASE : Optional[int] = HfDocTestParser
| 363 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =['image_processor', 'tokenizer']
lowerCamelCase__ ='CLIPImageProcessor'
lowerCamelCase__ =('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__(self , a_=None , a_=None , **a_ ):
'''simple docstring'''
__snake_case : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , a_ , )
__snake_case : Union[str, Any] = kwargs.pop('''feature_extractor''' )
__snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(a_ , a_ )
def __call__(self , a_=None , a_=None , a_=None , **a_ ):
'''simple docstring'''
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
__snake_case : Dict = self.tokenizer(a_ , return_tensors=a_ , **a_ )
if images is not None:
__snake_case : Optional[int] = self.image_processor(a_ , return_tensors=a_ , **a_ )
if text is not None and images is not None:
__snake_case : List[str] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**a_ ) , tensor_type=a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.batch_decode(*a_ , **a_ )
def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ):
'''simple docstring'''
return self.tokenizer.decode(*a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.tokenizer.model_input_names
__snake_case : Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 24 | 0 |
"""simple docstring"""
from math import ceil
def lowercase ( _snake_case : List[str] , _snake_case : Optional[Any] ) ->str:
"""simple docstring"""
__snake_case : List[Any] = list(range(0 , a_ ) )
__snake_case : Optional[Any] = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
__snake_case : Optional[int] = []
for i in device_map_blocks:
if device_map_blocks.count(a_ ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(a_ )
# Missing blocks
__snake_case : List[str] = [i for i in blocks if i not in device_map_blocks]
__snake_case : Tuple = [i for i in device_map_blocks if i not in blocks]
if len(a_ ) != 0:
raise ValueError(
'''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.'''
''' These attention blocks were specified more than once: ''' + str(a_ ) )
if len(a_ ) != 0:
raise ValueError(
'''There are attention blocks for this model that are not specified in the device_map. Add these attention '''
'''blocks to a device on the device_map: ''' + str(a_ ) )
if len(a_ ) != 0:
raise ValueError(
'''The device_map contains more attention blocks than this model has. Remove these from the device_map:'''
+ str(a_ ) )
def lowercase ( _snake_case : Optional[Any] , _snake_case : List[Any] ) ->Optional[int]:
"""simple docstring"""
__snake_case : Optional[int] = list(range(a_ ) )
__snake_case : Union[str, Any] = int(ceil(n_layers / len(a_ ) ) )
__snake_case : int = [layers[i : i + n_blocks] for i in range(0 , a_ , a_ )]
return dict(zip(a_ , a_ ) )
| 364 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
SCREAMING_SNAKE_CASE : Optional[int] = None
SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : int = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
SCREAMING_SNAKE_CASE : List[Any] = {
"""vocab_file""": {
"""facebook/mbart-large-en-ro""": (
"""https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model"""
),
"""facebook/mbart-large-cc25""": (
"""https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""",
"""facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""",
},
}
SCREAMING_SNAKE_CASE : Tuple = {
"""facebook/mbart-large-en-ro""": 1024,
"""facebook/mbart-large-cc25""": 1024,
}
# fmt: off
SCREAMING_SNAKE_CASE : List[Any] = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""]
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =VOCAB_FILES_NAMES
lowerCamelCase__ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ =PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ =['input_ids', 'attention_mask']
lowerCamelCase__ =MBartTokenizer
lowerCamelCase__ =[]
lowerCamelCase__ =[]
def __init__(self , a_=None , a_=None , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_=None , a_=None , a_=None , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
vocab_file=a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , cls_token=a_ , unk_token=a_ , pad_token=a_ , mask_token=a_ , src_lang=a_ , tgt_lang=a_ , additional_special_tokens=a_ , **a_ , )
__snake_case : Tuple = vocab_file
__snake_case : Optional[Any] = False if not self.vocab_file else True
__snake_case : Dict = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
__snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(a_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
__snake_case : List[Any] = src_lang if src_lang is not None else '''en_XX'''
__snake_case : Any = self.convert_tokens_to_ids(self._src_lang )
__snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
__snake_case : Tuple = [self.sep_token_id]
__snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , **a_ ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
__snake_case : Optional[int] = src_lang
__snake_case : Tuple = self(a_ , add_special_tokens=a_ , return_tensors=a_ , **a_ )
__snake_case : Union[str, Any] = self.convert_tokens_to_ids(a_ )
__snake_case : int = tgt_lang_id
return inputs
def SCREAMING_SNAKE_CASE (self , a_ , a_ = "en_XX" , a_ = None , a_ = "ro_RO" , **a_ , ):
'''simple docstring'''
__snake_case : int = src_lang
__snake_case : List[Any] = tgt_lang
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_src_lang_special_tokens(self.src_lang )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : List[Any] = []
__snake_case : Any = [self.eos_token_id, self.cur_lang_code]
__snake_case : List[str] = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
__snake_case : int = self.convert_tokens_to_ids(a_ )
__snake_case : Optional[Any] = []
__snake_case : Dict = [self.eos_token_id, self.cur_lang_code]
__snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens )
__snake_case : Any = self.convert_ids_to_tokens(self.suffix_tokens )
__snake_case : Tuple = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(a_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" )
return
__snake_case : Optional[Any] = os.path.join(
a_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 24 | 0 |
"""simple docstring"""
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
SCREAMING_SNAKE_CASE : List[str] = 16
SCREAMING_SNAKE_CASE : Optional[int] = 32
def lowercase ( _snake_case : Accelerator , _snake_case : int = 16 ) ->Union[str, Any]:
"""simple docstring"""
__snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__snake_case : Tuple = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(_snake_case : Tuple ):
# max_length=None => use the model max length (it's actually the default)
__snake_case : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__snake_case : List[str] = datasets.map(
__a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__snake_case : Dict = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(_snake_case : Dict ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__snake_case : str = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__snake_case : List[Any] = 16
elif accelerator.mixed_precision != "no":
__snake_case : List[str] = 8
else:
__snake_case : Union[str, Any] = None
return tokenizer.pad(
__a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , )
# Instantiate dataloaders.
__snake_case : Any = DataLoader(
tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
__snake_case : Any = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
SCREAMING_SNAKE_CASE : Optional[Any] = mocked_dataloaders # noqa: F811
def lowercase ( _snake_case : List[Any] , _snake_case : Optional[Any] ) ->Any:
"""simple docstring"""
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1":
__snake_case : Optional[Any] = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
__snake_case : Tuple = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
__snake_case : Optional[Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__snake_case : int = config['''lr''']
__snake_case : Optional[int] = int(config['''num_epochs'''] )
__snake_case : Optional[Any] = int(config['''seed'''] )
__snake_case : Dict = int(config['''batch_size'''] )
set_seed(__a )
__snake_case : Optional[int] = get_dataloaders(__a , __a )
__snake_case : List[str] = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__snake_case : Any = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__snake_case : Tuple = batch_size // MAX_GPU_BATCH_SIZE
__snake_case : Dict = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__snake_case : Any = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__snake_case : Dict = model.to(accelerator.device )
# Instantiate optimizer
__snake_case : Tuple = AdamW(params=model.parameters() , lr=__a )
# Instantiate scheduler
__snake_case : Dict = get_linear_schedule_with_warmup(
optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__snake_case : Tuple = accelerator.prepare(
__a , __a , __a , __a , __a )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
__snake_case : Optional[int] = os.path.split(__a )[-1].split('''.''' )[0]
accelerator.init_trackers(__a , __a )
# Now we train the model
for epoch in range(__a ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
__snake_case : Tuple = 0
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__snake_case : int = model(**__a )
__snake_case : Optional[int] = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
__snake_case : Optional[Any] = loss / gradient_accumulation_steps
accelerator.backward(__a )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__a ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
__snake_case : Optional[int] = model(**__a )
__snake_case : Union[str, Any] = outputs.logits.argmax(dim=-1 )
__snake_case : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__a , references=__a , )
__snake_case : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , __a )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(__a ),
'''epoch''': epoch,
} , step=__a , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=__a , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
__snake_case : Optional[int] = parser.parse_args()
__snake_case : Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(__a , __a )
if __name__ == "__main__":
main()
| 365 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
SCREAMING_SNAKE_CASE : Union[str, Any] = logging.getLogger(__name__)
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
@dataclass(frozen=__snake_case )
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
lowerCamelCase__ =None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = None , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : Any = hans_processors[task]()
__snake_case : int = os.path.join(
a_ , '''cached_{}_{}_{}_{}'''.format(
'''dev''' if evaluate else '''train''' , tokenizer.__class__.__name__ , str(a_ ) , a_ , ) , )
__snake_case : Tuple = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Dict = label_list[2], label_list[1]
__snake_case : Any = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__snake_case : int = cached_features_file + '''.lock'''
with FileLock(a_ ):
if os.path.exists(a_ ) and not overwrite_cache:
logger.info(f"""Loading features from cached file {cached_features_file}""" )
__snake_case : Union[str, Any] = torch.load(a_ )
else:
logger.info(f"""Creating features from dataset file at {data_dir}""" )
__snake_case : Dict = (
processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
)
logger.info('''Training examples: %s''' , len(a_ ) )
__snake_case : Optional[int] = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
logger.info('''Saving features into cached file %s''' , a_ )
torch.save(self.features , a_ )
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
if is_tf_available():
import tensorflow as tf
class _UpperCAmelCase :
'''simple docstring'''
lowerCamelCase__ =42
def __init__(self , a_ , a_ , a_ , a_ = 1_28 , a_=False , a_ = False , ):
'''simple docstring'''
__snake_case : List[Any] = hans_processors[task]()
__snake_case : str = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
__snake_case , __snake_case : Tuple = label_list[2], label_list[1]
__snake_case : Dict = label_list
__snake_case : Optional[Any] = processor.get_dev_examples(a_ ) if evaluate else processor.get_train_examples(a_ )
__snake_case : Dict = hans_convert_examples_to_features(a_ , a_ , a_ , a_ )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc='''convert examples to features''' ):
if ex_index % 1_00_00 == 0:
logger.info('''Writing example %d of %d''' % (ex_index, len(a_ )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
__snake_case : Union[str, Any] = tf.data.Dataset.from_generator(
a_ , (
{
'''example_id''': tf.intaa,
'''input_ids''': tf.intaa,
'''attention_mask''': tf.intaa,
'''token_type_ids''': tf.intaa,
},
tf.intaa,
) , (
{
'''example_id''': tf.TensorShape([] ),
'''input_ids''': tf.TensorShape([None, None] ),
'''attention_mask''': tf.TensorShape([None, None] ),
'''token_type_ids''': tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.dataset
def __len__(self ):
'''simple docstring'''
return len(self.features )
def __getitem__(self , a_ ):
'''simple docstring'''
return self.features[i]
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.label_list
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_train_set.txt''' ) ) , '''train''' )
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
return self._create_examples(self._read_tsv(os.path.join(a_ , '''heuristics_evaluation_set.txt''' ) ) , '''dev''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return ["contradiction", "entailment", "neutral"]
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : List[Any] = []
for i, line in enumerate(a_ ):
if i == 0:
continue
__snake_case : Tuple = '''%s-%s''' % (set_type, line[0])
__snake_case : Dict = line[5]
__snake_case : int = line[6]
__snake_case : Dict = line[7][2:] if line[7].startswith('''ex''' ) else line[7]
__snake_case : List[Any] = line[0]
examples.append(InputExample(guid=a_ , text_a=a_ , text_b=a_ , label=a_ , pairID=a_ ) )
return examples
def lowercase ( _snake_case : List[InputExample] , _snake_case : List[str] , _snake_case : int , _snake_case : PreTrainedTokenizer , ) ->List[str]:
"""simple docstring"""
__snake_case : Optional[int] = {label: i for i, label in enumerate(_snake_case )}
__snake_case : Tuple = []
for ex_index, example in tqdm.tqdm(enumerate(_snake_case ) , desc='''convert examples to features''' ):
if ex_index % 10_000 == 0:
logger.info('''Writing example %d''' % (ex_index) )
__snake_case : List[Any] = tokenizer(
example.text_a , example.text_b , add_special_tokens=_snake_case , max_length=_snake_case , padding='''max_length''' , truncation=_snake_case , return_overflowing_tokens=_snake_case , )
__snake_case : List[Any] = label_map[example.label] if example.label in label_map else 0
__snake_case : Union[str, Any] = int(example.pairID )
features.append(InputFeatures(**_snake_case , label=_snake_case , pairID=_snake_case ) )
for i, example in enumerate(examples[:5] ):
logger.info('''*** Example ***''' )
logger.info(f"""guid: {example}""" )
logger.info(f"""features: {features[i]}""" )
return features
SCREAMING_SNAKE_CASE : Dict = {
"""hans""": 3,
}
SCREAMING_SNAKE_CASE : str = {
"""hans""": HansProcessor,
}
| 24 | 0 |
"""simple docstring"""
import gc
import inspect
import unittest
import torch
from parameterized import parameterized
from diffusers import PriorTransformer
from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin
enable_full_determinism()
class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =PriorTransformer
lowerCamelCase__ ="hidden_states"
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = 4
__snake_case : Optional[int] = 8
__snake_case : Tuple = 7
__snake_case : Optional[Any] = floats_tensor((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__snake_case : Any = floats_tensor((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__snake_case : str = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(__UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def SCREAMING_SNAKE_CASE (self , a_=0 ):
'''simple docstring'''
torch.manual_seed(__UpperCAmelCase )
__snake_case : Optional[int] = 4
__snake_case : List[Any] = 8
__snake_case : Dict = 7
__snake_case : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__snake_case : Optional[Any] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__snake_case : Optional[int] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return (4, 8)
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return (4, 8)
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 4,
"""num_layers""": 2,
"""embedding_dim""": 8,
"""num_embeddings""": 7,
"""additional_embeddings""": 4,
}
__snake_case : str = self.dummy_input
return init_dict, inputs_dict
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = PriorTransformer.from_pretrained(
'''hf-internal-testing/prior-dummy''' , output_loading_info=__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 )
model.to(__UpperCAmelCase )
__snake_case : List[Any] = model(**self.dummy_input )[0]
assert hidden_states is not None, "Make sure output is not None"
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.prepare_init_args_and_inputs_for_common()
__snake_case : Any = self.model_class(**__UpperCAmelCase )
__snake_case : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case : int = [*signature.parameters.keys()]
__snake_case : Optional[int] = ["""hidden_states""", """timestep"""]
self.assertListEqual(arg_names[:2] , __UpperCAmelCase )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = PriorTransformer.from_pretrained('''hf-internal-testing/prior-dummy''' )
__snake_case : Optional[Any] = model.to(__UpperCAmelCase )
if hasattr(__UpperCAmelCase , '''set_default_attn_processor''' ):
model.set_default_attn_processor()
__snake_case : List[str] = self.get_dummy_seed_input()
with torch.no_grad():
__snake_case : Dict = model(**__UpperCAmelCase )[0]
__snake_case : Union[str, Any] = output[0, :5].flatten().cpu()
print(__UpperCAmelCase )
# Since the VAE Gaussian prior's generator is seeded on the appropriate device,
# the expected output slices are not the same for CPU and GPU.
__snake_case : Optional[int] = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239] )
self.assertTrue(torch_all_close(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-2 ) )
@slow
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_=1 , a_=7_68 , a_=77 , a_=0 ):
'''simple docstring'''
torch.manual_seed(__UpperCAmelCase )
__snake_case : Any = batch_size
__snake_case : str = embedding_dim
__snake_case : str = num_embeddings
__snake_case : List[str] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__snake_case : Optional[int] = torch.randn((batch_size, embedding_dim) ).to(__UpperCAmelCase )
__snake_case : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(__UpperCAmelCase )
return {
"hidden_states": hidden_states,
"timestep": 2,
"proj_embedding": proj_embedding,
"encoder_hidden_states": encoder_hidden_states,
}
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@parameterized.expand(
[
# fmt: off
[13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]],
[37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]],
# fmt: on
] )
def SCREAMING_SNAKE_CASE (self , a_ , a_ ):
'''simple docstring'''
__snake_case : Optional[Any] = PriorTransformer.from_pretrained('''kandinsky-community/kandinsky-2-1-prior''' , subfolder='''prior''' )
model.to(__UpperCAmelCase )
__snake_case : List[str] = self.get_dummy_seed_input(seed=__UpperCAmelCase )
with torch.no_grad():
__snake_case : List[str] = model(**__UpperCAmelCase )[0]
assert list(sample.shape ) == [1, 7_68]
__snake_case : str = sample[0, :8].flatten().cpu()
print(__UpperCAmelCase )
__snake_case : Tuple = torch.tensor(__UpperCAmelCase )
assert torch_all_close(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 )
| 366 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"""tanreinama/GPTSAN-2.8B-spout_is_uniform""": (
"""https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"""
),
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='gptsan-japanese'
lowerCamelCase__ =[
'past_key_values',
]
lowerCamelCase__ ={
'hidden_size': 'd_model',
'num_attention_heads': 'num_heads',
'num_hidden_layers': 'num_layers',
}
def __init__(self , a_=3_60_00 , a_=12_80 , a_=10_24 , a_=81_92 , a_=40_96 , a_=1_28 , a_=10 , a_=0 , a_=16 , a_=16 , a_=1_28 , a_=0.0 , a_=1E-5 , a_=False , a_=0.0 , a_="float32" , a_=False , a_=False , a_=False , a_=0.002 , a_=False , a_=True , a_=3_59_98 , a_=3_59_95 , a_=3_59_99 , **a_ , ):
'''simple docstring'''
__snake_case : Any = vocab_size
__snake_case : str = max_position_embeddings
__snake_case : Any = d_model
__snake_case : List[str] = d_ff
__snake_case : Dict = d_ext
__snake_case : Optional[Any] = d_spout
__snake_case : int = num_switch_layers
__snake_case : List[Any] = num_ext_layers
__snake_case : Any = num_switch_layers + num_ext_layers
__snake_case : Optional[int] = num_heads
__snake_case : Tuple = num_experts
__snake_case : List[Any] = expert_capacity
__snake_case : Dict = dropout_rate
__snake_case : Optional[Any] = layer_norm_epsilon
__snake_case : Dict = router_bias
__snake_case : str = router_jitter_noise
__snake_case : List[str] = router_dtype
__snake_case : Union[str, Any] = router_ignore_padding_tokens
__snake_case : List[str] = output_hidden_states
__snake_case : Optional[Any] = output_attentions
__snake_case : Any = initializer_factor
__snake_case : int = output_router_logits
__snake_case : Union[str, Any] = use_cache
super().__init__(
separator_token_id=a_ , pad_token_id=a_ , eos_token_id=a_ , **a_ , )
| 24 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : List[str] = {
"""huggingface/time-series-transformer-tourism-monthly""": (
"""https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json"""
),
# See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer
}
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ ='''time_series_transformer'''
lowerCamelCase__ ={
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
'''num_hidden_layers''': '''encoder_layers''',
}
def __init__(self , a_ = None , a_ = None , a_ = "student_t" , a_ = "nll" , a_ = 1 , a_ = [1, 2, 3, 4, 5, 6, 7] , a_ = "mean" , a_ = 0 , a_ = 0 , a_ = 0 , a_ = 0 , a_ = None , a_ = None , a_ = 32 , a_ = 32 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = 2 , a_ = True , a_ = "gelu" , a_ = 64 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 0.1 , a_ = 1_00 , a_ = 0.02 , a_=True , **a_ , ):
'''simple docstring'''
__snake_case : Optional[int] = prediction_length
__snake_case : Optional[Any] = context_length or prediction_length
__snake_case : Optional[Any] = distribution_output
__snake_case : Union[str, Any] = loss
__snake_case : Dict = input_size
__snake_case : int = num_time_features
__snake_case : Any = lags_sequence
__snake_case : Dict = scaling
__snake_case : Tuple = num_dynamic_real_features
__snake_case : Dict = num_static_real_features
__snake_case : Union[str, Any] = num_static_categorical_features
if cardinality and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
__snake_case : Optional[int] = cardinality
else:
__snake_case : Optional[Any] = [0]
if embedding_dimension and num_static_categorical_features > 0:
if len(lowerCAmelCase__ ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
__snake_case : List[Any] = embedding_dimension
else:
__snake_case : Optional[Any] = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__snake_case : str = num_parallel_samples
# Transformer architecture configuration
__snake_case : Union[str, Any] = input_size * len(lowerCAmelCase__ ) + self._number_of_features
__snake_case : str = d_model
__snake_case : Optional[Any] = encoder_attention_heads
__snake_case : Dict = decoder_attention_heads
__snake_case : List[Any] = encoder_ffn_dim
__snake_case : str = decoder_ffn_dim
__snake_case : Dict = encoder_layers
__snake_case : str = decoder_layers
__snake_case : Any = dropout
__snake_case : str = attention_dropout
__snake_case : List[Any] = activation_dropout
__snake_case : Dict = encoder_layerdrop
__snake_case : Any = decoder_layerdrop
__snake_case : Optional[Any] = activation_function
__snake_case : Tuple = init_std
__snake_case : List[str] = use_cache
super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 367 |
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {
"""post_extract_proj""": """feature_projection.projection""",
"""encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""",
"""self_attn.k_proj""": """encoder.layers.*.attention.k_proj""",
"""self_attn.v_proj""": """encoder.layers.*.attention.v_proj""",
"""self_attn.q_proj""": """encoder.layers.*.attention.q_proj""",
"""self_attn.out_proj""": """encoder.layers.*.attention.out_proj""",
"""self_attn_layer_norm""": """encoder.layers.*.layer_norm""",
"""fc1""": """encoder.layers.*.feed_forward.intermediate_dense""",
"""fc2""": """encoder.layers.*.feed_forward.output_dense""",
"""final_layer_norm""": """encoder.layers.*.final_layer_norm""",
"""encoder.layer_norm""": """encoder.layer_norm""",
"""adapter_layer""": """encoder.layers.*.adapter_layer""",
"""w2v_model.layer_norm""": """feature_projection.layer_norm""",
"""quantizer.weight_proj""": """quantizer.weight_proj""",
"""quantizer.vars""": """quantizer.codevectors""",
"""project_q""": """project_q""",
"""final_proj""": """project_hid""",
"""w2v_encoder.proj""": """lm_head""",
"""mask_emb""": """masked_spec_embed""",
"""pooling_layer.linear""": """projector""",
"""pooling_layer.projection""": """classifier""",
}
SCREAMING_SNAKE_CASE : int = [
"""lm_head""",
"""quantizer.weight_proj""",
"""quantizer.codevectors""",
"""project_q""",
"""project_hid""",
"""projector""",
"""classifier""",
]
def lowercase ( _snake_case : Optional[int] ) ->int:
"""simple docstring"""
__snake_case : int = {}
with open(_snake_case , '''r''' ) as file:
for line_number, line in enumerate(_snake_case ):
__snake_case : Union[str, Any] = line.strip()
if line:
__snake_case : str = line.split()
__snake_case : Union[str, Any] = line_number
__snake_case : Dict = words[0]
__snake_case : str = value
return result
def lowercase ( _snake_case : Optional[Any] , _snake_case : List[str] , _snake_case : Tuple , _snake_case : Any , _snake_case : List[str] ) ->List[str]:
"""simple docstring"""
for attribute in key.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : Any = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : int = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : str = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : Union[str, Any] = getattr(_snake_case , _snake_case ).shape
elif weight_type is not None and weight_type == "param":
__snake_case : Optional[Any] = hf_pointer
for attribute in hf_param_name.split('''.''' ):
__snake_case : Dict = getattr(_snake_case , _snake_case )
__snake_case : List[str] = shape_pointer.shape
# let's reduce dimension
__snake_case : int = value[0]
else:
__snake_case : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"""
f""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__snake_case : List[Any] = value
elif weight_type == "weight_g":
__snake_case : Tuple = value
elif weight_type == "weight_v":
__snake_case : str = value
elif weight_type == "bias":
__snake_case : str = value
elif weight_type == "param":
for attribute in hf_param_name.split('''.''' ):
__snake_case : List[Any] = getattr(_snake_case , _snake_case )
__snake_case : int = value
else:
__snake_case : List[Any] = value
logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" )
def lowercase ( _snake_case : Any , _snake_case : List[Any] , _snake_case : Dict , _snake_case : List[str] , _snake_case : int ) ->int:
"""simple docstring"""
__snake_case : Optional[Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_snake_case ):
__snake_case : Dict = PARAM_MAPPING[full_name.split('''.''' )[-1]]
__snake_case : List[str] = '''param'''
if weight_type is not None and weight_type != "param":
__snake_case : str = '''.'''.join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
__snake_case : Tuple = '''.'''.join([key, hf_param_name] )
else:
__snake_case : Optional[int] = key
__snake_case : List[Any] = value if '''lm_head''' in full_key else value[0]
SCREAMING_SNAKE_CASE : Tuple = {
"""W_a""": """linear_1.weight""",
"""W_b""": """linear_2.weight""",
"""b_a""": """linear_1.bias""",
"""b_b""": """linear_2.bias""",
"""ln_W""": """norm.weight""",
"""ln_b""": """norm.bias""",
}
def lowercase ( _snake_case : str , _snake_case : List[Any] , _snake_case : Tuple=None , _snake_case : int=None ) ->Dict:
"""simple docstring"""
__snake_case : Tuple = False
for key, mapped_key in MAPPING.items():
__snake_case : int = '''wav2vec2.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]:
__snake_case : int = True
if "*" in mapped_key:
__snake_case : List[Any] = name.split(_snake_case )[0].split('''.''' )[-2]
__snake_case : Tuple = mapped_key.replace('''*''' , _snake_case )
if "weight_g" in name:
__snake_case : Union[str, Any] = '''weight_g'''
elif "weight_v" in name:
__snake_case : List[str] = '''weight_v'''
elif "bias" in name:
__snake_case : Any = '''bias'''
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__snake_case : List[Any] = '''weight'''
else:
__snake_case : Union[str, Any] = None
if hf_dict is not None:
rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
else:
set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
return is_used
return is_used
def lowercase ( _snake_case : str , _snake_case : Dict , _snake_case : List[str] ) ->Any:
"""simple docstring"""
__snake_case : Union[str, Any] = []
__snake_case : Union[str, Any] = fairseq_model.state_dict()
__snake_case : str = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
__snake_case : str = False
if "conv_layers" in name:
load_conv_layer(
_snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == '''group''' , )
__snake_case : Union[str, Any] = True
else:
__snake_case : Optional[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case )
if not is_used:
unused_weights.append(_snake_case )
logger.warning(f"""Unused weights: {unused_weights}""" )
def lowercase ( _snake_case : Any , _snake_case : str , _snake_case : Any , _snake_case : Tuple , _snake_case : List[str] ) ->Optional[int]:
"""simple docstring"""
__snake_case : Union[str, Any] = full_name.split('''conv_layers.''' )[-1]
__snake_case : str = name.split('''.''' )
__snake_case : Optional[int] = int(items[0] )
__snake_case : Any = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__snake_case : int = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__snake_case : Any = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f"""{full_name} has size {value.shape}, but"""
f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__snake_case : List[str] = value
logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(_snake_case )
@torch.no_grad()
def lowercase ( _snake_case : int , _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : str=None , _snake_case : List[Any]=True , _snake_case : int=False ) ->Dict:
"""simple docstring"""
if config_path is not None:
__snake_case : Optional[Any] = WavaVecaConfig.from_pretrained(_snake_case )
else:
__snake_case : Tuple = WavaVecaConfig()
if is_seq_class:
__snake_case : Optional[int] = read_txt_into_dict(_snake_case )
__snake_case : List[Any] = idalabel
__snake_case : int = WavaVecaForSequenceClassification(_snake_case )
__snake_case : int = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
feature_extractor.save_pretrained(_snake_case )
elif is_finetuned:
if dict_path:
__snake_case : int = Dictionary.load(_snake_case )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__snake_case : Tuple = target_dict.pad_index
__snake_case : int = target_dict.bos_index
__snake_case : Tuple = target_dict.eos_index
__snake_case : Optional[Any] = len(target_dict.symbols )
__snake_case : Any = os.path.join(_snake_case , '''vocab.json''' )
if not os.path.isdir(_snake_case ):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_snake_case ) )
return
os.makedirs(_snake_case , exist_ok=_snake_case )
__snake_case : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__snake_case : Dict = 0
__snake_case : List[Any] = 1
with open(_snake_case , '''w''' , encoding='''utf-8''' ) as vocab_handle:
json.dump(_snake_case , _snake_case )
__snake_case : List[Any] = WavaVecaCTCTokenizer(
_snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_snake_case , )
__snake_case : Tuple = True if config.feat_extract_norm == '''layer''' else False
__snake_case : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , )
__snake_case : Tuple = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case )
processor.save_pretrained(_snake_case )
__snake_case : Optional[int] = WavaVecaForCTC(_snake_case )
else:
__snake_case : Tuple = WavaVecaForPreTraining(_snake_case )
if is_finetuned or is_seq_class:
__snake_case , __snake_case , __snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} )
else:
__snake_case : Dict = argparse.Namespace(task='''audio_pretraining''' )
__snake_case : Optional[int] = fairseq.tasks.setup_task(_snake_case )
__snake_case , __snake_case , __snake_case : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case )
__snake_case : int = model[0].eval()
recursively_load_weights(_snake_case , _snake_case , not is_finetuned )
hf_wavavec.save_pretrained(_snake_case )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser()
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""")
parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""")
parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""")
parser.add_argument(
"""--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not"""
)
parser.add_argument(
"""--is_seq_class""",
action="""store_true""",
help="""Whether the model to convert is a fine-tuned sequence classification model or not""",
)
SCREAMING_SNAKE_CASE : Any = parser.parse_args()
SCREAMING_SNAKE_CASE : Tuple = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 24 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
SCREAMING_SNAKE_CASE : Dict = {
'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE : List[Any] = [
'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'GraphormerForGraphClassification',
'GraphormerModel',
'GraphormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_graphormer import (
GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
GraphormerForGraphClassification,
GraphormerModel,
GraphormerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 368 |
"""simple docstring"""
from ..utils import DummyObject, requires_backends
class _UpperCAmelCase ( metaclass=__snake_case ):
'''simple docstring'''
lowerCamelCase__ =['transformers', 'torch', 'note_seq']
def __init__(self , *a_ , **a_ ):
'''simple docstring'''
requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
@classmethod
def SCREAMING_SNAKE_CASE (cls , *a_ , **a_ ):
'''simple docstring'''
requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
| 24 | 0 |
"""simple docstring"""
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name
SCREAMING_SNAKE_CASE : Any = '''
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
>>> repo = "openai/shap-e-img2img"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"
>>> image = load_image(image_url).convert("RGB")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], "corgi_3d.gif")
```
'''
@dataclass
class _UpperCAmelCase ( a__ ):
'''simple docstring'''
lowerCamelCase__ =42
class _UpperCAmelCase ( a__ ):
'''simple docstring'''
def __init__(self , a_ , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
super().__init__()
self.register_modules(
prior=_lowerCamelCase , image_encoder=_lowerCamelCase , image_processor=_lowerCamelCase , scheduler=_lowerCamelCase , renderer=_lowerCamelCase , )
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , a_ , a_ ):
'''simple docstring'''
if latents is None:
__snake_case : Union[str, Any] = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase )
else:
if latents.shape != shape:
raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" )
__snake_case : Any = latents.to(_lowerCamelCase )
__snake_case : Dict = latents * scheduler.init_noise_sigma
return latents
def SCREAMING_SNAKE_CASE (self , a_=0 ):
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
__snake_case : Optional[int] = torch.device(f"""cuda:{gpu_id}""" )
__snake_case : Optional[int] = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(_lowerCamelCase , _lowerCamelCase )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
if self.device != torch.device('''meta''' ) or not hasattr(self.image_encoder , '''_hf_hook''' ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(_lowerCamelCase , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ , a_ , ):
'''simple docstring'''
if isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , torch.Tensor ):
__snake_case : str = torch.cat(_lowerCamelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCamelCase , axis=0 )
if not isinstance(_lowerCamelCase , torch.Tensor ):
__snake_case : int = self.image_processor(_lowerCamelCase , return_tensors='''pt''' ).pixel_values[0].unsqueeze(0 )
__snake_case : str = image.to(dtype=self.image_encoder.dtype , device=_lowerCamelCase )
__snake_case : Optional[int] = self.image_encoder(_lowerCamelCase )['''last_hidden_state''']
__snake_case : str = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
__snake_case : List[Any] = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 )
if do_classifier_free_guidance:
__snake_case : List[str] = torch.zeros_like(_lowerCamelCase )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__snake_case : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(_lowerCamelCase )
def __call__(self , a_ , a_ = 1 , a_ = 25 , a_ = None , a_ = None , a_ = 4.0 , a_ = 64 , a_ = "pil" , a_ = True , ):
'''simple docstring'''
if isinstance(_lowerCamelCase , PIL.Image.Image ):
__snake_case : List[Any] = 1
elif isinstance(_lowerCamelCase , torch.Tensor ):
__snake_case : List[Any] = image.shape[0]
elif isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
__snake_case : List[str] = len(_lowerCamelCase )
else:
raise ValueError(
f"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCamelCase )}""" )
__snake_case : Tuple = self._execution_device
__snake_case : Optional[Any] = batch_size * num_images_per_prompt
__snake_case : Union[str, Any] = guidance_scale > 1.0
__snake_case : List[Any] = self._encode_image(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# prior
self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase )
__snake_case : Any = self.scheduler.timesteps
__snake_case : str = self.prior.config.num_embeddings
__snake_case : List[str] = self.prior.config.embedding_dim
__snake_case : Union[str, Any] = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
__snake_case : List[Any] = latents.reshape(latents.shape[0] , _lowerCamelCase , _lowerCamelCase )
for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ):
# expand the latents if we are doing classifier free guidance
__snake_case : Dict = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
__snake_case : Dict = self.scheduler.scale_model_input(_lowerCamelCase , _lowerCamelCase )
__snake_case : Tuple = self.prior(
_lowerCamelCase , timestep=_lowerCamelCase , proj_embedding=_lowerCamelCase , ).predicted_image_embedding
# remove the variance
__snake_case : str = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
__snake_case : List[Any] = noise_pred.chunk(2 )
__snake_case : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
__snake_case : List[str] = self.scheduler.step(
_lowerCamelCase , timestep=_lowerCamelCase , sample=_lowerCamelCase , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=_lowerCamelCase )
__snake_case : List[str] = []
for i, latent in enumerate(_lowerCamelCase ):
print()
__snake_case : Union[str, Any] = self.renderer.decode(
latent[None, :] , _lowerCamelCase , size=_lowerCamelCase , ray_batch_size=40_96 , n_coarse_samples=64 , n_fine_samples=1_28 , )
images.append(_lowerCamelCase )
__snake_case : Tuple = torch.stack(_lowerCamelCase )
if output_type not in ["np", "pil"]:
raise ValueError(f"""Only the output types `pil` and `np` are supported not output_type={output_type}""" )
__snake_case : Any = images.cpu().numpy()
if output_type == "pil":
__snake_case : Dict = [self.numpy_to_pil(_lowerCamelCase ) for image in images]
# Offload last model to CPU
if hasattr(self , '''final_offload_hook''' ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=_lowerCamelCase )
| 369 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__(self , a_ , a_=7 , a_=3 , a_=18 , a_=30 , a_=4_00 , a_=True , a_=None , a_=True , a_=None , a_=True , ):
'''simple docstring'''
__snake_case : List[Any] = size if size is not None else {'''shortest_edge''': 20}
__snake_case : int = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18}
__snake_case : Tuple = parent
__snake_case : Tuple = batch_size
__snake_case : Tuple = num_channels
__snake_case : List[str] = image_size
__snake_case : Optional[Any] = min_resolution
__snake_case : List[Any] = max_resolution
__snake_case : List[Any] = do_resize
__snake_case : Dict = size
__snake_case : Dict = do_center_crop
__snake_case : Dict = crop_size
__snake_case : str = do_flip_channel_order
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class _UpperCAmelCase ( __snake_case, unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ =MobileViTImageProcessor if is_vision_available() else None
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = MobileViTImageProcessingTester(self )
@property
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , '''do_resize''' ) )
self.assertTrue(hasattr(a_ , '''size''' ) )
self.assertTrue(hasattr(a_ , '''do_center_crop''' ) )
self.assertTrue(hasattr(a_ , '''center_crop''' ) )
self.assertTrue(hasattr(a_ , '''do_flip_channel_order''' ) )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 20} )
self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} )
__snake_case : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'''shortest_edge''': 42} )
self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
pass
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
__snake_case : Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : str = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
__snake_case : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Union[str, Any] = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
__snake_case : Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
# Test batched
__snake_case : Tuple = image_processing(a_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['''height'''],
self.image_processor_tester.crop_size['''width'''],
) , )
| 24 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : str = {
"""microsoft/trocr-base-handwritten""": (
"""https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json"""
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class _UpperCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
lowerCamelCase__ ="trocr"
lowerCamelCase__ =["past_key_values"]
lowerCamelCase__ ={
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__(self , a_=5_02_65 , a_=10_24 , a_=12 , a_=16 , a_=40_96 , a_="gelu" , a_=5_12 , a_=0.1 , a_=0.0 , a_=0.0 , a_=2 , a_=0.02 , a_=0.0 , a_=True , a_=False , a_=True , a_=True , a_=1 , a_=0 , a_=2 , **a_ , ):
'''simple docstring'''
__snake_case : Dict = vocab_size
__snake_case : Optional[Any] = d_model
__snake_case : str = decoder_layers
__snake_case : List[Any] = decoder_attention_heads
__snake_case : Dict = decoder_ffn_dim
__snake_case : Tuple = activation_function
__snake_case : Dict = max_position_embeddings
__snake_case : str = dropout
__snake_case : str = attention_dropout
__snake_case : Dict = activation_dropout
__snake_case : Any = init_std
__snake_case : Optional[Any] = decoder_layerdrop
__snake_case : Optional[Any] = use_cache
__snake_case : Optional[int] = scale_embedding
__snake_case : Any = use_learned_position_embeddings
__snake_case : Optional[int] = layernorm_embedding
super().__init__(
pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
| 370 |
"""simple docstring"""
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def lowercase ( ) ->Optional[int]:
"""simple docstring"""
__snake_case : int = torch.nn.Linear(2 , 4 )
__snake_case : Optional[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
__snake_case : Optional[Any] = torch.optim.lr_scheduler.OneCycleLR(_snake_case , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
__snake_case : List[str] = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def lowercase ( _snake_case : str ) ->Optional[Any]:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def lowercase ( _snake_case : Union[str, Any] ) ->Tuple:
"""simple docstring"""
__snake_case : Dict = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(_snake_case )
class _UpperCAmelCase ( __snake_case ):
'''simple docstring'''
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(a_ ):
__snake_case : Any = Accelerator(cpu=a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case : Optional[int] = GradientState()
assert state.num_steps == 1
__snake_case : str = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__snake_case : List[Any] = False
assert state.sync_gradients is False
GradientState._reset_state()
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
(
(
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) , (
__snake_case
) ,
) : Union[str, Any] = accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Tuple = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*a_ , **a_ ):
pass
with patch('''torch.cuda.set_device''' , a_ ), patch_environment(ACCELERATE_TORCH_DEVICE='''cuda:64''' ):
__snake_case : List[Any] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , '''cuda:64''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Optional[int] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : Any = get_signature(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# make sure loaded weights match
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = create_components()
accelerator.prepare(a_ , a_ , a_ , a_ , a_ )
__snake_case : List[Any] = get_signature(a_ )
# saving hook
def save_config(a_ , a_ , a_ ):
__snake_case : Optional[Any] = {'''class_name''': models[0].__class__.__name__}
with open(os.path.join(a_ , '''data.json''' ) , '''w''' ) as f:
json.dump(a_ , a_ )
# loading hook
def load_config(a_ , a_ ):
with open(os.path.join(a_ , '''data.json''' ) , '''r''' ) as f:
__snake_case : Any = json.load(a_ )
__snake_case : List[str] = config['''class_name''']
__snake_case : str = accelerator.register_save_state_pre_hook(a_ )
__snake_case : Union[str, Any] = accelerator.register_load_state_pre_hook(a_ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Any = '''random'''
# make sure loaded weights match with hooks
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(a_ )
# make sure random weights don't match with hooks removed
load_random_weights(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) > 1E-3 )
# random class name to verify correct one is loaded
__snake_case : Union[str, Any] = '''random'''
# make sure loaded weights match with hooks removed
accelerator.load_state(a_ )
self.assertTrue(abs(model_signature - get_signature(a_ ) ) < 1E-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = create_components()
__snake_case : Union[str, Any] = None
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Tuple = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertTrue(dummy_obj is None )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = Accelerator()
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[Any] = create_components()
__snake_case : Optional[int] = [1, 2, 3]
# This should work
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : str = accelerator.prepare(
a_ , a_ , a_ , a_ , a_ , a_ )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Dummy object should have `_is_accelerate_prepared` set to `True`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Model is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Optimizer is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Scheduler is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
self.assertEqual(
getattr(a_ , '''_is_accelerate_prepared''' , a_ ) , a_ , '''Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`''' , )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map={'''''': 0} , )
__snake_case : Optional[Any] = Accelerator()
# This should work
__snake_case : Any = accelerator.prepare(a_ )
@slow
@require_bnb
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : Any = Accelerator()
with init_empty_weights():
__snake_case : List[str] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : Union[str, Any] = infer_auto_device_map(a_ )
__snake_case : str = '''cpu'''
__snake_case : Optional[int] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , device_map=a_ , load_in_abit=a_ , llm_inta_enable_fpaa_cpu_offload=a_ )
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Dict = accelerator.prepare(a_ )
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
__snake_case : str = {'''distributed_type''': DistributedType.MULTI_GPU}
with init_empty_weights():
__snake_case : Any = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
model.tie_weights()
__snake_case : List[Any] = infer_auto_device_map(a_ )
__snake_case : Dict = 1
__snake_case : str = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Any = Accelerator()
# This should not work and get value error
with self.assertRaises(a_ ):
__snake_case : Tuple = accelerator.prepare(a_ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
from transformers import AutoModelForCausalLM
with init_empty_weights():
__snake_case : Dict = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , )
__snake_case : Tuple = infer_auto_device_map(a_ )
__snake_case : Tuple = 1
__snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
'''EleutherAI/gpt-neo-125m''' , load_in_abit=a_ , device_map=a_ , )
__snake_case : Tuple = Accelerator()
# This should work
__snake_case : Dict = accelerator.prepare(a_ )
@require_cuda
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = torch.nn.Linear(10 , 10 )
__snake_case : List[str] = torch.optim.SGD(model.parameters() , lr=0.01 )
__snake_case : Optional[Any] = Accelerator(cpu=a_ )
__snake_case : str = accelerator.prepare(a_ )
| 24 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.